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Motivation

To study elastic scattering and breakup cross sections of 11Li in a four-body eikonal
model.

Three-body Projectile

Target

» Bound states _
> Continuum states » Breakup cross sections

> Dipole strengths » Angular distributions



Introduction

< High-energy reactions are widely used to investigate Halo nuclei.

* High incident energies permits to handle the Schrodinger equation in a
simplified way: Eikonal method.

* Non-microscopic 2-Body and 3-Body descriptions of the projectile has been
introduced in the eikonal method.

Two-body projectile Three-body projectile

Elastic scattering, breakup Elastic scattering, breakup
Ex: 11Be+208Pb =(10Be+n)+2%8Ph i Ex: SHe+208Ph =(a+n+n)+2°8Ph
G. Goldstein, et. al; Phys. Rev. C 73, D. Baye, et. al; Phys. Rev. C 79,

024602 (2006). . 024607 (2009).



Eikonal approximation for one-body projectile

We have to solve the Schrddinger equation

hz
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At high-energies the wave function: Smooth deviation
from a plane wave

(1) = vz e B,
we have Smoothly varying function
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Eikonal approximation for one body projectile

Ex: Elastic scattering of an incident uncharged particle

The elastic amplitude

f(0) = iK J Jo(gb)[1 — eX®)|bdb; q = 2K sin
0]

The eikonal phase
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(b) L[y (b,2)dZ S
ST ) U=
& hv . o HpT
Extension to charge particles
x(b) = xn(b) + xc(b)
v v
Nuclear Coulomb Corrected to overcome

divergences due to the
Coulomb potential.



Elastic cross sections for n+4%Ca at different
Incident energies

Partial Waves
Eikonal

40 Ca(n,n)'mCa

Fig 1. The energies are shown in MeV. The n+40°Ca potential is taken from A. J.
Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

s Excellent agreement between both methods when the energy increases.



Elastic cross sections for p+4°Ca at different
Incident energies

Partial Waves
Eikonal

40 Ca(p. p)-'il'l Ca

Fig 2. The energies are shown in MeV. The p+4°Ca potential is taken from A. J.
Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

s Excellent agreement between both methods when the energy increases.



Four-body eikonal

hZKZ
H4BCI) - ETCI), ET = EO +
}2 2ppr

VZ + Vpr + Hsp,

Hypn = —
5 2UpT

Ey - G. S. energy of the projectile
h2K?
2UpT

— Initial relative P.T. energy

Nuclear optical potentials + Coulomb

Vpr =Ver + Ve + Vipyy

Factorizing: ®(R, x,y) = eX2$(R, x,y)
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The eikonal approx.
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Four-body eikonal

. . i (?
Eikonal w. f. < <I>elk(R,x,y)z‘Po(x,y)eXp[—% f VpT(b,Z’,x,y)dZ’]

Eikonal elastic amplitude ——> S(b) = <‘P]°M° o eiX(b)|‘P]°M°n°> —> f(6)
S~~—~— S~
3B bound state 3B bound state

e"X(”)|‘P10MO’T0> —> Bup obs.
v

3B scattering 3B bound state
State R-matrix

Eikonal breakup amplitude ———» §(b) « <lkaKy(E)

Eikonal phase —> y(b) = —h—‘vf_oooo[VCT(b) + Vo (b) + Vo (b)]dZ
(Dynamics information)



Three-body projectile




Three-body model of the projectile

HypW/™ = EQJ/™

® Neutron 1
E < 0 - Bound state
= P
< > X @
Core -0 MeV, core+n+n
Core

) Eo = —52n

4
® Neutron 2

x,y: Jacobi coordinates _
E > 0 — Scattering states

p,a: Hyperspherical coordinates 7

p? = x* + y*: Hyperradius Core E;

—
- 0 MeV, +n +
a = arctan (%) : Hyperangle S

Qs = (&, U 0y 0\



Three-body model of the projectile

HBBLIJ]T[ == EI.IJ]T[

h?
lT]/

2B potentials, Vcn Gaussian, W. Saxon

Kmax

—
@
P = p=5 XVK(P)y k (Qs)

/ \
Hyperradial Function Eigenfunction of angular

(Unknown) momentum K (Known)

m = (—1)X - Parity of the relative motion of the 3B

.nl
< X
y
4
.nz
= (e, 1y, L, S)
L=1+1I,
S=5,+S5,
J=L+S



Three-body bound states

HgBLIJ]T[ = ELIJ]T[

(00]

W = p7S2 N A (oYY (9s)

K=0 vy

N

X x(P) = Z Cori ui(p),

Eigenvalue problem Lagrange basis

e

It facilitates the calculations



Three-body continuum states

We employ three different methods to calculate continuum states:

R-matrix Pseudostates and Complex scaling

» Precise treatment. » Approximate methods.

> It calculates three-body continuum
states with the correct asymptotic » Discretized the continuum.
behavior.

» Time consuming calculations. » Easy to implement.




Three-body continuum states: R-matrix

Internal region

N
R e) = ) Ol ()
i=1

External region

Xx(p = )

Qa

N e
—~,

Nuclear + Coulomb + Centrifugal
potentials

Coulomb + Centrifugal potentials

Xy (p = ) =AY [Hysc (k)8 i = Uyt Hiie (ko))

T
UVK V'K

Hankel functions

— Collision matrix — e%'® - Eigenphases

——> Large matrix for typical yK values

v



Dimension of the R-matrix calculations

J=0" NEN J=2"

Y = (L lyr L,S)

N — Number of Lagrange basis, typical N = 40

yK — Channels number

Matrices of — yKN X yKN

Example: ] = 2% and Kmax = 20
Matrices of —» yKN X yKN =(265 - 40)X'265 - 40/)= 10600 x 10600



Three-body Continuum states: Pseudostates

Expanded in a completed

basis
S Continuum Discrete states (o) = z 1% i(0)
Va
53 \
8= Eigenvalue problem
‘O
X
(0D}
m
o
3B threshold
0 3B Ground state

» Bound state variational calculations extended to positive energies:

> It depends on the choice of the basis.



Three-body continuum states: Complex scaling

In complex scaling:

We change p—pe® k- ket

And solve HSB(H)LIJ]TE — Eq;]n

with pir = p=>/2 z nyx(p)y (Qs)
K=0 vy

By the expansion in a L? basis

Xk (p) = z C)ri ()i (p)




Applications of the R-matrix method to °He



Applications for °He: Three-body resonances

oo R]T[ N U]7T - (S—lUS — eZi(S)

*» Information about three-body resonances is contained in the eigenphases 6.

|

(2+,1_, 0+)
E = 4.6 MeV
2+
E = 0.82 MeV
NN g - oMeV
0+

E, = —0.986 MeV

: : _ EXp. resonances
Fig. 3. Eigenphases for 6He for different J values

(From P. Descouvemont et al, Nucl. Phys. A 765 (2006) 370).



Applications for °He: E1 strength distribution

2

dB(E
N
v

1- 3B cont. R-matrix 0" 3B bound state

Fig. 4. Electric dipole distribution for different Kmax values. From D.
Baye et al, Phys. ReV. C 79, 024607 (2009).



Applications of the pseudostates method to ®He



Dipole strength of °He: Continuum pseudostates

Bg1(E3) « [((Ey) | MEL[@loMoTo)y |2
S——- ~——
/ 3B-PS 3B bound state

Electic dipole
transition probability

)

fm~

al
o
~—
—
Q
m

Fig 5. The solid (Lagrange-Laguerre basis) and open bars (Lagrange-Legendre basis)
respectively. From E. C. Pinilla et. al, Nucl. Phys. A 865 (2011) 43.



Dipole strength distribution of °He: Pseudostates

dB (E 1) Z f(E,E))Bg1(Ey), », Related with the detector
response
Gaussian
distribution
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Fig. 6. The solid (dotted) curves are N=50 (N=70) elements of the basis.
From E. C. Pinilla et. al, Nucl. Phys. A 865 (2011) 43.



Applications of the complex scaling method to ®He



E1 strength distribution of ®He: Complex scaling
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Fig. 7. Complex scaling (dashed curves) and R-matrix (solid curve) dipole strength
calculations.



E1 strength distribution of ®He:
PS and CS vs. R-matrix
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Fig. 8. From P. Descouvemont, et. al. Proceedings YKIS (2011). The o are in MeV and the
0 in rad.



Three-body projectile + Target: Four-body eikonal



Four-body eikonal

® Applied by D. Baye, P. Capel, P. Descouvemont and Y. Suzuki, Phys.
ReV. C 71, 024607 (2009). They described the elastic breakup cross
section of °He on 2°8Pb @ 70 A MeV.

® Qualities of the model:
v Contributions different from the dipole.

v It does not require ®He-298Pb potential: a-2°®Pb potential and n-2%8Pb
potential are well known.

v It takes nuclear and Coulomb effects and their interference on the same
footing.

v There is not adjustable parameter.



Applications in "Li:
E. Pinilla et. al. Phys. Rev. C 85, 054610 (2012)

To calculate bound and scattering states of °Li+n+n

9Li+n interaction

% From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97).

** Non-existent elastic scattering experimental data.

% Fitted to reproduce a presumed p,,, resonance at 540 keV and a s virtual
state.

“9Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of MLi =

- 0.378 MeV.

n+n potential

+» Minnesota interaction

We those potentials we well reproduce r.m.s. radius-of *Li : 3.1 fm (exp. r.m.s
of 3.16 +0.11 fm).




Eigenphases of ''Li: R-matrix

Fig. 9. °Li+n+n eigenphases

¢ Like-resonant behavior for 1- and 2* continuum
s Rise of the 0* phase shift with energy: “Like a superposition of resonances”



E1 strength distribution of "Li: PS vs. R-matrix

R-matrix: Pseudostates:

0.17VE

Fig. 10. The values shown are ¢ in MeV. Experimental Data from T. Nakamura et. al, Phys.
Rev. Lett. 252502 (2006).

* Very good agreement between both methods.
s Our theoretical model overestimate the data.



Conditions of the calculations for 'Li on 298Pb

To calculate the breakup cross sections of Li on 28Pb @ 70 A MeV:

% 9Li-298pPb potential (lack of the potential):
Renormalized (91/3+208'3) a-2%8Pb interaction @ 70 A MeV of B. Bonin et. al.

(Following the same idea of P. Capel et. al, Phys. Rev. 68, 014612 (2003) for 1°Be
on 298pPh).

K/

% Variation of the °Li-?®Pb potential was checked but it did not provide a
significant change to the breakup and angular distributions.

% n-208Pp potential:
Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003).



Breakup cross sections of "'Li on 2°Pb @ 70 A MeV

Fig. 11. Partial and total eikonal breakup cross sections.

+ Small correction of the 0* and 2* partial waves to the total cross section.



Influence of the core-target potentials on the
Partial breakup cross sections

Fig. 12. The solid curves are the original °Li-potential (renormalized «-2°8Pb) and the
dashed curves are the potential modified by a factor of 2.

+ Small influence of the choice of the core-target potential.



Convoluted breakup eikonal cross section
with the detector response

111 jon 2%8Ph @ 70 A MeV

Theoretical data convoluted with a Gaussian of ¢ = 0.17VE MeV

Exp. Data ——

Fig. 13. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006).

% Fair agreement with the experimental data.



Angular distributions of ''Li on ?°Pb @ 70 A MeV

Total ———

Conv. Total
Exp. Data ——

Fig. 14. Partial, total (thin solid) and convoluted total (thick solid) angular distributions.
Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).

s Very good agreement of the total convoluted curve for almost all angles.



Convoluted E1 strength distribution of ''Li with
the detector response

0.17VE R-matrix

Fig. 15. The o value is in MeV. Experimental Data from T. Nakamura et. al,
Phys. Rev. Lett. 252502 (2006).

* Why we overestimate the E1 distribution?



Why we overestimate the E1 distribution?

In the breakup reactions of 1Li+2%8Pb @ 70 A MeV

do

X - IS measured directly > We fit the data
X % IS measured directly —> We fit the data
s 4B(E1)

>

o IS measured indirectly
(It depends on model assumptions)

—>  \We do not fit the data



How is determined experimentally dB(E1)/dE?

It is extracted from the equivalent photon method
as

doBXP 1673 dBEXP(E1) [
b

dE 9hc dE

min

% Ng,(b, E) - Number of virtual photons incident
on Li by unit area.

Exp
& 4B dE(El) — Structure information of 11Li|.

% It comes from semi-classical perturbation
theory.

% It is assumed to be one step and dominated by
a single E1 multipolar transition.

% From b,,;, to exclude nuclear excitation.

Virtual y

@

208pp

ULi is excited by absortion
of a virtual photon from the
Coulomb field of the target.



Estimation of the b,,,;,, dependence in the dipole
distribution of "'Li

In non-relativistic regime

dBEXP(E1) 9 (in7)2 1 doEXP

dE _327T ZTe gminKO(gmin)Kl(fmin) d()
_E-E,

v — Projectile-target relative velocitiy, Emin = o bmin,

E — Excitation energy of 1Li, E, —» G. S. energy of Li

2
__ ZpZre —Min. Impact parameter for the semi-classical

2 Eprtan (7C) Coulomb trajectory

bmin

6. — maximum scattering angle (beyond 6. nuclear interaction is important)



Estimation of the 6. dependence in the dipole
distribution of 1Li

%“ 15 ¢,<>ﬁ 6. =09
p=
;% 1 oﬁg‘i?? data 6,
.E.- | IR . Exp. data 0, =1.46
< os A/zﬁiéoé
o A A
: . 48 mﬁﬁ&g gggg
0 0.5 1 15
E (MeV)

Fig. 16. The 6, values of 0.9, 1.46 and 2 deg correspond to b,,;,, of 31, 19 and
14 fm respectively.

/

s Small 6, provides a larger dipole distribution at low excitation energies.



Elastic scattering of ''Li on 2°°Pb @ 70 A MeV in the
Eikonal method

Original °Li-target Li-target X 2

% Reduction in the 1Li+2%8Pb elastic scattering due to flux going to breakup
% 0 < 60 <1 - Rutherford scattering.
* Influence of the choice of the core-taget potential.



Angular distributions of ''Li on ?°Pb @ 70 A MeV

Total ———

Conv. Total
Exp. Data ——

Fig. 14. Partial, total (thin solid) and convoluted total (thick solid) angular distributions.
Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).

s Very good agreement of the total convoluted curve for almost all angles.



Conclusions

s We confirmed the existence of a dipole resonance.

% The breakup cross sections and angular distributions of 1Li on 2%Pb are in good
agreement with the experimental data.

s We suggest that the simple Coulomb dipole approximation, traditionally used to
extract experimental dipole strengths, should be replaced by more elaborate
models.

*» A standard problem in few body cluster calculations is that we do not have
optical potentials for core-target interactions. It will be great! If more experiments
on elastic scattering were done.

% Elastic scattering experiments at the same energy of 1Li-on 2°8Pb will be very
useful to evaluate the precision of the present eikonal model.

Thank you for your attention



