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Main concepts
• Cosmic rays
• Nuclear spallation
• Cosmogenic nuclides
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Cosmic rays

• Protons (∼ 90%)
• Alphas (∼ 10%)
• Others (∼ 1%)
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Nuclear spallation
Spallation reaction

or
How to transmute lead into gold

(Did you say cosmochemistry? No! Alchemy!)

Spallation with numbers
• Light projectile (p, π, α,...)
• Kinetic energy around the GeV

• Heavy target (12C, 208Pb,...)
• Time scale: ∼ 10−22 − 10−20 s
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Spallation applications
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Cosmogenic nuclides
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Dating techniques
• 14C
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Dating techniques
• 14C

Dating techniques
• 14C/C τ ∼ 103years
• 10Be/14C τ ∼ 104years
• 26Al/21Ne τ ∼ 106years
• 40K/K τ ∼ 109years
...

Isotope conditions
• Natural abundance low → resolve
production vs natural occurrence

⇒ Order of magnitude of production:
104 atom g−1 year−1 vs Na

• Stable or half-life comparable to the
event of interest

• Measurable
• Theoretical understanding of
production processes
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Theoretical understanding of cosmogenic nuclide
production processes

Need of improved spallation reaction description

Interest in spallation reaction applications

Need of improved cosmic ray irradiation simulation

Interest in cosmic ray behaviour
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INCL improvement

Improvement of the intra-nuclear
cascade simulation code at high
energy through a new degree of

freedom: Strangeness
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Ingredients

Old particles

• Nucleons (protons and neutrons)
• Pions (π−,π0, and π+)
• Deltas (∆−,∆0, ∆+, and ∆++)

New particles
• Kaons (K 0 and K +)

• Antikaons (K 0 and K−)
• Sigmas (Σ−,Σ0, and Σ+)
• Lambda (Λ)

Particle properties
• Mass
• Half life
• Decay channel
• Nuclear potential

Cross sections
• Production
• Interaction
• Absorption

Angular distributions
• Energy
• Direction
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Cross sections to parametrise

NN → NΛK πN → ΛK NK → NK NK → NK
→ NΣK → ΣK → NKπ → Λπ
→ NΛKπ → ΛKπ → NKππ → Σπ
→ NΣKπ → ΣKπ NΛ → NΛ → NKπ
→ NΛKππ → ΛKππ → NΣ → Λππ
→ NΣKππ → ΣKππ NΣ → NΛ → Σππ
→ NNKK → NKK → NΣ → NKππ

Initial set: ∼400 channels

∆N → NΛK NN → K + X
→ NΣK
→ ∆ΛK πN → K + X
→ ∆ΣK
→ NNKK

Second set: No data but needed. → Thousands of new channels.
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Sparse data
10 channels, 29 data points 26 channels, 43 data points

Data for 17% of the channels of the first set, including the above channels.
(0% for the second set)
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Data completion
First set
• Experimental data 17%

• Bystricky procedure 18% total: 35%

• Hadron exchange model 37% total: 72%

• Models-hypotheses-approximations 28% total: 100%

Second set: Models-hypotheses-approximations 100%

J. Hirtz, J.C. David, et al., Eur. Phys. J. Plus 133:436 (2018)
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Symmetries between the Feynman diagrams
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Angular distributions

Angular distributions:
the direction and the energy of the particles in the final state

Use of phase space generators when no experimental data

A refine model when possible
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Angular distribution

J. Hirtz, J.C. David, et al., Eur. Phys. J. Plus 133:436 (2018)
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Variance reduction scheme

Strangeness production represents 0.014% (0.15%) of the total cross
section in p-p collision at kinetic energies of 2(3) GeV.

Computational time problem

My solution: I cheat! (and I correct the results a posteriori)

Scheme: Increase the production of strangeness, register
“how much I cheat”, and correct the results accordingly

(plus a lot of mathematics)

How to use the scheme?
The user requires an increase of the statistics by a factor 10 and the

scheme increases the statistics by a factor 10 and tells you how to weight
the results

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 16 / 39
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Efficiency

Λ production in p(1.7 GeV ) + Ca collision

Before After

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 17 / 39
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Physical limits

K+ momentum in p(1.6 GeV ) +12 C with 107 events

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 18 / 39
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Borderline cases

p(10 GeV) +208 Pb (107 shots)

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 19 / 39
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INCL++6 results

Time to control the results!
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KaoS experiment (W. Scheinast et al., PRL 96, 072301 (2006))

Good points
Excellent agreement with
experimental data

Observations
Threshold very different compared to the Bertini
model because of repulsive K +’s potential

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 21 / 39
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LBL experiment S. Schnetzer et al., Phys. Rev. C 40, 640(1989)

p(2.1 GeV) +208 Pb→ K+ + X H2(2.1 GeV/A) +208 Pb→ K+ + X

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 22 / 39

Observations
• Results globally fine for

proton as well as for deuteron
induced reaction
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E-802 experiment E-802 Collaboration Phys. Rev. D 45, 3906 (1992)

Observations
Relatively good results
at high energy
Promising for cosmic ray
applications

p(14.6 GeV/c) + A→ K+ + X

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 23 / 39



Introduction INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion

LINP experiment V.P. Koptev et al., Zh. Eksp. Teor. Fiz. 94,1-14 (1988)

p + A→ K+ + X
Remark
• Threshold pp → pΛK +

1580 MeV

Observations
• Factor 4 with experimental
data

• Far sub-threshold
→ Use of biasing (speed

up by a factor 1 000)
→ Other models cannot

produce results in a
reasonable time
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CosmicTransmutation

Simulation of spallation reactions improved

New version implemented in the Geant4 toolkit (open source)

Time to simulate cosmic ray irradiation

Creation of a new program: CosmicTransmutation (Geant4 based)
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Objectives

Meteoroids (asteroids, moons)
• Shape
• Composition
• Size

Planets
• Planet size
• Atmosphere size, composition,
density profile

• Magnetic field

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 26 / 39

Observables
• Cosmogenic nuclide production rates
• Light particle fluxes (p, n, α)

Requirements
• User-friendly
• Simple input and output
• Code documentation for analyses
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User-friendly interface

Interface
• A few steps to run the program
• Simple definition of input parameters
• Able to tell the user if something is wrong or if an input file is missing

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 27 / 39
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Simple output

Different type of output as a function of the needs

Data file
• Small output file
• Automatically normalised results
• Only the fluxes of light particles

ROOT file
• All the information
• Possibility to cross observables
• More complex to manipulate

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 28 / 39
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Development

Algorithms - interface
• Uniform irradiation
(symmetries)
• User defined
compositions
• etc...

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 29 / 39
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Planets and magnetospheres

Algorithms
• 2 phases
• Reverse kinematic
calculations
• Map of allowed trajectories
(Longitude, Latitude,
Zenith, Azimuth, Rigidity)

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 30 / 39
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Cut-off maps

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 31 / 39

Standard New considerations
• Structure of the
penumbra
Consideration of
focusing and dispersion
Funnel effect



Introduction INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion

Cut-off maps
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Standard

Funnel

New considerations
• Structure of the
penumbra
• Consideration of
focusing and dispersion
Funnel effect
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CosmicTransmutation results

Time to control the results! (Again)
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Meteoroids

What to compare with?

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 33 / 39

Cosmogenic nuclide production rate
• What we try to understand
• Models use fluxes to calculate

cosmogenic nuclide production

Particle fluxes
• No experimental data
• Other models
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Neutron flux - Surface

Observations
• Factor 2 below
LAHET

→ Likely an error of
normalisation
• Shapes similar
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Proton flux - Surface

Observations
• Factor 2 below
LAHET

→ Confirmation error
of normalisation
• High energy flux
corresponds to the
cosmic ray spectrum
• High energies (INC):
similar shapes
• Low and
intermediate
energies: very
different
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Planetary atmospheres

What to compare with?

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 36 / 39

Particle fluxes
• Experimental data: Input

data or unmeasured
• Models: No data found +

funnel effect

Cosmogenic nuclide production rate
• Experimental data: hard to measure,
atmosphere aerodynamics
• Models: funnel effect should not be
considered to be comparable
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Solar modulation parameter

Without funnel vs Masarik and Beer
• Similar shapes
• 40% above
→ alpha particles (∼ 10% of the

cosmic ray spectrum; made of
4 nucleons)
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Cosmogenic nuclide ratios

Observations
• Isotope ratio can change with a modification of the irradiation spectrum
• No observation of isotope ratio modification due to the funnel effect
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Conclusion

Successful implementation of strangeness in INCL
• Improved simulation at high energy
• New fields of simulation opened
• Very good results for most of the observables studied
• Bonus: Variance reduction scheme

Creation of CosmicTransmutation
• State-of-the-art simulation models used
• New features: alpha particles, ellipsoidal meteorite, penumbra structure,
funnel effect, ...

Future and perspective
• Study of the impact of funnel effect (cosmic ray flux, cosmogenic nuclides)
• Date things!

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 39 / 39



Introduction INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion

Conclusion
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Backup

Graph theory
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Backup

Isospin symmetry - Bystricky procedure

dσ
dΩ = 1

64π2s2
Pf
Pi
|Mfi |2 → σ ∝ |Mfi |2

M(NN → NN xπ) = (〈NN| ⊗ 〈xπ|) M |NN〉

Superposition of state

⇒ 〈I(1)I(1)
3 I(2)I(2)

3 |M |I i I i3〉 = CG MI(1)I(2)I i

Equations of the type σ1 = ax + by , σ2 = cx + dy , ...

M
(
Initial state → xNN xππ xY Y xKK xKK

)
=
(
〈xNN| ⊗ 〈xππ| ⊗ 〈xY | ⊗ 〈xKK | ⊗ 〈xKK |

)
M |Initial state〉

= (〈system1| ⊗ 〈system2|) M |Initial state〉
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Backup

Isospin symmetry - Bystricky results

σ(pp → pΣ+K 0) = σ(nn→ nΣ−K +)

σ(pn→ pΣ−K +) + σ(pp → nΣ+K +) + σ(pp → pΣ+K 0)
= 2σ(pn→ pΣ0K 0) + 2σ(pp → pΣ0K +)

Data for 17%→ 35% of the channels.
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Backup

Isospin projection

|pp〉 = |1 1〉

|pn〉 =
√
2
2 |1 0〉+

√
2
2 |0 0〉

|np〉 =
√
2
2 |1 0〉 −

√
2
2 |0 0〉

|nn〉 = |1 − 1〉

|pΣ+〉 = |3/2 3/2〉

|pΣ0〉 =
√

2
3 |3/2 1/2〉 −

√
1
3 |1/2 1/2〉

|pΣ−〉 =
√

1
3 |3/2 − 1/2〉 −

√
2
3 |1/2 − 1/2〉

|nΣ+〉 =
√

1
3 |3/2 1/2〉 +

√
2
3 |1/2 1/2〉

|nΣ0〉 =
√

2
3 |3/2 − 1/2〉 +

√
1
3 |1/2 − 1/2〉

|nΣ−〉 = |3/2 − 3/2〉
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Backup

Isospin symmetry - Hadron Exchange Model

Zoom from reactions level to Feynman diagrams level.
More powerful but need more hypotheses.

πN → ΣK ⇒


σ(πN → ΣK ) = a2

K

∫
|MK |2dΩ + a2

Λ

∫
|MΛ|2dΩ + a2

Σ

∫
|MΣ|2dΩ

+ a2
N

∫
|MN |2dΩ + a2

∆

∫
|M∆|2dΩ.
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Backup

Isospin symmetry - HEM results

Data for 35%→ 72% of the channels.
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Backup

Model, Hypotheses, and approximations

Still 28% of the channels without possible parametrisation. All important!

σNN→NΛKπ(
√

s) = 3 σNN→NΛK (
√

s)× σNN→NNππ(
√

s − 540)
σNN→NNπ(

√
s − 540)

σNN→NΣKπ(
√

s) = 3 σNN→NΣK (
√

s)× σNN→NNππ(
√

s − 620)
σNN→NNπ(

√
s − 620)

σNN→NΛKππ(
√

s) = σNN→NΛKπ(
√

s)× σNN→NNππ(
√

s − 675)
σNN→NNπ(

√
s − 675)

σNN→NΣKππ(
√

s) = σNN→NΣKπ(
√

s)× σNN→NNππ(
√

s − 755)
σNN→NNπ(

√
s − 755)

Data for 100% of the channels! This is what I fought...
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Backup

Angular distributions
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Backup

Negative density of probability
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Backup

Smoothing splines vs Nadaraya-Watson kernel regression

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 11 / 27



Backup

Fritiof rates
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Backup

KaoS Experiment (W. Scheinast et al., PRL 96, 072301 (2006))

A word about K− production
Relatively bad results, notably at low energy
→ Possible explanation: missing channels. K production in strangeness exchange

reaction not taken into account (e.g. ΛN → NNK )
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Backup

ITEP experiment A test for unmeasured cross sections

Observations
• Results correct in

the threshold region
• Huge impact of

∆-induced reactions

p + A→ K+ + X
(θK+ = 10.5◦; pK+ = 1.280± 0.014GeV/c)

A. V. Akindinov et al., JETP Letters, Vol. 72, No. 3, 2000, pp. 100-105
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Backup

FOPI experiment M. L. Benabderrahmane et al., Phys. Rev. Lett. 102, 182501

π−(1150MeV/c) + A→ K0 + X

Observations
• Within the systematic
errors

• INCL slope ∝ A3/4

FOPI slope ∝ A2/3
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Backup

ANKE experiment

p(2.3 GeV) +12 C → K+(ANKE acceptance) + X

Observations
• Good threshold
simulation

• Prediction very different
of LAQGSM at energies
higher than 600 MeV /c

M. Büscher et al., Eur.Phys. J. A 22, 301-317(2004)
Thanks Nikolai Mokhov for LAQGSM data
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Backup

ANKE invariant cross section
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Backup

HADES - The Λ HADES Collaboration, Eur. Phys. J. A (2014) 50:81

Observations
• Good reproduction in
the region [0.15-0.9]
(Amplitude, shape)
• Bump around CM N+N
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Backup

HADES - The Λ HADES Collaboration, Eur. Phys. J. A (2014) 50:81
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INCL HADES

Observations
• Consistent with
experimental data
• Tension with the
extrapolation



Backup

HADES experiment - The K 0
S

HADES Collaboration, T.Gaitanos and J. Weil,
Phys. Rev. C 90, 054906 (2014)

Observations
• Same experiment as the
previous one but results
very different
• Reaction cross section:
HADES - 848± 127 mb,
INCL - 1047.87 mb,
Bertini - 1164 mb

Remark
GiBUU has been rescaled
Impossible to make proper
comparisons

Jason Hirtz CEA Seminar CEA Saclay - 22 November 2019 20 / 27

p(3.5GeV) + Nb → K0
S + X



Backup

GiBUU versions HADES Collaboration, T.Gaitanos and J. Weil,
Phys. Rev. C 90, 054906 (2014)
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Backup

Simple input - Irradiation flux

Only one input parameter to fully define proton and alpha spectra:
The solar modulation parameter M

proton

Jp(T,M) = cp ×
T (T + 2mpc2) (T + 780× e−2.5 10−4×T + M)−2.65

(T + M) (T + 2mpc2 + M)

alpha (new)

Jα(T,K) = cα × TK × (T + 2mαc2)
(T + 700)(T + 2mαc2 + 700)(T + 312500 T−2.5 + 700)1.65+K

K = (1.786 10−3 ×M)− 0.1323
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Backup

Cut-off effects

New effects
• Modified irradiation flux
• Modified ratio p/α particles
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Backup

Meteoroid types

Observations
• Increased flux at
10 cm
• Higher neutron flux
with heavier
elements
• Composition
influence the
spectrum shape
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Backup

Funnel effect

CosmicTransmutation vs CosmicTransmutation
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Backup

Magnetic field intensity

Observations
• Higher magnetic
field increases the
particle flux at the
poles
(higher focusing)
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Backup

Test Funnel algorithm
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