

NEUTRON-RICH NUCLEI AND NEUTRON SKINS FROM CHIRAL LOW-RESOLUTION INTERACTIONS

Pierre Arthuis

[Arthuis, Hebeler, Schwenk, arXiv:2401.06675]

WHAT IS LOW-ENERGY NUCLEAR PHYSICS?

ON AB INITIO METHODS

AB INITIO MANY-BODY SCHEME

Interactions anchored in Effective Field Theory

A-body Schrödinger equation $H|\Psi^{A}\rangle = E^{A}|\Psi^{A}\rangle$

Obtain a description that is:

- From inter-nucleon interactions
- Rooted in quantum chromodynamics

AB INITIO MANY-BODY METHODS RANGE

TECHNISCHE

A LOOK AT EXPERIMENTAL FACILITIES

Adapted from B. Bally

NUCLEAR PHYSICS CHALLENGE(S)

Determine an observable O for a system S with precision η

FOR A LESS BRIEF ONE: [HEBELER, PHYS. REP. 890 (2021)]

A VERY BRIEF HISTORY OF CHIRAL INTERACTIONS

CHIRAL EFT HAMILTONIANS: A LINK TO QCD

Rationale

- Nucleons and pions as degrees of freedom
- Link to QCD through Hamiltonian symmetries
- Natural hierarchy of terms
- Systematically improvable

$$M_{\rm low} \sim m_{\pi}$$

$$\Lambda = \{\Lambda_{NN}, \Lambda_{3N}, \dots\}$$

In practice

 $M_{\rm high} \sim \Lambda_{\chi}$

- NN terms up to N⁴LO (though mostly N³/N²)
- 3N terms up to N³LO (though mostly N²LO)

[Epelbaum, PoS CD15 (2016)]

Footnote: Similar expansion with Δ excitation

THE LEADING THREE-BODY FORCE

N2LO contributions

- Two-pion exchange: LECs set in the NN sector
- Two new LECs: one-pion exchange and contact term
- c_D, c_E only new parameters in 3N sector

TECHNISCHE

UNIVERSITÄT DARMSTADT

[Hebeler, Phys. Rept. 890 (2021)]

[Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65 (2015)]

Practical aspects

- Most often fitted in the 3N sector
- Bring repulsion necessary for a good qualitative description

ENTEM-MACHLEIDT 500 (2003)

Pioneering work

- Reproduce quality of phenomenological potentials
- Fitting by reproducing NN phaseshifts
- Had to be supplemented with a 3N force

[Tichai, Arthuis et al., PLB 786 (2018)]

Legacy

- · Still one of the most used NN forces
- NN+3N combinations often fell short
- Hard interaction: require large model spaces

THE λ/Λ FAMILY AND THE 1.8/2.0 (EM) (2011)

Rationale

- Build on the success of the EM500
- SRG-evolve the EM, add bare 3N on top
- Low- Λ re-fit of c_D , c_E for 3NF absorb missing physics

Legacy

- Vastly successful with energies
- Underpredicts radii
- Soft interaction, made for very broad use

TECHNISCHE

UNIVERSITÄT DARMSTADT

[Simonis, Stroberg et al., PRC 96 (2017)]

[Ekström, Jansen et al., PRC 91 (2015)]

Rationale

- Interactions fitted on NN, 3N underpredict radii
- Incorporate *low-energy* many-body data in the fit
- Simultaneous fit of all LECs

Legacy

- Excellent radii and associated quantities
- Underbinds in the heavy sector
- Pioneered the use of many-body data

[[]Arthuis, Barbieri, et al., PRL 125 (2020)]

Séminaire du DPhN | CEA Paris-Saclay | TU Darmstadt | Pierre Arthuis

[CARLSSON, EKSTRÖM, FORSSÉN, STRÖMBERG, JANSEN, LILJA, LINDBY, MATTSON, WENDT, PRX 6 (2016)]

SIMULTANEOUS FITTING: NNLOSIM/NNLOSEP (2016)

Rationale

- NN, 3N sector equals only in name
- Study the importance of NN+3N fitting approach
- Order-by-order fits, various cutoffs
- NN+3N consistently from the very start

[Carlsson, Ekström, et al., PRX 6 (2016)]

Legacy

- Introduced detailed correlation studies
- Barely ever used in practical applications

TECHNISCHE

UNIVERSITÄT DARMSTADT

[Entem, Machleidt, Nosyk, PRC 96 (2017)]

Rationale

- Revisit the EM500 strategy: focus on phaseshifts
- Use πN scattering analysis data for c_i 's
- · Order-by-order fits, various cutoffs
- · Still NN-only: needs to be supplemented

Legacy

- Helped systematised chiral order studies
- Extended in multiple ways to the 3N sector

[[]Hüther, Vobig, et al., PLB 808 (2020)]

0.1

EXPLICIT \triangle : \triangle NNLO_{GO} & THE NON-IMPLAUSIBLES (2019+)

[JIANG, EKSTRÖM, FORSSÉN, HAGEN, JANSEN, PAPENBROCK, PRC 102 (2020), ...]

0.3

0.2

 $R_{\rm skin}(^{208}{\rm Pb})$ [fm]

[Hu, Jiang et al., Nat. Phys. 18 (2022)]

Study convergence of deltaful chiral EFT

Use many-body data from the start

• Δ excitation is relatively low in energy

- NLO, NNLO interactions
- More exhaustive strategy: non-implausible int.

Séminaire du DPhN | CEA Paris-Saclay | TU Darmstadt | Pierre Arthuis

Rationale

Legacy

- Good simultaneous reproduction of radii & ground-state energy
- Very encouraging order-by-order convergence

[Kondo et al. (SAMURAI 21), Nature 620 (2023)]

THE LOCAL-NON LOCAL (2020)

[Somà, Barbieri, et al., EPJA 57 (2021)]

50 52 54

56 58 60

A BRIEF CONCLUSION

Towards accurate chiral interactions

Important development in the design of chiral interactions
Great progress in the simultaneous reproduction of quantities
Very active field of research, faster feedback from practitioners

Some work left to do

- Simultaneous reproduction of energies, radii, infinite matter out of reach
- Order-by-order convergence puzzling
- New many-body development offer more detailed (negative) feedback
- Entering an era of rapid trial and error approach

19

[ARTHUIS, HEBELER, SCHWENK, ARXIV:2401.06675]

NEW LOW-RESOLUTION INTERACTIONS, NEUTRON-RICH NUCLEI AND NEUTRON SKINS

WHY LOW-RESOLUTION INTERACTIONS?

Sufficient to describe bulk properties of nuclei

- Better convergence properties through softened interaction
- Proved successful for binding energies with the 1.8/2.0 (EM) [Hebeler *et al.*, *PRC* 83 (2011)]

The 1.8/2.0 approach

- NN force SRG-evolved to 1.8 fm⁻¹
- 3N force with c_D , c_E refitted with a cutoff of 2.0 fm⁻¹

Revisit this approach

- · Goal: Obtain good description of binding energy and radii
- Target: From light to heavy systems

[Simonis et al., PRC 96 (2017)]

OUR STARTING INTERACTIONS

EMN NNLO and the sim family

- Different initial fitting strategies
- Wide range of cutoffs
- Different powers for the regulator

EMN: [Entem *et al.*, *PRC* **96** (2017)] Sim: [Carlsson *et al.*, *PRX* **6** (2016)] **Three-body force regulator**

LEC	EMN NNLO	EM	NNLOsim 450	NNLOsim 500	NNLOsim 550
C 1	-0.74	-0.81	-0.05	0.22	0.27
C ₃	-3.61	-3.2	-3.45	-3.56	-3.56
C 4	2.44	5.4	4.235	3.933	3.644

THE 1.8/2.0 AND TRITON BINDING ENERGY

Bare interactions

- Similar parabolic curves
- Larger cutoff means stronger bend

'1.8/2.0' interactions

- Very similar, quasi-linear dependence
- Mild dependence on original LECs

ANCHORING THE INTERACTIONS ON 160

$r_{\rm ch} \, \, [{\rm fm}]$ EM 500 2.5NNLOsim 450 NNLOsim 500 NNLOsim 550 2.4EMN 450 EMN 500 EMN 550 -7.5-10.0-5.0-2.50.0 7.52.55.010.0 c_D

Charge radius

• Quasi-linear evolution with c_D

+ $c_{D}=7.5$ yields very good radius for NNLOsims and EM

Binding energy

- NNLOsims and EM 500 stay close to exp. value
- EMNs only close for very negative $c_{D} \label{eq:eq:embedded}$

2.8

2.7

A CHECK AGAINST 40CA

Similar reproduction

- Excellent reproduction of binding energy for c_D = 7.5
- Almost unchanged picture for the charge radius

Binding energy

- Reasonable reproduction of experimental values
- Slight improvement for heavy systems w.r.t. 1.8/2.0 (EM)

Charge radius

- Quasi-exact reproduction over complete mass range
- Excellent combined reproduction of charge and mass

TECHNISCHE

UNIVERSITÄT DARMSTADT

NEUTRON SKIN AND HEAVY SYSTEMS

Neutron removal off Sn isotopes @ R3B/GSI

- Access L through the cross-section, need for theory input
- L correlated to neutron skin too: Great test case

AB INITIO DENSITIES FOR HEAVY SYSTEMS: 120SN

Excellent reproduction of ¹²⁰Sn densities

- Consistent picture over the different interactions
- Very moderate uncertainties

AB INITIO DENSITIES FOR HEAVIER SYSTEMS: 208PB

ON NEUTRON SKINS

Evolution w.r.t. isospin

Linear relation confirmed on *ab initio* basis 0.4CC: $\Delta N^2 LO_{GO}(394)$ 11:11 1 1 1 1 1 4 1 4 V \diamond CC: $\Delta N^2 LO_{GO}(450)$ \leftarrow CC: N²LO_{sat} 0.2**\mathbf{V}** AFDMC: N²LO_{E1} $\Delta R_{\rm np}~({\rm fm})$ $^{13}B_{22}O$ 0.0⁴⁸Ca 180 ^{17}O ⁵⁴Fe -0.2⁵⁴Ni ^{48}Cr 17F140-0.4⁴⁸Ni βB $\Delta R_{\rm np} = 1.331 \cdot I - 0.041$ ^{13}O 22 Si \pm 0.028 [fm] -0.2-0.10.00.10.2

[Novario et al., PRL 130 (2023)]

I = (N - Z)/A

14.03.2024

NEUTRON SKINS IN NEUTRON-RICH ISOTOPES

Evolution w.r.t. isospin

- Linear dependance confirmed in valley of stability
- Neutron-rich nuclei exhibit stronger dependence
- Highlight importance of interaction

Good physics cases to explore

CONCLUSION AND OUTLOOK

Accurate interactions over the nuclear chart

Novel interactions with good convergence properties
Very good reproduction of binding energy, radii, neutron skins
Now to extend to open-shell nuclei and infinite matter

Neutron skin dependence on isospin

- •Enhanced dependance on system at the most neutron-rich
- Highlight differences in the interactions
- •Neutron-rich nuclei to be more accessible with new RIB facilities

Thank your for your attention!

STRONGINT group

C. Brase, M. Companys-Franzke, K. Hebeler, M. Heinz, T. Miyagi, A. Porro, A. Schwenk, I. Svensson, A. Tichai

T. Duguet J.-P. Ebran R.-D. Lasseri J. Ripoche V. Somà L. Zurek

H. Hergert

TECHNISCHE UNIVERSITÄT R. Roth DARMSTADT

M. Vorabbi

