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Nuclear matter

‣ strongly interacting nucleons (symmetric/pure neutron matter)

⇢ Weizsäcker semi-empirical mass formula

‣ homogeneous system

‣ thermodynamic limit

‣ spin-unpolarized

Chapter 1

The nuclear many-body problem

1.1 The concept of nuclear matter

By nuclear matter we mean a quantum system composed of nucleons interacting via
nuclear forces. We address only the case of infinite nuclear matter, i.e. imagining N
particles in a box of volume V, we consider the thermodynamic limit N,V→∞. This
allows us to neglect all finite size effects and ensures that all macroscopic quantities
are well defined.

The neutron and the proton are regarded as the same particle with vacuum mass1
m = 939 MeV, spin s = 1

2 and isospin t = 1
2 , corresponding to two isospin z−projections

tnz = 1
2 and tpz = −1

2 . We assume the system to be homogeneous in space and spin-
unpolarized. The first property allows us to define a constant particle density2

ρ =
N

V

. We then study only two situations: the case with an equal number of protons and
neutrons, symmetric nuclear matter, or a system composed of neutrons only, neutron
matter.

The nucleons interact via strong forces, addressed in detail in the next section.
Weak interactions enter only indirectly in some applications (such as neutron star
matter) and are not present when pure nucleonic matter is considered. The effects of
Coulomb interactions between protons are assumed to be negligible and thus electro-
magnetic forces are switched off from the beginning.

We keep ourselves in a non-relativistic framework. This assumption is supported
by the fact that the nucleon mass is large enough; we shall discuss in the following
(Section 3.1) the possible inclusion of relativistic corrections and their connection with
(non-relativistic) three-body forces.

In this work only the case of nuclear matter in thermodynamic equilibrium will be
1We use natural units, i.e. c = ! = kB = 1 .
2The number of particles per unit volume is sometimes denoted by n; however in the literature,

when speaking of nuclear matter, one finds more often the notation ρ.
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6 The nuclear many-body problem

considered. In the framework of statistical mechanics such a system may be regarded
as a grand-canonical ensemble and we can investigate its thermodynamic properties,
evaluating macroscopic observables which can be compared to experiments. For this
purpose one has to develop a many-body technique capable of treating the hard core
present in nuclear interactions and suitable for taking into account the modifications
induced by the presence of a dense and possibly hot medium.

Which physical systems, and in which conditions, can be described with such an
idealized picture? If we look at the famous Weizsäcker semi-empirical mass formula
(Np and Nn are respectively the proton and neutron densities, with Np + Nn = N)

E(Np, Nn) = EB N + Esurf N
2/3 + ECoul N

2
p N−1/3 + EPauli (Nn −Np)2/N (1.1)

we see that we can relate the energy per particle of nuclear matter, computed at the
density found in atomic nuclei (nuclear saturation density, ρ0 ≈ 0.16 fm−3), to the
first coefficient EB (all other terms go to zero), the binding energy of a single nucleon.
Estimated experimentally, EB ≈ −16 MeV represents the first quantity that every
model of nuclear matter should reproduce. In fact, presently the few other constraints
on the nuclear matter equation of state (EOS) come from the properties of nuclei,
hence at ρ = ρ0, as we shall see in the following.

In terrestrial experiments it is extremely difficult to create a state of nuclear matter
at higher densities with the purpose of studying its thermodynamic properties. A dense
and rather hot nuclear matter is formed in intermediate-energy heavy ion experiments,
where a large initial energy density is deposited into a small volume. However, one has
always to be careful when applying a model which assumes thermodynamic equilibrium
to such a short-lived and rapidly expanding environment.

In the outer space, on the other hand, the core of neutron stars (representing 99
% of their total mass) can be imagined in a first approximation to be formed of zero-
temperature asymmetric nuclear matter spanning a large range of densities. Neutron
stars and their formation (protoneutron stars) and cooling process constitute from this
point of view an unique laboratory for testing the nuclear EOS beyond the nuclear
saturation density.

The picture of a homogeneous matter composed of nucleons only has of course
limits of applicability. Surely, one expects it to be valid around ρ0. When the system
becomes more and more dilute, at some point clusters of nucleons become energetically
favored and begin to be formed, starting from α-particles. At densities below 0.1 ρ0 the
matter is not uniform anymore but can be pictured as a gas of nuclides: free nucleons,
deuterons, α-particles and heavier nuclear clusters. When we increase the density, on
the other hand, we cross the threshold for the hyperon production and heavier baryons
start to populate the system. Nucleons become more and more packed close to each
other and a transition to uniform quark matter eventually occurs. Evidently in these
situations the picture of pure nucleonic matter looses its efficiency, so that a safe range
of validity can be set ρ ∈

[
1
3 ρ0, 3 ρ0

]
.

At these densities, however, the uniformity of nuclear matter is conditioned by two
known critical behaviours: the first-order liquid-gas phase transition and the second-

energy per particle in symmetric nuclear matter at saturation density
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Limits of validity
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⇢ equation of state

density

low density ⇢ clusters

high density ⇢ hyperons, etc ...

Challenges

‣ nuclear matter as a thermodynamic ensemble 

‣ nuclear matter as a system of interacting nucleons

⇢ modified single-particle properties
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An example of EoS

temperature. Once the U potential and the K matrix are ob-

tained, both unperturbed and interacting components !0! and
"! of the grand-canonical potential ! of Eq. #16$ can be
calculated, following Eqs. #17$ and #18$. As discussed in
Appendix A, we prefer to separate the first term of the arctan
expansion in Eq. #7$, which gives the contribution %1 , de-
fined in Eq. #A11$, to the grand-canonical potential. The con-
tribution coming from all the other terms in the power ex-
pansion will be denoted by %h . The first term %1 is indeed
the two-body correlation term, namely, the Brueckner ap-
proach, in the ‘‘naive’’ finite temperature BBG expansion
introduced in Sec. II. The free energy is then calculated from

Eq. #21$, where &̃ is the chemical potential extracted from

the density, as mentioned above.

A. Symmetric nuclear matter

1. Critical temperature and critical density

Following this procedure, the results of the numerical

evaluation of the free energy in symmetric nuclear matter

with the Argonne v14 potential '28( as the bare NN interac-

tion v are shown in Fig. 6, with and without the inclusion of
three-body forces. The calculations were performed includ-

ing all the channels up to J!4 and with a cutoff in momen-
tum of the single-particle potential equal to kc!6 fm"1.

The limitations in J and momentum are quite appropriate to

the density region pertinent to the liquid-gas phase transition.

In Fig. 6 the dots represent the calculated values and the

solid lines a polynomial fit, essential for the numerical de-

rivative needed to obtain the pressure p!)2* f /*) and the

chemical potential & of Eq. #B2$. At T!0 the free energy
coincides with the total energy and the corresponding curve

is just the usual nuclear matter saturation curve. The rel-

evance of three-body forces is immediately seen from the

shift of the saturation point to kF+1.4 fm"1,

e+"16 MeV, close to the empirical one. The effect of
these forces is also very small at low densities and becomes

larger at increasing densities, where a much stronger repul-

sion is apparent. The steepness of the EOS at higher densities

can depend of course on the particular three-body force in-

troduced in the calculations, but the region around saturation

is expected to be insensitive to the details of the force used,

since they are constrained to reproduce this region. The criti-

cal point of the EOS should also be insensitive to the force

since it occurs at very low density, of order of )0 /3
")0 /2.
It is interesting to separate out the contribution %1 to the

free energy coming from the first term of the power expan-

sion of the arctan function of Eq. #7$. This is done in Table I,
for few characteristic temperatures and densities. As ex-

plained in Appendix B, the higher power terms in the expan-

sion become vanishing small at low temperature. From Table

I one can conclude anyhow that, in the temperature and den-

sity range we are interested in, the contributions %h of these

higher order terms are at most a few percent of %1 , and

therefore they can be neglected still maintaining a good ac-

curacy in the final result. This is equivalent to restricting the

calculation within the naive finite temperature BBG expan-

sion, the NTBBG scheme introduced in Sec. II. In this case

the procedure we have followed to extract the free energy

turns out to be strictly equivalent to the alternative procedure

which involves the entropy expression of Eq. #22$, as out-
lined at the end of Sec. II. Furthermore, for the same reason,

the adopted definition of the single-particle potential of Eq.

#12$ differs very little from the choice advocated in the origi-

TABLE I. Contributions #MeV$ to the grand-canonical potential
of the first term !1 in the expansion of the arctan function of Eq.

#7$, in comparison with the higher order contribution !h .

T!12 T!24

kF !1 !h !1 !h

1.0 -22.822 0.311 -19.197 0.158

1.4 -39.213 0.403 -36.556 0.559

1.9 -36.411 0.652 -35.709 1.178

FIG. 6. Free energy of symmetric nuclear matter as a function of

density and temperature. The dots represent the calculated values

and the solid lines the spline fitting. The upper, middle, and lower

figures report the results without 3BF’s, with 3BF’s, and for the free

gas model. The free energy is a decreasing function of temperature

and in each figure the upper curve corresponds to T!0 and the
lower ones to temperatures of 8, 12, 16, 20, 24, 28 MeV.
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nal work of Bloch and De Dominicis !10". This finding jus-
tifies the procedure often followed in the literature for finite

temperature calculations in infinite nuclear matter !9" and in
Hartree-Fock calculations for finite nuclei as well !29",
where the temperature only enters through the finite tempera-

ture single-particle Fermi distributions.

The full knowledge of the temperature dependence of the

free energy is only obtained after a complex numerical pro-

cedure. A hybrid free fermion gas model, often adopted !30",
provides a simplified procedure to estimate this temperature

dependence. In this schematic model one keeps fixed for all

temperatures the total internal energy E of nuclear matter and

equal to the one calculated at zero temperature for the full

interacting model. The free energy F!E"TS is then calcu-

lated by using for the entropy S the free Fermi gas, namely,

the expression of Eq. #22$ with the occupation number n(k)
derived from the free particle spectrum %k!tk and the corre-

sponding chemical potential extracted from Eq. #20$. In other
words, the effect of correlations on the entropy is neglected

in the hybrid model. The results of this procedure are shown

in Fig. 6, including three-body forces in E. The free energy

appears to be systematically lower at all temperatures in

comparison with the full microscopic calculation. As we will

see, this is due to lower values of the entropy when the

interaction is introduced, since then the effective mass m* is
smaller than the bare one, and in the low temperature region

the entropy is proportional to the effective mass, S/N

!&2T/EF , EF!'kF
2 /2m*. The relevance of the compari-

son with the hybrid free fermion model, which keeps the

correlations as frozen at zero temperature, is to show how

significant is the temperature dependence of the correlations.

From the polynomial fit of the free energy it is easy to

perform the numerical derivative that leads to the pressure

p!p(( ,T). This is the most familiar form of the equation of
state and is reported in Fig. 7 and in Tables II and III. For

both cases, with and without three-body forces, the EOS dis-

plays the van der Waals behavior typical of a liquid system

undergoing a liquid-gas phase transition. The trend of the

chemical potential as a function of density and temperature

has also the signature of the liquid-gas phase transition. In

fact, from the relation

(
)*

)(
!

)p

)(
, #31$

one can see that at the critical point the first and second

derivatives of the pressure p are zero and so are the corre-

sponding derivatives of * . This is apparent in Fig. 8, where
the chemical potential * of Eq. #B2$ is reported. The corre-
sponding critical temperature can be traced from the iso-

therm which presents an inflection point at the critical den-

sity, both for the chemical potential and the pressure curves

as a function of density. Numerically this can be achieved by

performing a further derivative of the interpolated free en-

ergy of Fig. 6, identifying the isotherm which displays an

inflection point. This, however, might not be sufficiently ac-

curate. Therefore, we prefer to use an alternative method of

looking at the phase transition, which requires only first or-

der numerical derivatives, which is the specific cases of the

chemical potential and pressure. It proceeds as follows. If

one plots the chemical potential as a function of the pressure

at different temperatures, as shown in Fig. 9, this plot should
display the characteristic self-intersecting behavior, with
three branches corresponding to the liquid, vapor, and un-
stable regions of the equation of state. The point of intersec-
tion, observed, for instance, in the lower part of Fig. 9 for the
isotherm T!20 MeV, is the liquid-vapor coexistence point
at that specific temperature, which disappears as the tempera-
ture increases above the critical one. However, our calcula-
tions do not touch the vapor region, occurring at very low
densities; therefore the corresponding branch is absent, ex-
cept for temperatures above 20 MeV. A complete represen-
tation would require quite lengthy numerical calculations in
the low density region, which slowly converge and require a

very fine grid in the momentum discretization of the equa-

tions. Anyhow, from our results it is possible to identify the

critical point.

FIG. 7. The pressure as a function of density and temperature

for symmetric nuclear matter. The upper, middle, and lower figures

report the results without 3BF’s, with 3BF’s, and for the free gas

model. The pressure increases with temperature and in each figure

the isotherms correspond to T!0, 8, 12, 16, 20, 24, 28 MeV.
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‣ equation of state   ⇢  

‣ problem of thermodynamic consistency 

... or free energy

36 Self-consistent calculation of thermodynamic quantities

T SGK/N Sdiag/N Sfree/N Sfree!/N SDQ/N m!

2 0.24 −0.37 0.27 0.24 0.28 873
5 0.53 0.35 0.66 0.60 0.58 853
10 1.04 0.98 1.22 1.07 1.05 802
20 1.76 1.76 2.02 1.74 1.70 745

Table 2.2: Entropy per nucleon. The results for the interacting system in the T -matrix
approximation using the Galitskii-Koltun’s sum rule (1.59) and Eq. (1.56) expressions
for for the internal energy are shown in columns SGK/N and Sdiag/N respectively.
SDQ/N denotes the dynamical quasi-particle formula (1.67). Sfree/N and S!

free/N
are the entropies per baryon in a free Fermi gas with the free and in medium masses
respectively, eqs (2.25) and (2.26). Temperatures and effective masses are expressed
in MeV.

In Table 2.2 the results for different temperatures are summarized together with the
values of the effective mass, defined at each temperature as

∂ ωp

∂ p2

∣∣∣∣
p=pF

=
1

2m!
. (2.27)

The three calculations agree well over all the temperature domain. The quasi-particle
formula of Carneiro and Pethick is proven to be very close to the result from the full
diagram expansion, which can be reliably estimated only for T ≥ 5 MeV. The expres-
sion for the free gas is remarkably similar to the other more sophisticated calculations
if the change in the mass due to the presence of the medium is taken into account.
Granted that it needs further investigations, this property could be of great utility
in the astrophysical applications, in particular the simulation of protoneutron stars
evolution in which the equation of state of hot nuclear matter has to be modeled [64].

The results obtained so far can be used to check the thermodynamic consistency
of the T-matrix approximation. A first constraint is given by the equality of the mi-
croscopic chemical potential µ, fixed by the momentum integral normalization (2.13),
and the thermodynamic one µ′, computed as a derivative of the free energy F

µ′ =
∂ F

∂ N
= ρ

∂ (F/N)
∂ ρ

+
F

N
. (2.28)

In particular, this implies that µ = F/N when the free energy per particle has its
minimum. In Fig. 2.4 (left panel) we show these three quantities as a function of the
density at the temperature T = 10 MeV. We observe an overall agreement between µ
and µ′ with differences within the numerical uncertainty of 1 MeV.

A second requirement concerns the pressure: the one obtained from the diagram-
matic expansion must be consistent with the derivative of the free energy (right panel
in Fig. 2.4)
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36 Self-consistent calculation of thermodynamic quantities

T SGK/N Sdiag/N Sfree/N Sfree!/N SDQ/N m!

2 0.24 −0.37 0.27 0.24 0.28 873
5 0.53 0.35 0.66 0.60 0.58 853
10 1.04 0.98 1.22 1.07 1.05 802
20 1.76 1.76 2.02 1.74 1.70 745

Table 2.2: Entropy per nucleon. The results for the interacting system in the T -matrix
approximation using the Galitskii-Koltun’s sum rule (1.59) and Eq. (1.56) expressions
for for the internal energy are shown in columns SGK/N and Sdiag/N respectively.
SDQ/N denotes the dynamical quasi-particle formula (1.67). Sfree/N and S!

free/N
are the entropies per baryon in a free Fermi gas with the free and in medium masses
respectively, eqs (2.25) and (2.26). Temperatures and effective masses are expressed
in MeV.

In Table 2.2 the results for different temperatures are summarized together with the
values of the effective mass, defined at each temperature as

∂ ωp

∂ p2

∣∣∣∣
p=pF

=
1

2m!
. (2.27)

The three calculations agree well over all the temperature domain. The quasi-particle
formula of Carneiro and Pethick is proven to be very close to the result from the full
diagram expansion, which can be reliably estimated only for T ≥ 5 MeV. The expres-
sion for the free gas is remarkably similar to the other more sophisticated calculations
if the change in the mass due to the presence of the medium is taken into account.
Granted that it needs further investigations, this property could be of great utility
in the astrophysical applications, in particular the simulation of protoneutron stars
evolution in which the equation of state of hot nuclear matter has to be modeled [64].

The results obtained so far can be used to check the thermodynamic consistency
of the T-matrix approximation. A first constraint is given by the equality of the mi-
croscopic chemical potential µ, fixed by the momentum integral normalization (2.13),
and the thermodynamic one µ′, computed as a derivative of the free energy F

µ′ =
∂ F
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= ρ

∂ (F/N)
∂ ρ

+
F

N
. (2.28)

In particular, this implies that µ = F/N when the free energy per particle has its
minimum. In Fig. 2.4 (left panel) we show these three quantities as a function of the
density at the temperature T = 10 MeV. We observe an overall agreement between µ
and µ′ with differences within the numerical uncertainty of 1 MeV.

A second requirement concerns the pressure: the one obtained from the diagram-
matic expansion must be consistent with the derivative of the free energy (right panel
in Fig. 2.4)

P ′ = ρ2 ∂ (F/N)
∂ ρ

. (2.29)
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‣ densest massive objects in the universe

abruptly cease (20).
If this does not oc-
cur, a second mode
of black hole cre-
ation is possible
(21). A proto–neu-
tron star’s maximum
mass is enhanced
relative to a cold star
by its extra leptons
and thermal energy.
Therefore, following
accretion, the proto–
neutron star could
have a mass below
its maximum mass,
but still greater than
that of a cold star. If
so, collapse to a
black hole would oc-
cur on a diffusion
time of 10 to 20 s,
longer than in the
first case. Perhaps
such a scenario
could explain the
enigma of SN
1987A. The 10-s du-
ration of the neutrino
signal (13) con-
firmed the birth and
early survival of a
proto–neutron star,
yet there is no evi-
dence that a neutron
star exists in this su-
pernova’s remnant. The remnant’s observed
luminosity is fully accounted for by radioac-
tivity in the ejected matter (22), meaning that
any contribution from magnetic dipole radi-
ation, expected from a rotating magnetized
neutron star, is very small. Either there is
presently no neutron star, or its spin rate or
magnetic field is substantially smaller than
those of typical pulsars. A delayed collapse
scenario could account for these observations
(21).

Global Structure of Neutron Stars
Global aspects of neutron stars, such as the
mass-radius (M-R) relation, are determined
by the equations of hydrostatic equilibrium.
For a spherical object in general relativi-
ty (GR), these are the so-called TOV
(Tolman-Oppenheimer-Volkov) equations
(23, 24 ):

dP
dr

! "
G!m!r" # 4$r3P/c2)(% # P/c2)

r!r " 2Gm!r"/c2)
,

dm!r"

dr
& 4$%r2 (1)

where P and % are the pressure and mass-
energy density, respectively, and m(r) is the

gravitational mass enclosed within a radius r.
Although a few exact solutions are known
(25), for a realistic P-% relation (equation of
state, EOS) these equations must be numeri-
cally solved to obtain the M'R relation, as
shown in Fig. 2. The region in Fig. 2 bounded
by the Schwarzschild condition R # 2GM/c2

is excluded by general relativity, and that
bounded by R $ 3GM/c2 is excluded by
causality (26 ). Some normal neutron star
cases, such as GS1, contain large amounts
of exotica, any of which produces a large
amount of softening and relatively small
radii and maximum masses. For small
masses, SQM stars are nearly incompress-
ible (R ( M1/3).

For normal neutron stars, the radius is
relatively insensitive to the mass in the vicin-
ity of 1 to 1.5 MJ unless the maximum mass
is relatively small. A simultaneous measure-
ment of mass and radius of an intermediate-
mass star could help to discriminate among
the families of possible EOSs. Perhaps two of
the most important, but unknown, astrophys-
ical quantities are the neutron star maximum
mass and the radius of 1.4 MJ neutron stars.

There are large variations in predicted
radii and maximum masses (Fig. 2) because
of the uncertainties in the EOS near and

above n0 (27 ). This seems paradoxical be-
cause the properties of matter inside labora-
tory nuclei are thought to be well understood.
However, an important distinction between
nuclear and neutron star matter is their rela-
tive proton fraction x. Nuclear matter has
nearly equal numbers of neutrons and protons
(x ! 1/2), but neutron star matter has only a
few percent protons. The energy can be de-
scribed with a quadratic interpolation in the
proton fraction x:

E!n, x" ! E!n, x ! 1/2) # Sv!n"(1 '2x)2

(2)

The symmetry energy function Sv(n) is
uncertain, although weak constraints exist
from ground-state masses (binding energies) and
giant dipole resonances of laboratory nuclei. The
symmetry energy of nuclei is divided between
bulk and surface contributions, which scale with
nuclear mass number as A and A2/3, respectively,
but the ranges of A1/3 (up to 6) and x in laboratory
nuclei are too small to separate them.

A consequence of this uncertainty is that dif-
ferent models predict up to a factor of 6 variation
in the pressure of neutron star matter near n0, even
though the pressure of symmetric matter is better
known, being nearly zero at the same density.

Fig. 1. The main stages of evolution of a neutron star. Roman numerals indicate various stages described in the text. The
radius R and central temperatures Tc for the neutron star are indicated as it evolves in time t.
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‣ first observation in 1967 (Bell, Hewish)

M ~ 1-2 M⊙        R ~ 10-15 km

‣ about 2000 NS observed so far...

Applications and constraints: 
neutron stars

Condensates of

~10 km~0.3 km ~0.6 km

Outer crust: nuclei

Inner crust: nuclei + neutron gas

Uniform  nuclear matter

Rod- and plate-like structures

Quarks?

π, Κ, Σ, ...?

atmosphere (H, He)

(56Fe, e-)

(56Fe, 86Kr, 84Se, 82Ge, 80Zn, 124Mo, 122Zr, 120Sr)

(n, p, e-)

99% of the mass

[ Lattimer, Prakash, Science 304 (2004) ]



Cooling of neutron stars

ter quantities, and Teff,!, are redshifted from
the neutron star surface, where the redshift is
z " (1 # 2GM/Rc2)#1 # 1. For example,
Teff,! " Teff/(1 $ z) and F! " F/(1 $ z)2. As
a result, the so-called radiation radius R!, a
quantity that can be estimated if F!, Teff,!,
and d are known, is defined to be R! " R(1 $
z). R! is a function of the mass and radius of
the neutron star, but if redshift information is
available, perhaps from spectral lines, M and
R could be separately determined. Indeed,
observation of spectral lines has been report-
ed from 1E 1207.4-5209 (48) and EXO 0748-
676 (49), but the identifications of the lines
are controversial (50), with redshifts ranging
from 0.12 to 0.35.

A serious hurdle in the attempt to deter-
mine R! and Teff,! is the fact that neutron
stars are not blackbodies (51, 52). The
star’s atmosphere rearranges the spectral
distribution of emitted radiation. Although
models of neutron star atmospheres for a
variety of compositions have been con-
structed, these are mostly limited to non-
magnetized atmospheres. Pulsars, however,
are thought to have magnetic field strengths
on the order of 1012 G or greater (44 ). The
behavior of strongly magnetized hydrogen
is relatively simple, but models of magne-
tized heavy-element atmospheres are still
in a state of infancy (53).

A useful constraint on models is provided
by a few cases in which the neutron star is
sufficiently close to Earth for optical thermal
emission to be detected (distinguished by
green boxes in Fig. 4). These stars have
optical fluxes several times less than what a
blackbody extrapolation from the observed
x-rays into the Rayleigh-Jeans optical domain
would imply. This optical deficit is a natural
consequence of the neutron star atmosphere
and results in an inferred R! greater than that
deduced from a blackbody. In most cases, a
heavy-element atmosphere adequately fits the
global spectral distributions from x-ray to
optical energies while also yielding neutron
star radii in a plausible range. However, the
observed absence of narrow spectral features,
predicted by heavy-element atmosphere mod-
els, is puzzling (54, 55). The explanation
could lie with broadening or elimination of
spectral features caused by intense magnetic
fields or high pressures.

Radius estimates from isolated neutron
stars, while falling into a plausible range, are
also hampered by distance uncertainties. Pul-
sar distances can be estimated by dispersion
measures (44), but these have uncertainties of
50% or more. In a few cases, such as Gem-
inga (56), RX J185635-3754 (57, 58) and
PSR B0656$14 (59), parallax distances have
been obtained, but errors are still large.

The recent discovery of thermal radiation
from quiescent x-ray bursters (involving neu-
tron stars in binaries) in globular clusters is

particularly exciting. At first glance, it seems
strange that neutron stars in globular clusters,
which are on the order of 10 billion years old,
could be hot enough to emit observable ther-
mal radiation. However, it is believed that
recent episodes of mass accretion from their
companions have been a literal fountain of
youth, replenishing their reservoir of thermal
energy (60). The measurements of radii from
these stars might become relatively precise,
especially if the distances to the globular
clusters in which they are found can be re-
fined. Values of R! in the range of 13 to 16
km have been estimated from the quiescent
x-ray sources in the globular clusters NGC
5139 and 47 Tuc (61, 62).

Theoretical cooling curves can be com-
pared to observations if ages for the thermally
emitting neutron stars can be estimated (Fig.
4). The best-determined ages are those for
which dynamical information, such as ob-
served space velocities coupled with a known
birthplace, is available. Characteristic spin-
down ages estimated from pulsar periods P
and spin-down rates Ṗ using %s " P/2Ṗ (44 )
are less reliable. In the cases in which both
kinds of age estimates are available, they are
generally discrepant by factors of 2 to 3.

Theoretical cooling tracks, for a variety of
mass, radius, and superfluid properties, are rela-
tively narrowly confined as long as enhanced
cooling does not occur (43). These tracks are

mostly sensitive to envelope composition. When
enhanced cooling is considered, cooling tracks
fall in a much wider range (Fig. 4). Although
most observed stars are consistent with the stan-
dard cooling scenario, a few cases, espcially PSR
J0205$6449 in 3C58 for which only upper lim-
its to temperature and luminosity exist (63), may
suggest enhanced cooling. Uncertainties in esti-
mated temperature and ages have precluded de-
finitive restrictions on EOSs or superfluid prop-
erties from being made.

Glitches. Pulsars provide several sources
of information concerning neutron star prop-
erties. The fastest spinning pulsars yield con-
straints on neutron star radii. Ages and mag-
netic field strengths can be estimated from P
and Ṗ measurements. Another rich source of
data are pulsar glitches, the occasional dis-
ruption of the otherwise regular pulses (44 ).
Although the origin of glitches is unknown,
their magnitudes and stochastic behavior sug-
gest they are global phenomena (64 ). The
leading glitch model involves angular mo-
mentum transfer in the crust from the super-
fluid to the normal component (33). Both are
spinning, but the normal crust is decelerated
by the pulsar’s magnetic dipole radiation.
The superfluid is weakly coupled with the
normal matter, and its rotation rate is not
diminished. But when the difference in spin
rates becomes too large, something breaks
and the spin rates are brought into closer

Fig. 4.Observational estimates of neutron star temperatures and ages together with theoretical cooling
simulations for M " 1.4 MJ. Models (solid and dashed curves) and data with uncertainties (boxes) are
described in (43). The green error boxes indicate sources from which thermal optical emissions have
been observed in addition to thermal x-rays. Simulations with Fe (H) envelopes are displayed by solid
(dashed) curves; those including (excluding) the effects of superfluidity are in red (blue). The upper four
curves include cooling from modified Urca processes only; the lower two curves allow cooling with
direct Urca processes and neglect the effects of superfluidity. Models forbidding direct Urca
processes are relatively independent of M and superfluid properties. The yellow region encom-
passes cooling curves for models with direct Urca cooling including superfluidity.
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This pressure variation accounts for the nearly
50% variation in predictions of neutron star
radii (27).

A potential constraint on the EOS derives
from the rotation of neutron stars. An abso-
lute upper limit to the neutron star spin fre-
quency is the mass-shedding limit, at which
the velocity of the stellar surface equals that
of an orbiting particle suspended just above
the surface. For a rigid Newtonian sphere,
this frequency is the Keplerian rate

vK ! (2")#1!GM/R3 !

1833$M/MJ)1/2(10 km/R)3/2 Hz (3)

However, both deformation and GR effects
are important. A similar expression, but
with a coefficient of 1224 Hz and in which
M and R refer to the
mass and radius of
the maximum-mass,
nonrotating configu-
ration, describes the
maximum rotation
rate possible for an
EOS (26, 28, 29).
We have found that
Eq. 3, but with a co-
efficient of 1045
Hz, approximately
describes the maxi-
mum rotation rate
for a star of mass M
(not close to the
maximum mass) and
nonrotating radius R
independently of the
EOS. The highest
observed spin rate,
641 Hz from pul-
sar PSR B1937%21
(30), implies a radi-
us limit of 15.5 km
for 1.4 MJ.

Internal Structure
and Composition
A neutron star has
five major regions:
the inner and outer
cores, the crust, the envelope, and the atmo-
sphere (Fig. 3). The atmosphere and envelope
contain a negligible amount of mass, but the
atmosphere plays an important role in shap-
ing the emergent photon spectrum, and the
envelope crucially influences the transport and
release of thermal energy from the star’s sur-
face. The crust, extending about 1 to 2 km
below the surface, primarily contains nuclei.
The dominant nuclei in the crust vary with
density, and range from 56Fe for matter with
densities less than about 106 g cm#3 to nuclei
with A & 200 but x & (0.1 to 0.2) near the
core-crust interface at n ' n0/3. Such extremely

neutron-rich nuclei are not observed in the lab-
oratory, but rare-isotope accelerators (31) hope
to create some of them.

Within the crust, at densities above the
neutron drip density 4 ( 1011 g cm#3 where
the neutron chemical potential (the energy
required to remove a neutron from the filled
sea of degenerate fermions) is zero, neutrons
leak out of nuclei. At the highest densities in
the crust, more of the matter resides in the
neutron fluid than in nuclei. At the core-crust
interface, nuclei are so closely packed that
they are almost touching. At somewhat lower
densities, the nuclear lattice can turn inside-
out and form a lattice of voids, which is
eventually squeezed out at densities near n0

(32). If so, beginning at about 0.1 n0, there
could be a continuous change of the dimen-
sionality of matter from three-dimensional

(3D) nuclei (meatballs), to 2D cylindrical
nuclei (spaghetti), to 1D slabs of nuclei inter-
laid with planar voids (lasagna), to 2D cylin-
drical voids (ziti), to 3D voids (ravioli, or
Swiss cheese in Fig. 3) before an eventual
transition to uniform nucleonic matter
(sauce). This series of transitions is known as
the nuclear pasta.

For temperatures less than &0.1 MeV, the
neutron fluid in the crust probably forms a
1S0 superfluid (1, 2). Such a superfluid would
alter the specific heat and the neutrino emis-
sivities of the crust, thereby affecting how
neutron stars cool. The superfluid would also

form a reservoir of angular momentum that,
being loosely coupled to the crust, could
cause pulsar glitch phenomena (33).

The core constitutes up to 99% of the mass
of the star (Fig. 3). The outer core consists of a
soup of nucleons, electrons, and muons. The
neutrons could form a 3P2 superfluid and the
protons a 1S0 superconductor within the outer
core. In the inner core, exotic particles such as
strangeness-bearing hyperons and/or Bose con-
densates (pions or kaons) may become abun-
dant. It is possible that a transition to a mixed
phase of hadronic and deconfined quark matter
develops (34), even if strange quark matter is
not the ultimate ground state of matter. Delin-
eating the phase structure of dense cold quark
matter (35) has yielded novel states of matter,
including color-superconducting phases with
(36) and without condensed mesons (35).

Neutron Star
Cooling
The interior of a proto–
neutron star loses ener-
gy at a rapid rate
by neutrino emission.
Within 10 to 100 years,
the thermal evolution
time of the crust, heat
transported by electron
conduction into the in-
terior, where it is radi-
ated away by neutrinos,
creates an isothermal
structure [stage (V) in
Fig. 1]. The star contin-
uously emits photons,
dominantly in x-rays,
with an effective tem-
perature Teff that tracks
the interior temperature
but that is smaller by a
factor of &100. The
energy loss from pho-
tons is swamped by
neutrino emission from
the interior until the star
becomes about 3 ( 105

years old (stage VI).
The overall time

that a neutron star will
remain visible to terrestrial observers is not yet
known, but there are two possibilities: the stan-
dard and enhanced cooling scenarios. The dom-
inant neutrino cooling reactions are of a general
type, known as Urca processes (37), in which
thermally excited particles alternately undergo
beta and inverse-beta decays. Each reaction
produces a neutrino or antineutrino, and
thermal energy is thus continuously lost.

The most efficient Urca process is the
direct Urca process involving nucleons:

n3 p % e ! " v̄e, p3 n % e% % ve

(4)

Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM)
equations of state [for definitions of the labels, see (27)]. Regions excluded by general relativity
(GR), causality, and rotation constraints are indicated. Contours of radiation radii R) are given by
the orange curves. The dashed line labeled *I/I! 0.014 is a radius limit estimated from Vela pulsar
glitches (27 ).
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This process is only permitted if energy and
momentum can be simultaneously conserved.
This requires that the proton-to-neutron ratio
exceeds 1/8, or the proton fraction x ! 1/9,
which is far above the value found in neutron
star matter in the vicinity of n0. In a mixture
of neutrons, protons and electrons, the proton
fraction x in beta equilibrium satisfies (38)

x ! 0.048[Sv(n)/Sv(n0)]3(n0/n)(1!2x)3 (5)

where, typically, Sv(n0) ! 30 MeV. Because
x generally increases with density, the direct
Urca process might still occur above some
density threshold. However, if the direct pro-
cess is not possible, neutrino cooling must
occur by the modified Urca process

n " (n, p)3 p " (n, p) " e!" v̄e.

p " #n, p$ 3 n " (n, p) " e"" ve (6)

in which an additional nucleon
(n,p) participates in order to con-
serve momentum. The modified
Urca rate is reduced by a factor of
(T/%n)2 " 10!4 to 10!5 com-
pared to the direct Urca rate, and
neutron star cooling is corre-
spondingly slower. The standard
cooling scenario assumes that di-
rect Urca processes cannot occur
and predicts that neutron stars
should remain observable by sur-
face thermal emission for up to a
few million years.

The question of whether or not
the direct Urca process occurs in
neutron stars is of fundamental im-
portance. The density dependence
of the symmetry energy function Sv

determines the values of x and the
threshold density at which the nu-
cleonic direct Urca process occurs
(Eq. 5). It also plays an essential
role in determining the threshold
densities of other particles, such as
hyperons, pions, kaons, or quarks,
whose existences trigger other di-
rect Urca processes (37). If a star’s
central density lies below the Urca
threshold, enhanced cooling cannot
occur. Again, the quantity Sv(n)
plays a crucial role for neutron
stars, and its inherent uncertain-
ty means that it is presently un-
known if direct Urca processes can occur in
neutron stars.

There are two additional issues affecting
cooling trajectories of neutron stars: super-
fluidity (39, 40) and envelope composition
(41). Superfluidity quenches cooling from
the direct Urca process. However, an addi-
tional cooling source from the formation
and breaking of nucleonic Cooper pairs
increases the cooling rate from the modi-
fied Urca process (42). Nevertheless, a

clear distinction remains between enhanced
and standard cooling trajectories.

Envelope composition also plays a role in
the inferred surface temperatures. Although it
is commonly assumed that the envelope is
dominated by iron-peak nuclei, this may not
be the case. Light elements (H or He) have
smaller photon opacities, which enhance sur-
face photon emission. Neutron stars appear
warmer with light-element envelopes for
their first 100,000 years of cooling, but even-
tually the situation reverses (43).

Observations and Inferred Stellar
Properties
Masses. The most accurately measured
neutron star masses are from timing obser-
vations of radio binary pulsars (44). These
include pulsars orbiting another neutron

star, a white dwarf, or a main-sequence
star. Ordinarily, observations of pulsars in
binaries yield orbital sizes and periods from
Doppler shift phenomenon, from which the
total mass of the binary can be deduced.
But the compact nature of several binary
pulsars permits detection of relativistic ef-
fects, such as Shapiro delay (45) or orbit
shrinkage due to gravitational radiation re-
action, which constrains the inclination an-
gle and permits measurement of each mass

in the binary. A sufficiently well-observed
system, such as the binary pulsar PSR
1913"16 (18) or the newly discovered
double pulsar binary PSR J0737-3039 (46),
can have masses determined to impressive
accuracy. Masses can also be estimated for
neutron stars that are accreting matter from
a stellar companion in so-called x-ray bi-
naries, but the measurements have much
larger relative errors (Table 1). Neutron
stars in binaries with white dwarf compan-
ions have a broader range of masses than
binary neutron stars, and the wider mass
range may signify a wider range of forma-
tion mechanisms. It has been suggested that
a rather narrow set of evolutionary circum-
stances conspire to form double neutron
star binaries (47). The largest apparent
masses are in the systems 4U1700-37,

which might in fact contain a
black hole, not a neutron star,
Vela X-1, and the pulsar
J0751"1807, but all have large
uncertainties. Raising the limit
for the neutron star maximum
mass could eliminate entire
EOS families, especially those
in which exotica appear and
substantial softening begins
around 2 to 3 n0. This could be
significant, because exotica
generally reduce the maximum
mass appreciably.

Thermal emission. Most known
neutron stars are observed as pul-
sars and have photon emissions
from radio to x-ray wavelengths
dominated by nonthermal emis-
sions. It is believed that the bulk of
the nonthermal emissions are gen-
erated in a neutron star’s magneto-
sphere. Although such emissions
can teach us about magnetospheric
phenomena, they are difficult to
utilize in constraining the star’s
global aspects, such as mass, radi-
us, and temperature, that have a
significant bearing on a star’s inte-
rior structure, composition, and
evolution. About a dozen neutron
stars with high thermal emissions,
and with ages up to a million years,
have been identified (43), and these
stars are expected in the standard

cooling scenario to have surface temperatures
in the range of 3 & 105 to 106 K (Fig. 4), so the
bulk of their emitted radiation should lie in the
extreme ultraviolet or x-ray regions.

The effective temperature Teff,' is defined
from

F' (L'/4)d 2 ( *BTeff,'
4 (R'/d)2 (7)

where *B is the Stefan-Boltzmann constant, d
is the distance, and F' and L' refer to the flux
and luminosity observed at Earth. These lat-

Fig. 3. The major regions and possible composition inside a normal-
matter neutron star. The top bar illustrates expected geometric transi-
tions from homogeneous matter at high densities in the core to nuclei at
low densities in the crust. Superfluid aspects of the crust and outer core
are shown in the insets. [Figure courtesy D. Page]
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‣ direct Urca cooling

‣ modified Urca cooling

much less efficient ( < 10-4 )

‣ neutrino emissivities depend on the in-medium nucleon properties,
   in particular of the superfluid phase



Mass-radius relation in neutron stars

This pressure variation accounts for the nearly
50% variation in predictions of neutron star
radii (27).

A potential constraint on the EOS derives
from the rotation of neutron stars. An abso-
lute upper limit to the neutron star spin fre-
quency is the mass-shedding limit, at which
the velocity of the stellar surface equals that
of an orbiting particle suspended just above
the surface. For a rigid Newtonian sphere,
this frequency is the Keplerian rate

vK ! (2")#1!GM/R3 !

1833$M/MJ)1/2(10 km/R)3/2 Hz (3)

However, both deformation and GR effects
are important. A similar expression, but
with a coefficient of 1224 Hz and in which
M and R refer to the
mass and radius of
the maximum-mass,
nonrotating configu-
ration, describes the
maximum rotation
rate possible for an
EOS (26, 28, 29).
We have found that
Eq. 3, but with a co-
efficient of 1045
Hz, approximately
describes the maxi-
mum rotation rate
for a star of mass M
(not close to the
maximum mass) and
nonrotating radius R
independently of the
EOS. The highest
observed spin rate,
641 Hz from pul-
sar PSR B1937%21
(30), implies a radi-
us limit of 15.5 km
for 1.4 MJ.

Internal Structure
and Composition
A neutron star has
five major regions:
the inner and outer
cores, the crust, the envelope, and the atmo-
sphere (Fig. 3). The atmosphere and envelope
contain a negligible amount of mass, but the
atmosphere plays an important role in shap-
ing the emergent photon spectrum, and the
envelope crucially influences the transport and
release of thermal energy from the star’s sur-
face. The crust, extending about 1 to 2 km
below the surface, primarily contains nuclei.
The dominant nuclei in the crust vary with
density, and range from 56Fe for matter with
densities less than about 106 g cm#3 to nuclei
with A & 200 but x & (0.1 to 0.2) near the
core-crust interface at n ' n0/3. Such extremely

neutron-rich nuclei are not observed in the lab-
oratory, but rare-isotope accelerators (31) hope
to create some of them.

Within the crust, at densities above the
neutron drip density 4 ( 1011 g cm#3 where
the neutron chemical potential (the energy
required to remove a neutron from the filled
sea of degenerate fermions) is zero, neutrons
leak out of nuclei. At the highest densities in
the crust, more of the matter resides in the
neutron fluid than in nuclei. At the core-crust
interface, nuclei are so closely packed that
they are almost touching. At somewhat lower
densities, the nuclear lattice can turn inside-
out and form a lattice of voids, which is
eventually squeezed out at densities near n0

(32). If so, beginning at about 0.1 n0, there
could be a continuous change of the dimen-
sionality of matter from three-dimensional

(3D) nuclei (meatballs), to 2D cylindrical
nuclei (spaghetti), to 1D slabs of nuclei inter-
laid with planar voids (lasagna), to 2D cylin-
drical voids (ziti), to 3D voids (ravioli, or
Swiss cheese in Fig. 3) before an eventual
transition to uniform nucleonic matter
(sauce). This series of transitions is known as
the nuclear pasta.

For temperatures less than &0.1 MeV, the
neutron fluid in the crust probably forms a
1S0 superfluid (1, 2). Such a superfluid would
alter the specific heat and the neutrino emis-
sivities of the crust, thereby affecting how
neutron stars cool. The superfluid would also

form a reservoir of angular momentum that,
being loosely coupled to the crust, could
cause pulsar glitch phenomena (33).

The core constitutes up to 99% of the mass
of the star (Fig. 3). The outer core consists of a
soup of nucleons, electrons, and muons. The
neutrons could form a 3P2 superfluid and the
protons a 1S0 superconductor within the outer
core. In the inner core, exotic particles such as
strangeness-bearing hyperons and/or Bose con-
densates (pions or kaons) may become abun-
dant. It is possible that a transition to a mixed
phase of hadronic and deconfined quark matter
develops (34), even if strange quark matter is
not the ultimate ground state of matter. Delin-
eating the phase structure of dense cold quark
matter (35) has yielded novel states of matter,
including color-superconducting phases with
(36) and without condensed mesons (35).

Neutron Star
Cooling
The interior of a proto–
neutron star loses ener-
gy at a rapid rate
by neutrino emission.
Within 10 to 100 years,
the thermal evolution
time of the crust, heat
transported by electron
conduction into the in-
terior, where it is radi-
ated away by neutrinos,
creates an isothermal
structure [stage (V) in
Fig. 1]. The star contin-
uously emits photons,
dominantly in x-rays,
with an effective tem-
perature Teff that tracks
the interior temperature
but that is smaller by a
factor of &100. The
energy loss from pho-
tons is swamped by
neutrino emission from
the interior until the star
becomes about 3 ( 105

years old (stage VI).
The overall time

that a neutron star will
remain visible to terrestrial observers is not yet
known, but there are two possibilities: the stan-
dard and enhanced cooling scenarios. The dom-
inant neutrino cooling reactions are of a general
type, known as Urca processes (37), in which
thermally excited particles alternately undergo
beta and inverse-beta decays. Each reaction
produces a neutrino or antineutrino, and
thermal energy is thus continuously lost.

The most efficient Urca process is the
direct Urca process involving nucleons:

n3 p % e ! " v̄e, p3 n % e% % ve

(4)

Fig. 2. Mass-radius diagram for neutron stars. Black (green) curves are for normal matter (SQM)
equations of state [for definitions of the labels, see (27)]. Regions excluded by general relativity
(GR), causality, and rotation constraints are indicated. Contours of radiation radii R) are given by
the orange curves. The dashed line labeled *I/I! 0.014 is a radius limit estimated from Vela pulsar
glitches (27 ).
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‣ Tolman-Oppenheimer-Volkov eq.

Chapter 1

The nuclear many-body problem

1.1 The concept of nuclear matter

By nuclear matter we mean a quantum system composed of nucleons interacting via
nuclear forces. We address only the case of infinite nuclear matter, i.e. imagining N
particles in a box of volume V, we consider the thermodynamic limit N,V→∞. This
allows us to neglect all finite size effects and ensures that all macroscopic quantities
are well defined.

The neutron and the proton are regarded as the same particle with vacuum mass1
m = 939 MeV, spin s = 1

2 and isospin t = 1
2 , corresponding to two isospin z−projections

tnz = 1
2 and tpz = −1

2 . We assume the system to be homogeneous in space and
spin-unpolarized. The first property allows us to define a constant particle density2

ρ ≡ N/V. We then study only two situations: the case with an equal number of pro-
tons and neutrons, symmetric nuclear matter, or a system composed of neutrons only,
neutron matter.

P (r), ρ(r), m(r)

The nucleons interact via strong forces, addressed in detail in the next section.
Weak interactions enter only indirectly in some applications (such as neutron star
matter) and are not present when pure nucleonic matter is considered. The effects of
Coulomb interactions between protons are assumed to be negligible and thus electro-
magnetic forces are switched off from the beginning.

We keep ourselves in a non-relativistic framework. This assumption is supported
by the fact that the nucleon mass is large enough; we shall discuss in the following
(Section 3.1) the possible inclusion of relativistic corrections and their connection with
(non-relativistic) three-body forces.

In this work only the case of nuclear matter in thermodynamic equilibrium will be
considered. In the framework of statistical mechanics such a system may be regarded

1We use natural units, i.e. c = ! = kB = 1 .
2The number of particles per unit volume is sometimes denoted by n; however in the literature,

when speaking of nuclear matter, one finds more often the notation ρ.

⇢ equation of state needed
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two relations between

(hydrostatic equilibrium)

⇢ transition to quark matter ?



Applications and constraints: heavy ions

(SOM)]. Different theoretical formulations
concerning the energy density would lead to
different pressures (that is, to different EOSs
for nuclear matter) in the equilibrium limit, in
these simulations, and in the actual collisions.

At an elapsed time of 3 ! 10"23 s in the
reaction, the central density (in Fig. 1b#) ex-
ceeds 3 $0. The corresponding back panel,
labeled (b), indicates a central pressure great-
er than 90 MeV/fm3 (1 MeV/fm3 % 1.6 !
1032 Pa; that is, 1.6 ! 1027 atmospheres).
These densities and pressures are achieved by
inertial confinement; the incoming matter
from both projectile and target is mixed and
compressed in the high-density region where
the two nuclei overlap. Participant nucleons
from the projectile and target, which follow
small impact parameter trajectories (at x,y &
0), contribute to this mixture by smashing
into the compressed region, compressing it
further. The calculated transverse pressure in
the central region reaches '80% of its equi-
librium value after '4 ! 10"23 s (Fig. 1c#)
and is equilibrated for the later times in Fig.
1. Equilibrium is lost at even later times, but
only after the flow dynamics are essentially
complete.

Spectator nucleons, which are those that
avoid the central region by following large
impact parameter trajectories (with large !x!
( 6 fm), initially block the escape of com-
pressed matter along trajectories in the reac-
tion plane and force the matter to flow out of
the compressed region in directions perpen-
dicular to the reaction plane (Fig. 1, b to d).
Later, after these spectator nucleons pass,
nucleons from the compressed central region
preferentially escape along in-plane trajecto-
ries parallel to the reaction plane that are no
longer blocked. This enhancement of in-
plane emission is beginning to occur to a
limited extent in Fig. 1e at this incident en-
ergy of 2 GeV per nucleon. This later in-
plane emission becomes the dominant direc-
tion at higher incident energies of 5 GeV per
nucleon, where the passage time is consider-
ably less. Thus, emission first develops out of
plane (along the y axis in Fig. 1) and then
spreads into all directions in the x-y plane.

The achievement of high densities and
pressures, coupled with their impact on the
motions of ejected particles, provide the sen-
sitivity of collision measurements to the
EOS. The directions in which matter expands
and flows away from the compressed region
depend primarily on the time scale for the
blockage of emission in the reaction plane by
the spectator matter and the time scale for the
expansion of the compressed matter near x &
y & z & 0. The blockage time scale can be
approximated by 2R/()cmvcm), where R/)cm is
the Lorentz contracted nuclear radius, and
vcm and )cm are the incident nucleon velocity
and the Lorentz factor, respectively, in the
center-of-mass reference frame. The block-

age time scale therefore decreases monoton-
ically with the incident velocity. The expan-
sion time scale can be approximated by R/cs

where cs % c*+P/+e is the sound velocity in
the compressed matter and c is the velocity of
light. The expansion time scale therefore de-
pends (via cs) on the energy density e and on
the nuclear mean field potential U according
to Eqs. 2 and 3 and the associated discussion.
This provides sensitivity to the density de-
pendence of the mean field potential, which is
important because uncertainties in the density
dependence of the mean field make a domi-
nant contribution to the uncertainty in the
EOS. More repulsive mean fields lead to
higher pressures and to a more rapid expan-
sion when the spectator matter is still present.
This causes preferential emission perpendic-
ular to the reaction plane where particles can
escape unimpeded. Less repulsive mean
fields lead to slower expansion and preferen-
tial emission in the reaction plane after the
spectators have passed.
Analyses of EOS-dependent observ-

ables. The comparison of in-plane to out-of-
plane emission rates provides an EOS-depen-
dent experimental observable commonly
referred to as elliptic flow. The sideways
deflection of spectator nucleons within the
reaction plane, due to the pressure of the
compressed region, provides another observ-
able. This sideways deflection or transverse
flow of the spectator fragments occurs pri-
marily while the spectator fragments are ad-
jacent to the compressed region, as shown in
Fig. 1b’ to 1d’. The velocity arrows in Fig.
1d’ and 1e’ suggest that the changes in the
nucleon momenta that result from a sideways

deflection are not large. However, these
changes can be extracted precisely from the
analysis of emitted particles (31). In general,
larger deflections are expected for more re-
pulsive mean fields, which generate larger
pressures; and conversely, smaller deflec-
tions are expected for less repulsive ones.

In terms of the coordinate system in Fig.
1, matter to the right (positive x) of the
compressed zone, originating primarily from
the projectile, is deflected along the positive x
direction; and the matter to the left, from the
target, is deflected to the negative x direction.
Experimentally, one distinguishes spectator
matter from the projectile and the target by
measuring its rapidity y, a quantity that in the
nonrelativistic limit reduces to the velocity
component vz along the beam axis (35). For
increasing values of the rapidity, the mean
value of the x component of the transverse
momentum increases monotonically (12, 14–
16, 31). Denoting this mean transverse mo-
mentum as ,px( and corresponding trans-
verse momentum per nucleon in the detected
particle as ,px/A(, we find that larger values
for the pressure in the compressed zone, due
to more repulsive EOSs, lead to larger values
for the directed transverse flow F defined
(12) by

F !
d-px/A.

d/ y/ycm0
"

y/y
cm ! 1

(4)

where ycm is the rapidity of particles at rest in
the center of mass and A is the number of
nucleons in the detected particle. (F can be
viewed qualitatively as the tangent of the
mean angle of deflection in the reaction
plane. Larger values for F correspond to larg-

Fig. 1. Overview of
the dynamics for a
Au 1 Au collision.
Time increases from
left to right, the cen-
ter of mass is at r% 0,
and the orientation of
the axes is the same
throughout the figure.
The trajectories of
projectile and target
nuclei are displaced
relative to a “head-
on” collision by an im-
pact parameter of b %
6 fm (6 ! 10"13 cm).
The three-dimensional
surfaces (middle pan-
el) correspond to con-
tours of a constant
density $ ' 0.1 $0. The magenta arrows indicate the initial velocities of the projectile and target
(left panel) and the velocities of projectile and target remnants following trajectories that avoid the
collision (other panels). The bottom panels show contours of constant density in the reaction plane
(the x-z plane). The outer edge corresponds to a density of 0.1 $0, and the color changes indicate
steps in density of 0.5 $0. The back panels show contours of constant transverse pressure in the x-y
plane. The outer edge indicates the edge of the matter distribution, where the pressure is
essentially zero, and the color changes indicate steps in pressure of 15 MeV/fm3 (1 MeV/fm3 %
1.6 ! 1032 Pa; that is, '1.6 ! 1027 atmospheres). The black arrows in both the bottom and the
back panels indicate the average velocities of nucleons at selected points in the x-z plane and x-y
planes, respectively.
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‣ Au-Au collisions at Ebeam/A = [0.15 - 10] GeV, semi-peripheral

‣ densities up to 2-5 times the nuclear saturation density

‣ information on the EoS from two kinds of flow: transverse and elliptic

[ Danielewicz et al., Science 298 (2002) ]



Heavy ions: transverse and elliptic flow

er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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transverse flow elliptic flow

er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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‣ model for the interaction energy     ⇢

(SOM)]. Different theoretical formulations
concerning the energy density would lead to
different pressures (that is, to different EOSs
for nuclear matter) in the equilibrium limit, in
these simulations, and in the actual collisions.

At an elapsed time of 3 ! 10"23 s in the
reaction, the central density (in Fig. 1b#) ex-
ceeds 3 $0. The corresponding back panel,
labeled (b), indicates a central pressure great-
er than 90 MeV/fm3 (1 MeV/fm3 % 1.6 !
1032 Pa; that is, 1.6 ! 1027 atmospheres).
These densities and pressures are achieved by
inertial confinement; the incoming matter
from both projectile and target is mixed and
compressed in the high-density region where
the two nuclei overlap. Participant nucleons
from the projectile and target, which follow
small impact parameter trajectories (at x,y &
0), contribute to this mixture by smashing
into the compressed region, compressing it
further. The calculated transverse pressure in
the central region reaches '80% of its equi-
librium value after '4 ! 10"23 s (Fig. 1c#)
and is equilibrated for the later times in Fig.
1. Equilibrium is lost at even later times, but
only after the flow dynamics are essentially
complete.

Spectator nucleons, which are those that
avoid the central region by following large
impact parameter trajectories (with large !x!
( 6 fm), initially block the escape of com-
pressed matter along trajectories in the reac-
tion plane and force the matter to flow out of
the compressed region in directions perpen-
dicular to the reaction plane (Fig. 1, b to d).
Later, after these spectator nucleons pass,
nucleons from the compressed central region
preferentially escape along in-plane trajecto-
ries parallel to the reaction plane that are no
longer blocked. This enhancement of in-
plane emission is beginning to occur to a
limited extent in Fig. 1e at this incident en-
ergy of 2 GeV per nucleon. This later in-
plane emission becomes the dominant direc-
tion at higher incident energies of 5 GeV per
nucleon, where the passage time is consider-
ably less. Thus, emission first develops out of
plane (along the y axis in Fig. 1) and then
spreads into all directions in the x-y plane.

The achievement of high densities and
pressures, coupled with their impact on the
motions of ejected particles, provide the sen-
sitivity of collision measurements to the
EOS. The directions in which matter expands
and flows away from the compressed region
depend primarily on the time scale for the
blockage of emission in the reaction plane by
the spectator matter and the time scale for the
expansion of the compressed matter near x &
y & z & 0. The blockage time scale can be
approximated by 2R/()cmvcm), where R/)cm is
the Lorentz contracted nuclear radius, and
vcm and )cm are the incident nucleon velocity
and the Lorentz factor, respectively, in the
center-of-mass reference frame. The block-

age time scale therefore decreases monoton-
ically with the incident velocity. The expan-
sion time scale can be approximated by R/cs

where cs % c*+P/+e is the sound velocity in
the compressed matter and c is the velocity of
light. The expansion time scale therefore de-
pends (via cs) on the energy density e and on
the nuclear mean field potential U according
to Eqs. 2 and 3 and the associated discussion.
This provides sensitivity to the density de-
pendence of the mean field potential, which is
important because uncertainties in the density
dependence of the mean field make a domi-
nant contribution to the uncertainty in the
EOS. More repulsive mean fields lead to
higher pressures and to a more rapid expan-
sion when the spectator matter is still present.
This causes preferential emission perpendic-
ular to the reaction plane where particles can
escape unimpeded. Less repulsive mean
fields lead to slower expansion and preferen-
tial emission in the reaction plane after the
spectators have passed.
Analyses of EOS-dependent observ-

ables. The comparison of in-plane to out-of-
plane emission rates provides an EOS-depen-
dent experimental observable commonly
referred to as elliptic flow. The sideways
deflection of spectator nucleons within the
reaction plane, due to the pressure of the
compressed region, provides another observ-
able. This sideways deflection or transverse
flow of the spectator fragments occurs pri-
marily while the spectator fragments are ad-
jacent to the compressed region, as shown in
Fig. 1b’ to 1d’. The velocity arrows in Fig.
1d’ and 1e’ suggest that the changes in the
nucleon momenta that result from a sideways

deflection are not large. However, these
changes can be extracted precisely from the
analysis of emitted particles (31). In general,
larger deflections are expected for more re-
pulsive mean fields, which generate larger
pressures; and conversely, smaller deflec-
tions are expected for less repulsive ones.

In terms of the coordinate system in Fig.
1, matter to the right (positive x) of the
compressed zone, originating primarily from
the projectile, is deflected along the positive x
direction; and the matter to the left, from the
target, is deflected to the negative x direction.
Experimentally, one distinguishes spectator
matter from the projectile and the target by
measuring its rapidity y, a quantity that in the
nonrelativistic limit reduces to the velocity
component vz along the beam axis (35). For
increasing values of the rapidity, the mean
value of the x component of the transverse
momentum increases monotonically (12, 14–
16, 31). Denoting this mean transverse mo-
mentum as ,px( and corresponding trans-
verse momentum per nucleon in the detected
particle as ,px/A(, we find that larger values
for the pressure in the compressed zone, due
to more repulsive EOSs, lead to larger values
for the directed transverse flow F defined
(12) by

F !
d-px/A.

d/ y/ycm0
"

y/y
cm ! 1

(4)

where ycm is the rapidity of particles at rest in
the center of mass and A is the number of
nucleons in the detected particle. (F can be
viewed qualitatively as the tangent of the
mean angle of deflection in the reaction
plane. Larger values for F correspond to larg-

Fig. 1. Overview of
the dynamics for a
Au 1 Au collision.
Time increases from
left to right, the cen-
ter of mass is at r% 0,
and the orientation of
the axes is the same
throughout the figure.
The trajectories of
projectile and target
nuclei are displaced
relative to a “head-
on” collision by an im-
pact parameter of b %
6 fm (6 ! 10"13 cm).
The three-dimensional
surfaces (middle pan-
el) correspond to con-
tours of a constant
density $ ' 0.1 $0. The magenta arrows indicate the initial velocities of the projectile and target
(left panel) and the velocities of projectile and target remnants following trajectories that avoid the
collision (other panels). The bottom panels show contours of constant density in the reaction plane
(the x-z plane). The outer edge corresponds to a density of 0.1 $0, and the color changes indicate
steps in density of 0.5 $0. The back panels show contours of constant transverse pressure in the x-y
plane. The outer edge indicates the edge of the matter distribution, where the pressure is
essentially zero, and the color changes indicate steps in pressure of 15 MeV/fm3 (1 MeV/fm3 %
1.6 ! 1032 Pa; that is, '1.6 ! 1027 atmospheres). The black arrows in both the bottom and the
back panels indicate the average velocities of nucleons at selected points in the x-z plane and x-y
planes, respectively.
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er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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‣ address the time-evolution of Wigner f(p,r,t) for stable/excited nucleons and pions

model:



Global constraints from flow observables

er deflections.) The open and solid points in
Fig. 2 show measured values for the directed
transverse flow in collisions of 197Au projec-
tile and target nuclei at incident kinetic ener-
gies Ebeam/A, ranging from about 0.15 to 10
GeV per nucleon (29.6 to 1970 GeV total
beam kinetic energies) and at impact param-
eters of b ! 5 to 7 fm (5 " 10#13 to 7 "
10#13 cm) (13–16). The scale at the top of
this figure provides theoretical estimates for
the maximum densities achieved at selected
incident energies. The maximum density in-
creases with incident energy; the flow data
are most strongly influenced by pressures
corresponding to densities that are somewhat
less than these maximum values.

The data in Fig. 2 display a broad maxi-
mum centered at an incident energy of about
2 GeV per nucleon. The short dashed curve
labeled “cascade” shows results for the trans-
verse flow predicted by Eq. 1, in which the
mean field is neglected. The disagreement of
this curve with the data shows that a repulsive
mean field at high density is needed to repro-
duce these experimental results. The other
curves correspond to predictions using Eq. 1
and mean field potentials of the form

U ! $a% " b%&)/[1'(0.4%/%0)&–1] ' (Up

(5)

Here, the constants a, b, and & are chosen to
reproduce the binding energy and the satura-
tion density of normal nuclear matter while
providing different dependencies on density
at much higher density values, and (Up de-
scribes the momentum dependence of the
mean field potential (28, 33, 34) (see SOM
text). These curves are labeled by the curva-

ture K § 9 dp/d%)s/% of each EOS about the
saturation density %0. Calculations with larger
values of K, for the mean fields above, gen-
erate larger transverse flows, because those
mean fields generate higher pressures at high
density. The precise values for the pressure at
high density depend on the exact form chosen
for U. To illustrate the dependence of pres-
sure on K for these EOSs, we show the
pressure for zero temperature symmetric
matter predicted by the EOSs with K ! 210
and 300 MeV in Fig. 3. The EOS with K !
300 MeV generates about 60% more pres-
sure than the one with K ! 210 MeV at
densities of 2 to 5 %0 (Fig. 3).

Complementary information can be ob-
tained from the elliptic flow or azimuthal
anisotropy (in-plane versus out-of-plane
emission) for protons (24, 25, 36). This is
quantified by measuring the average value
*cos2+,, where + is the azimuthal angle of
the proton momentum relative to the x axis
defined in Fig. 1. (Here, tan+ ! py/px , where
px and py are the in-plane and out-of-plane
components of the momentum perpendicular
to the beam.) Experimental determinations of
*cos2+, include particles that, in the cen-
ter-of-mass frame, have small values for the
rapidity y and move mainly in directions
perpendicular to the beam axis. Negative val-
ues for *cos2+, indicate that more protons
are emitted out of plane (+ - 90°or + -
270°) than in plane (+ - 0°or + - 180°), and
positive values for *cos2+, indicate the
reverse situation.

Experimental values for *cos2+, for in-
cident kinetic energies Ebeam/A ranging from
0.4 to 10 GeV per nucleon (78.8 to 1970 GeV
total beam kinetic energies) and impact pa-
rameters of b ! 5 to 7 fm (5 x 10#13 to 7 "
10#13 cm) (17–19) are shown in Fig. 4. Neg-
ative values for *cos2+,, reflecting a pref-
erential out-of-plane emission, are observed
at energies below 4 GeV/A, indicating that
the compressed region expands while the

spectator matter is present and blocks the
in-plane emission. Positive values for
*cos2+,, reflecting a preferential in-plane
emission, are observed at higher incident en-
ergies, indicating that the expansion occurs
after the spectator matter has passed the com-
pressed zone. The curves in Fig. 4 indicate
predictions for several different EOSs. Cal-
culations without a mean field, labeled “cas-
cade,” provide the most positive values for
*cos2+,. More repulsive, higher-pressure
EOSs with larger values of K provide more
negative values for *cos2+, at incident en-
ergies below 5 GeV per nucleon, reflecting a
faster expansion and more blocking by the
spectator matter while it is present.

Transverse and elliptic flows are also in-
fluenced by the momentum dependencies
(Up of the nuclear mean fields and the scat-
tering by the residual interaction within the
collision term I indicated in Eq. 1. Experi-
mental observables such as the values for
*cos2+, measured for peripheral collisions,
where matter is compressed only weakly and
is far from equilibrated (28), now provide
significant constraints on the momentum de-
pendence of the mean fields (21, 28). This is
discussed further in the SOM (see SOM text).
The available data (30) constrain the mean-
field momentum dependence up to a density
of about 2 %0. For the calculated results
shown in Figs. 2 to 4, we use the momentum
dependence characterized by an effective
mass m* ! 0.7 mN, where mN is the free
nucleon mass, and we extrapolate this depen-
dence to still higher densities. We also make
density-dependent in-medium modifications
to the free nucleon cross-sections following
Danielewicz (28, 32) and constrain these

Fig. 2. Transverse flow results. The solid and
open points show experimental values for the
transverse flow as a function of the incident
energy per nucleon. The labels “Plastic Ball,”
“EOS,” “E877,” and “E895” denote data taken
from Gustafsson et al. (13), Partlan et al. (14),
Barrette et al. (15), and Liu et al. (16), respec-
tively. The various lines are the transport the-
ory predictions for the transverse flow dis-
cussed in the text. %max is the typical maximum
density achieved in simulations at the respec-
tive energy.

Fig. 3. Zero-temperature EOS for symmetric
nuclear matter. The shaded region corresponds
to the region of pressures consistent with the
experimental flow data. The various curves and
lines show predictions for different symmetric
matter EOSs discussed in the text.

Fig. 4. Elliptical flow results. The solid and open
points show experimental values for the ellip-
tical flow as a function of the incident energy
per nucleon. The labels “Plastic Ball,” “EOS,”
“E895,” and “E877” denote the data of Gutbrod
et al. (17), Pinkenburg et al. (18), Pinkenburg et
al. (18), and Braun-Munzinger and Stachel (19),
respectively. The various lines are the transport
theory predictions for the elliptical flow dis-
cussed in the text.
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modifications using observables sensitive to
stopping in collisions, such as the longitudi-
nal momentum distributions (pz distributions)
of reaction products.
Sensitivity to the pressure and to the

symmetric matter EOS. The elliptic and
transverse flow observables are sensitive to
the mean field and to the EOS at central
densities of 2 to 5 !0 (Figs. 2 and 4). We
compared the two observables to the calcula-
tions and did not find a unique formulation of
the EOS that reproduces all of the data. At
incident energies of 2 to 6 GeV/A, for exam-
ple, the transverse flow data lie near or some-
what below (to the low-pressure side of ) the
K " 210 MeV calculations, whereas the el-
liptic flow data lie closer to the K " 300 MeV
calculations. Some discrepancies are also ob-
served between the two sets of experimental
transverse data at incident energies of 0.25 to
0.8 GeV/A. Although it is not possible to
fully resolve the inconsistencies between the-
ory and experiment at the present time, one
can still use these data to provide constraints
on the EOS. For example, calculations with-
out a mean field (cascade) or with a weakly
repulsive mean field (K " 167 MeV) provide
too little pressure to reproduce either flow
observable at higher incident energies (and
correspondingly higher densities). The calcu-
lations with K " 167 MeV and K " 380 MeV
provide lower and upper bounds on the pres-
sure in the density range 2 ! !/!0 ! 5. These
comparisons also suggest that the upper
bound must lie lower than the pressures cor-
responding to the K " 380 MeV curve at
most densities and that a field that is less
repulsive than K " 380 MeV at densities ! #
3 !0 could provide a stricter upper bound on
the pressure.

Our transport theory calculations provide a
calibration for the transverse and elliptic flow

“barometers.” These can be used, in turn, to
assess the pressures achieved in the hot and
nonequilibrium environment of a nuclear colli-
sion. From our transport theory, we determined
that maximum pressures in the range of P " 80
to 130 MeV/fm3 (1.3 $ 1034 to 2.1 $ 1034 Pa)
and P " 210 to 350 MeV/fm3 (3.4 $ 1034 to
5.6 $ 1034 Pa) are achieved at incident energies
of 2 and 6 GeV per nucleon. These pressures
are approximately 23 orders of magnitude larg-
er than the maximum pressures recorded previ-
ously under laboratory-controlled conditions
(37). They are about 19 orders of magnitude
larger than pressures within the core of the sun
but are comparable to pressures within neutron
stars.
Determination of constraints and

comparison to theoretical EOSs. Compar-
ing the calculations and data of Figs. 2 and 4
and factoring in the uncertainties due to the
momentum dependencies of the mean fields
and the collision integral, we have assessed
the range of pressure-density relationships.
These are shown for zero-temperature matter
and densities of 2 % !/!0 % 4.6 by the shaded
region in Fig. 3. These bounds on the EOS for
symmetric nuclear matter are the main
achievement of this work.

To illustrate the value of these constraints,
a few representative theoretical EOSs are
shown in Fig. 3. The EOS of Akmal et al. (3),
which passes through the allowed region,
represents a class of models that take the
two-nucleon interactions from fits to nucle-
on-nucleon scattering data. The EOS of
Lalazissis et al. (RMF:NL3) (6) represents a
class of relativistic mean field theory models
that derive the nucleon-nucleon interaction
from the exchange of effective & and ' me-
sons. Although most such models provide too
much pressure, we note that a recent inclu-
sion by Typel and Wolter (7) of nonlinear
terms in the Lagrangian can reduce the pres-
sure in such models so as to be consistent
with the present experimental constraints.
The EOS of Boguta (38) illustrates the soft-
ening of the EOS that might occur if there
were another phase more stable than nuclear
matter for densities of about 3 !0. This EOS
and the calculation without a mean field pro-
duce too little pressure. On the other hand, an
EOS that first increases in pressure, consis-
tent with our constraints, such as the Akmal
EOS, and then remains constant with density
above !/!0 " 3, consistent with the existence
of a different, more stable, phase at higher
densities !/!0 # 4, such as transition to a
phase composed of quarks and gluons (the
quark-gluon plasma), cannot be precluded by
the present analysis.

Our constraints on the EOS of symmetric
matter are relevant to the dynamics of superno-
vae and to the properties of neutron stars, where
such densities are achieved (1). Supernovae in-
volve admixtures of neutrons and protons that

are similar to the Au ( Au system; the appli-
cation of these constraints to supernovae is more
straightforward than is the application of these
constraints to extremely neutron-rich environ-
ments such as neutron matter or neutron stars. In
such neutron-rich environments, one must con-
sider how the EOS depends on the difference
between the neutron and proton concentrations.
This concentration difference vanishes for sym-
metric matter, but in pure neutron matter gives
rise to an additional source of pressure Psym "
!2d(Esym(!))/d!!s/!, which depends on the sym-
metry energy Esym(!). The symmetry energy
determines how the energies of nuclei and nu-
clear matter depend on the difference between
neutron and proton densities. This energy is
repulsive and is the reason why light nuclei have
nearly equal numbers of protons and neutrons.
Few experimental constraints on the density de-
pendence of Esym(!) exist. Therefore, we em-
ploy, in the following, the two parameterizations
for Esym(!) with the weakest (Asysoft) and stron-
gest (Asystiff) density dependence proposed by
Prakash et al. (4) to assess the sensitivity of
neutron star properties to the asymmetry term.
This assessment is summarized in Fig. 5.

Assuming either an asymmetry term
(Asystiff) with strong density dependence or
an asymmetry term (Asysoft) with weak
density dependence (see SOM text), the
allowed regions from Fig. 3 can be extrap-
olated (Fig. 5). Clearly, the uncertainty in
the pressure due to the asymmetry term,
represented by the difference between the
pressures for these two “allowed” regions
in Fig. 5, exceeds the remaining uncertainty
in the pressure due to the symmetric matter
EOS, represented by the width of each
region. The pressure in the actual neutron
star environment is somewhat smaller than
that for neutron matter (Fig. 5), reflecting
the small fraction of nucleons that are pro-
tons. The precise values of this proton frac-
tion and many other static and dynamical
properties of these dense astrophysical ob-
jects depend on the density dependence of
the asymmetry term (4 ).

In comparison to these “allowed” pressures,
the pressure due to the Fermi motion of a pure
neutron gas (Fermi gas) is comparatively small;
the remaining pressure must arrise from the
repulsive mean field potential. The EOS of Ak-
mal et al. (3) and the av14uv11 EOS of Wiringa
(8) are both models that take the two-nucleon
interactions from fits to nucleon-nucleon scat-
tering data. The EOS [MS() " 0,* " 0)] of
Müller and Serot et al. (9) represents a class of
relativistic mean field theory models that derive
the nucleon-nucleon interaction from the ex-
change of effective & and ' mesons. Its predic-
tion is essentially the same as the neutron matter
predictions for the model of Lalazissis et al. (6)
(RMF:NL3 in Fig. 3). Although these models
appear to provide too much pressure, other rel-
ativistic mean field theory models of Müller and

Fig. 5. Zero-temperature EOS for neutron mat-
ter. The upper and lower shaded regions corre-
spond to the pressure regions for neutron mat-
ter consistent with the experimental flow data
after inclusion of the pressures from asymme-
try terms with strong and weak density depen-
dences, respectively. The various curves and
lines show predictions for different neutron
matter EOSs discussed in the text.
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model for the symmetry energy

‣ extrapolation to neutron matter‣ not excluded a phase transition
   above 4ρ0



⍟ Summary of EoS applications and constraints ⍟

‣ cooling: sensitivity on the global EoS and on the single-particle properties

‣ mass-radius: sensitivity on the global EoS

investigating nuclear matter properties:

‣ flow global contraints: sensitivity on the global EoS

neutron stars

heavy-ion reactions

just examples: superfluid neutrons, symmetry energy, ...
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The nuclear many-body problem

‣ many-body system with two-body interaction

‣ we need suitable methods to take into account the short-range correlations 
   induced in the medium

in the nuclear case, the strong repulsive core precludes an 
ordinary perturbation expansion in terms of the bare interaction

‣ alternative: employ an effective potential (Skyrme, Gogny)

ab-initio calculations

phenomenological (mean-field) calculations

predictive power?
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E =
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]
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Variational approach

BHF approach

1

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0

1

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0

Ψ =



S
∏

i<j

F (rij)



Φ

‣ calculates an upper bound to the ground state energy

‣ wave function constructed from 
   the unperturbed ground state

correlation functions determined
through the minimization

‣ rearrangement of the Hamiltonian

‣ calculation of the ground state energy from a perturbative expansion in terms of 

⇢ definition of G matrix from ladder diagrams
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
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
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F (rij)



Φ

H = T + V = T + U + V − U︸ ︷︷ ︸
δV

= T + U + δV

⇢ Hartree-Fock calculation with the G-matrix interaction
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Green’s functions basics
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G(x, x′;E) = δ(x− x′)

‣ mathematical definition

‣ example: free particle

many-body interacting system
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... but then ...
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Self-consistent procedure
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Then (2.36) is equivalent to

G2 = + T
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Figure 2.6: T-matrix approximation for the two-particle Green’s function.

G2(12; 1
′2′) = G(1, 1′)G(2, 2′) − G(1, 2′)G(2, 1′)

+ i

∫

C
d3 d4 d5 d6 [G(1, 3)G(2, 4) − G(1, 4)G(2, 3)]

× T(34; 56)G(5, 1′)G(6, 2′) (2.38)

(diagrammatically in Fig. ??). Alternatively, defines the self-energy as

Σ(1, 2) = i

∫

C
d3 d4G(4, 3)T(12; 34) . (2.39)

In this way we obtain a closed set of equations, namely (2.37) and (2.39), together
with the Dyson equation (2.29), which have to be solved self-consistently.
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Eqs. (1.51) and (1.53) allow us to obtain the self-energy once the retarded T-matrix is
known. The self-energy is then used to calculate the spectral function (which defines
the single-particle propagator) via the retarded Dyson equation

GR (A)(p, ω)−1 = ω − p2

2m
− ΣR (A)(p, ω) . (1.54)

The spectral function can be inserted again in (1.48) through Gnc R
2 : (1.48), (1.51),

(1.53) and (1.54) thus constitute, in momentum space, the set of equations which has
to be solved iteratively until convergence is achieved.

One can derive an additional equation which relates the spectral function to the
real and imaginary parts of the self-energy, thus alternative to (1.54), valid in general
in the presence of a dispersive contribution Σd:

A(p, ω) =
−2 Im ΣR(p, ω)

[
ω − p2/2m− Re ΣR(p, ω)

]2 +
[
Im ΣR(p, ω)

]2 . (1.55)

1.6 Energy of the interacting system

We have seen that the from the single-particle propagator one can compute the ex-
pectation values of all one-body operators. A basic quantity which characterizes a
many-body system is the total internal energy, i.e. the expectation value of the total
Hamiltonian: E = 〈Htot〉. Since we are dealing with an infinite system it is convenient
to consider the total energy per particle

E

N
=

1
ρ

[
〈Htot〉

V

]
=

1
ρ

[
〈Hkin〉

V
+
〈Hpot〉

V

]
. (1.56)

Here N represents the total number of particles, V the volume of the system and
ρ = N/V the particle number density (ρ remains finite when N, V → ∞). The
Hamiltonian can be split in two parts: a single-particle operator accounting for the
kinetic energies 〈Hkin〉 and the contribution from the interaction energy 〈Hpot〉. While
the first contribution can be easily evaluated

〈Hkin〉 = V

∫
dp

(2π)3
dω

2π

p2

2m
A(p, ω)f(ω) , (1.57)

all the difficulties appear in the second term

〈Hpot〉 =
V

2

∫
dP

(2π)3
dΩ
2π

dk
(2π)3

dk′

(2π)3
V (k,k′)〈k′|G<

2 (P,Ω)|k〉 , (1.58)

which involves the calculation of the two-particle propagator. When inserting the
chosen approximation for G2 into (1.58) one obtains a corresponding diagrammatic
expansion for the interaction energy which needs to be properly calculated.
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Φ =
∑

n

1

2n

[
... − ...

]

Figure 1.8: Functional Φ; n represents the number of interaction lines in each diagram.

of the system. Since Ω = −P V one has also the big advantage of being able to calcu-
late the pressure P directly from the diagrammatic expansion, whereas the standard
method of deriving P from the free energy

P = ρ

(
µ −

E

N
+ T

S

N

)
(1.64)

requires the prior knowledge of the entropy per particle S/N . If the quantities in (1.64)
are not evaluated with sufficient precision, the propagation of numerical inaccuracies
may lead to big uncertainties on the pressure calculations. From (1.64) we compute
instead the entropy

S

N
=

1

T

(
E

N
− µ +

P

ρ

)
(1.65)

which can be reliably estimated for sufficiently large temperatures.
It is possible to derive the entropy directly as a derivative of the grand-canonical

potential

S =
∂Ω

∂T

∣∣∣∣
µ

. (1.66)

Carneiro and Pethick [47] proved that the main contribution is given by the so-called
dynamical quasi-particle entropy

SDQ

N
=

1

ρ

∫
dp

(2π)3
dω

2π
σ(ω)

[
A(p,ω)

(
1 −

∂ ReΣR(p,ω)

∂ω

)
+

∂ ReGR(p,ω)

∂ω
Γ(p,ω)

]
,

(1.67)
where

σ(ω) = −f(ω) ln[f(ω)] − [1 − f(ω)] ln[1 − f(ω)] , (1.68)

and that all other terms can be usually neglected in the actual calculations.
In a conserving approximation all the different ways of getting the thermodynamic

observables should lead to the same result, constituting a tool for monitoring the
thermodynamic consistency. At zero temperature this check is given by general re-
quirements for many-body fermionic systems. In particular hold the Hugenholtz-Van
Hove and Luttinger identities [48, 49], which are as well preserved by Φ-derivable
approximations. The Hugenholtz-Van Hove theorem states that at saturation density

E

N
= µ . (1.69)
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〈Hpot〉 =
∑

n

1

2

[
... − ...

]

=
1

2

[

T − T

]

Figure 1.7: Interaction energy; n represents the number of interaction lines in each
diagram.

body system. They are connected to the grand-canonical partition function, which
can be constructed in terms of diagrams that contain the single-particle propagator
and from which one can obtain all the thermodynamic observables at the equilibrium.

There are various methods of deriving the partition function from G. They are
all equivalent in the exact theory, but they might lead to different results when an
approximation for the two-body Green’s function is used. This inconsistency is then
reflected into the thermodynamic observables when they are calculated as derivatives
of the partition function with respect to the thermodynamic parameters.

The problem was addressed by Baym and Kadanoff [45, 46] who proved that there
exists a class of approximations which automatically fulfill all the consistency require-
ments. These approximations are related to the existence of a closed functional of the
single-particle propagator G and the potential V , indicated by Φ[G, V ], from which
the self-energy Σ[G, V ] must be derived according to

Σ(1, 1′) =
δ Φ[G, V ]

δ G(1, 1′)
. (1.62)

The functional Φ is directly connected to the logarithm of the partition function, which
at the equilibrium can be identified with the grand-canonical potential Ω, as follows5

Ω = −tr{ln[G−1]}− tr{ΣG} + Φ . (1.63)

In Ref. [46] general prescriptions for constructing Φ are outlined. The Hartree, the
Hartee-Fock and the T-matrix are all Φ-derivable approximation. In Fig. 1.8 we show
the diagrammatic expansion of Φ in the T-matrix case. The series is similar to the
one for the interaction energy (Fig. 1.7), differing only by a factor 1/n in front of each
diagram.

This is in principle all we need in order to compute all other thermodynamic properties

5A standard alternative method of calculating the partition function is to integrate the expectation
value of the potential energy (1.58) with respect to a varying coupling constant.

‣ grand-canonical potential

3

V
P

2
− q

P

2
+ q

P

2
− q′

P

2
+ q′

ωp =
p2

2m
+ Re Σ(p, ωp) (1.9)

Re Σ(p, ω) = ΣHF (p) + P

∫
dω′

π

Im ΣR(p, ω′)
ω − ω′ (1.10)

E,P, S(T, ρ, δ) (1.11)

Ω[G, Σ,Φ] = −P V (1.12)
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Instead of working with Gc and Ga, it is useful, because of their direct physical
interpretation, to introduce other two quantities, the retarded and advanced Green’s
functions GR and GA

GR(1, 1′) = θ(t1 − t′1) [G>(1, 1′)−G<(1, 1′)] , (1.17a)

GA(1, 1′) = θ(t′1 − t1) [G<(1, 1′)−G>(1, 1′)] . (1.17b)

It follows that
GR(1, 1′)−GA(1, 1′) = G>(1, 1′)−G<(1, 1′) , (1.18)

and since [GA(1, 1′)]∗ = GR(1, 1′)

2i Im GR(1, 1′) = G>(1, 1′)−G<(1, 1′) . (1.19)

Some useful rules to derive equations for the different components of the matrix G
are the Langreth-Wilkins formulae [39]. Valid for any quantity defined on the contour,
they state that when we have a convolution of path-ordered functions

C(1, 1′) =
∫

C
d2A(1, 2)B(2, 1′) (1.20)

if follows

C≷(1, 1′) =
∫

d2
[
AR(1, 2) B≷(2, 1′) + A≷(1, 2) BA(2, 1′)

]
, (1.21a)

CR(A)(1, 1′) =
∫

d2 AR(A)(1, 2) BR(A)(2, 1′) . (1.21b)

A feature of systems at the equilibrium is that the Green’s functions depend only
on the differences of their arguments, i.e. G(r, t; r′, t′) = G(r− r′, t− t′). Then we can
define the Fourier transforms as follows

G(r− r′, t− t′) =
∫

dp
(2π)3

dω

2π
eip (r−r′) e−i ω(t−t′) G(p, ω) . (1.22)

The smaller and larger Green’s functions G< and G> are particularly important be-
cause of they can be interpreted as densities of particles and holes in the medium.
Starting from their definition as grand-canonical averages, in momentum space one
can derive a useful relation, known as the Kubo-Martin-Schwinger condition [40, 41]:

−i G<(p, ω) = e−β (ω−µ) i G>(p, ω) . (1.23)

If now we introduce a new quantity, the spectral function A(p, ω), it is possible to
re-express G> and G< such that they automatically fulfill (1.23)

i G>(p, ω) = [1− f(ω)]A(p, ω) , (1.24a)1.4 Approximations for the two-particle propagator 13

−i G<(p, ω) = f(ω) A(p, ω) , (1.24b)

where
f(ω) =

1
eβ (ω−µ) + 1

(1.25)

is the Fermi-Dirac distribution. This implies that in equilibrium it is sufficient to
determine only one quantity to have complete knowledge of all the different one-body
propagators. The physical interpretation of the spectral function is the following. We
can identify −i G< with the average density of particle with momentum p and energy
ω

−i G<(p, ω) = 〈n(p, ω)〉 . (1.26)

While the distribution function tells us about the occupation of the various modes,
characterized by an energy ω, A(p, ω) determines the spectrum of the possible energies
for a particle with momentum p. The total weight must be equal to unity

∫
dω

2π
A(p, ω) = 1 . (1.27)

For free particles, since no scattering can spread the energy spectrum, A(p, ω) is
proportional to a delta function

A0(p, ω) = 2π δ(ω − p2/2m) . (1.28)

When an interaction is present, this is no longer the case: the spectral function has a
non trivial structure and is non-zero over the entire energy range. For some momenta
(close to the Fermi momentum pF ), A(p, ω) still shows a peak which resembles the
one of free particles. One can associate this behavior with the concept of quasiparti-
cle, and assume that the system is composed of these weakly-interacting long-living
excited states. In nuclear matter, however, the strong correlations between particles in
the medium cannot be neglected and the quasiparticle picture becomes a very crude
approximation when moving away from the Fermi surface.

1.4 Approximations for the two-particle propagator

Starting from the equations of motion for ψ(r, t) or ψ†(r, t) it is possible to derive an
equation of motion for the single-particle Green’s function on a contour

(
i

∂

∂t1′
+
∇2

1′

2m

)
G(1, 1′)

= δ(1, 1′)− i

∫
dr2 V (r1 − r2)G2(1, r2, t1; 1′, r2, t

+
1 ) (1.29)

where t+1 represents a time infinitesimally larger than t1 on the contour. Similarly one
can obtain an equation for G2 which involves the three-particle propagator G3 and
so on, constructing expressions in which Gn is determined from Gn+1. This system
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G2 =

Figure 1.1: Hartree approximation for the two-particle Green’s function.

with the Hartree self-energy (ρ is the number density of particles)

ΣH = ρ V (0) . (1.33b)

If we take into account the possibility of an exchange between the two (indistinguish-
able) particles, we come to the Hartree-Fock approximation (Fig. 1.2)

G2(12; 1′2′) = G(1, 1′)G(2, 2′)−G(1, 2′)G(2, 1′) . (1.34)

The minus sign implies that G2(1, 2; 1′2′) = −G2(1, 2; 2′1′). The spectral function

G2 = −

Figure 1.2: Hartree-Fock approximation for the two-particle Green’s function.

has still a delta-function structure, but the self-energy is now momentum dependent

AHF (p, ω) = 2π δ(ω − p2/2m + ΣHF (p)) , (1.35a)

ΣHF (p) = ρ V (0)−
∫

dp′

(2π)3
V (p− p′)n(p′) , (1.35b)

where n(p) is the momentum distribution

n(p) =
∫

dω

2π
A(p, ω) f(ω) . (1.36)

The Hartree and Hartree-Fock approximations do not take into account any corre-
lations between particles in the medium. The particles propagate independently in a
mean field which reflects of the presence of the other nucleons, but cannot jump out
of their stable single-particle states.

⇢ example: free particle
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The spectral function can be used to obtain
the momentum distribution

n(p) =

∫

dω

2π
A(p, ω)f(ω) . (8)

Short range correlations modifying the spectral
function are reflected in the nucleon momentum
distribution. The free Fermi distribution is de-
pleted below pF and a high momentum tail in
n(p) is formed. At the Fermi momentum the dis-
continuity in the occupancy is reduced from 1 to
ZpF

(7). The Fermi momentum in the interact-
ing system should be the same as in the free one
[11, 26]. This relation is approximately fulfilled
in the present calculation, but not as well as in
our previous work using only S wave interactions
[7]. A possible source of the discrepancy could
be the use of the partial-wave expansion which
spoils the Φ-derivability of the self-energies. At
finite temperature the Fermi surface is washed
out, but the depletion of the Fermi sea and the
high momentum tail are the same. It means that
the short range correlations stay essentially the
same at T = 4MeV. The same can also be seen
by inspecting the self-energies. At finite tem-
perature the scattering width is increased only
in the vicinity of the Fermi energy.

Long tails in the spectral function have impli-
cations for saturation properties of nuclear mat-
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ter. Increased kinetic energy due to the high mo-
mentum tail in n(p) is compensated by increased
removal energies due to the negative energy tail
of the spectral function. A detailed discussion at
different densities will be presented elsewhere.

VI. SUMMARY

We study the single-particle properties of nu-
cleons in nuclear matter using a conserving, in-
medium T -matrix approximation. The calcu-
lations are done in a self-consistent way with
dressed propagators in the ladder diagrams. To
our knowledge, it is the first such calculation
in the literature using realistic interactions and
several partial waves. The full discretization of
the spectral function and self-energies allows to
discuss the details of their energy dependence.
We find that the basic features of a consistent
approximation to a Fermi liquid system are ful-
filled. The scattering width is zero at the Fermi
energy, and the quasi-particles at the Fermi sur-
face have infinite lifetime. The momentum oc-
cupancy has a discontinuity of ZpF

at the Fermi
momentum. The off-shell scattering width is
very large at energies ! 300− 400MeV and mo-
menta below 400MeV. In this region the main
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Finite temperature Green’s functions

‣ single-particle propagator on the time-contour

1.3 Real time Green’s functions 5

represents the density of particles at point r at time t. The total number of
particles is then

N(t) =
∫

drψ†(r, t)ψ(r, t) . (1.5)

The dynamics of the system is determined by the Hamiltonian operator H(t).
Assuming that the particles interact via a two-body potential local in time
V (r, t; r′, t′) = V (r, r′) δ(t− t′), it can be written as

H(t) =
1

2m

∫
dr∇ψ†(r, t)∇ψ(r, t)

+
1
2

∫
dr dr′ ψ†(r, t) ψ†(r′, t)V (r, r′)ψ(r′, t)ψ(r, t) . (1.6)

The physical observables are then obtained by computing expectation values of
such operators. When we consider systems at zero temperature, these expectation
values are taken with respect to the ground state |Ψ0〉. For finite temperature
systems this is not the case, since they are in general distributed over a certain
number of excited (non-stationary) states. To describe the time evolution of the
macroscopic observables we have then to introduce statistical mechanics and, by
means of the density matrix operator ρ̂, we compute the expectation value of any
operator Ô as

〈Ô〉 = tr
[
ρ̂ Ô

]
. (1.7)

The fundamental object of the theory, the single-particle Green’s function or prop-
agator G, is defined as the expectation value (in the sense of (1.7)) of the time-
ordered product of an annihilation and a creation operator:

i G(r, t; r′, t′) =
〈
T ψ(r, t) ψ†(r′, t′)

〉
. (1.8)

This is also known as the causal Green’s function because of the presence of
the time-ordering operator T. The knowledge of the single-particle propagator is
sufficient to compute the expectation values of all one-body operators.

There exist various techniques to evaluate G. In the zero temperature theory
one can express the perturbative expansion of the propagators by means of the
Feynman diagrams. This is the standard procedure in interaction picture which
involves the adiabatic theorem and the Wick decomposition. The same scheme
however cannot be applied to the finite temperature case because of the different
structure of the time evolution operator, which reflects the impossibility of iden-
tifying the states at t = ∞ with any of the states at t = −∞. The formal analogy
with the zero temperature case can be restored by substituting the time axis with
a closed time contour (Schwinger [6] and Keldysh [7]) over which the time variable
of any function is defined. The time-ordering operator in (1.8) is replaced by T,
which orders times on the contour, and the single-particle propagator is defined
as

iGAαBβ(r, t; r′, t′) =
〈
T ψAα(r, t)ψ†

Bβ(r′, t′)
〉

(1.9)

16 The nuclear many-body problem

If we allow scatterings between the two nucleons they can instead be excited to
other states, with a consequent spread of the possible energies. In Fig. 1.3 we show the
second order Born approximation, in which the two particles either propagate freely or
scatter once (including exchange processes). The two-body Green’s function is written

G2 = +

− −

Figure 1.3: Second order Born approximation for the two-particle Green’s function.

as follows

G2(12; 1
′2′) = G(1, 1′)G(2, 2′) − G(1, 2′)G(2, 1′)

+ i

∫

C
d3 dr4V (r3 − r4) [G(1, 3)G(3, 1′)G(2, 4)G(4, 2′)

− G(1, 3)G(3, 2′)G(2, 4)G(4, 1′)]

∣∣∣∣
t4=t3

. (1.37)

The self-energy can be divided into two parts

ΣBorn = ΣHF + Σd, (1.38)

where the new contribution Σd is now fully defined on the contour and accounts for
the collisions between particles. We can write down its expression in momentum space
as follows

Σd(p,ω) =

∫
dp′

(2π)3
dp′′

(2π)3
dω′

2π

dω′′

2π

1

2

[
V (p − p′) − V (p′ − p′′)

]2

×G(p′,ω′)G(p′′,ω′′)G(p + p′ − p′′,ω+,ω′−,ω′′) . (1.39)

The real and imaginary parts of Σd are related via the dispersion formula

ReΣR (A)
d (p,ω) = P

∫
dω′

π

ImΣR (A)
d (p,ω′)

ω′ − ω
, (1.40)

where P denotes the principal value of the integral.

1.5 T-matrix

In the diagrammatic expansion of the nucleon self-energy, the partial summation of the
ladder diagrams at all orders leads to the T-matrix or ladder approximation. In nuclear

carry statistical mechanics information
of the system

1.3 Real time Green’s functions 11

We may introduce also the two-particle propagator on the contour

i2 G2(r1, t1, r2, t2; r′1, t′1, r′2, t′2) =〈
T ψ(r1, t1) ψ(r2, t2) ψ†(r′2, t

′
2)ψ†(r′1, t

′
1)

〉
. (1.12)

The equations of motion for G involve the two-particle Green’s function G2, which
in its turn is determined through the three-particle propagator G3, and so on, giving
rise to a system of coupled integro-differential equations. As we will see in the next
paragraph, in order to solve the system this hierarchy must be interrupted by means
of some approximation, usually introduced at the level of G2.

As this approach is very powerful in describing the behavior of many-body systems
also out of the equilibrium, we will consider in this work, however, only systems in
thermodynamic equilibrium, for which the appropriate statistical mechanical descrip-
tion is given by the grand canonical ensemble. As a consequence, the expectation value
(1.9) reads

〈Ô〉 = tr
[
ρ̂ Ô

]
=

tr
[
e−β(H−µN)Ô

]

tr
[
e−β(H−µN)

] , (1.13)

where the parameters µ, the chemical potential, and β = 1/T , the inverse temperature,
characterize the thermodynamic state of the system. The quantity in the denomina-
tor is identified with the grand-canonical partition function ZGC , which can be also
expressed in terms of the thermodynamic potential Ω (T, µ)

ZGC = tr
[
e−β(H−µN)

]
= e−β Ω . (1.14)

For many applications it is often more convenient to work in momentum space. In
order to Fourier-transform the propagators we need to work with times which lie on
the real axis and not on a contour. Thus we can introduce a matrix structure for the
contour Green’s function (we use now the notation 1 ≡ (r1, t1) and d1 ≡ dr1 dt1)

iG(1, 1′) = i

(
Gc(1, 1′) G<(1, 1′)
G>(1, 1′) Ga(1, 1′)

)

=
( 〈

T ψ(1)ψ†(1′)
〉

−
〈
ψ†(1′) ψ(1)

〉
〈
ψ(1)ψ†(1′)

〉 〈
Ta ψ(1)ψ†(1′)

〉
)

, (1.15)

where T a is the anti-chronological time operator. The four Green’s functions (which
have now real time arguments) correspond to the four possible placements of the two
times on the two branches of the contour. These functions are not independent of each
other but fulfill the relation

Gc(1, 1′) + Ga(1, 1′) = G>(1, 1′) + G<(1, 1′) . (1.16)

other ab-initio approaches:

‣ Bloch-De Dominicis (⇒ BBG)     →  “frozen correlations” approximation

‣ variational                                   →  work in progress

weird, but...
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Solving the Kadanoff-Baym equations for inhomogenous systems: Application to
atoms and molecules

Nils Erik Dahlen and Robert van Leeuwen
Theoretical Chemistry, Zernike Institute for Advanced Materials,

University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
(Dated: February 6, 2008)

We have implemented time-propagation of the non-equilibrium Green function for atoms and
molecules, by solving the Kadanoff-Baym equations within a conserving self-energy approximation.
We here demonstrate the usefulnes of time-propagation for calculating spectral functions and for
describing the correlated electron dynamics in a non-perturbative electric field. We also demonstrate
the use of time-propagation as a method for calculating charge-neutral excitation energies, equivalent
to highly advanced solutions of the Bethe-Salpeter equation.

PACS numbers: 31.25.-v,31.10.+z,31.15.Lc

The arrival of molecular electronics has exposed the
need for improved methods for first-principles calcula-
tions on non-equilibrium quantum systems [1]. The non-
equilibrium Green function [2, 3] is for several reasons a
natural device in such studies. Not only is it relatively
simple, being a function of two coordinates, but it con-
tains a wealth of information, including the electron den-
sity and current, the total energy, ionization potentials,
and excitation energies. Time-propagation according to
the Kadanoff-Baym equations [3, 4] is a direct method
for describing the correlated electron dynamics, and a
method which automatically leads to internally consis-
tent and unambiguous results in agreement with macro-
scopic conservation laws. In the linear response regime,
time-propagation within relatively simple self-energy ap-
proximations corresponds to solving the Bethe-Salpeter
equation with highly advanced kernels [5]. The Green
function techniques are also highly interesting as a com-
plementary method to time-dependent density functional
theory (TDDFT) [6, 7], not only by providing benchmark
results for testing new TDDFT functionals, but diagram-
matic techniques can also be used to systematically de-
rive improved density functionals [8]. We will in this
Letter demonstrate time-propagation for inhomogenous
systems, using the beryllium atom and the H2 molecule
as illustrative examples.

The non-equilibrium Green function G(xt,x′t′) de-
pends on two time-variables, rather than one such as
the time-dependent many-particle wave function. On the
other hand, the fact that it also depends on only two
space and spin variables x = (r, σ) means that it can
be used for calculations on systems that are too large for
solving the time-dependent Schrödinger equation, such as
the homogenous electron gas [5] or solids[9], or for calcu-
lations on molecular conduction. In addition, the Green
function provides information about physical properties
such as ionization potentials and spectral functions, that
are not given by the many-particle wave function. The
Green function techniques also have the advantage over,
e. g., TDDFT or density matrix methods based on the

−iβ

0

iτ1

iτ2

!

"

−iβ

0
t1

t2

!
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FIG. 1: At t = 0, the system is in thermal equilibrium, and
the Green function is calculated for imaginary times from 0
to −iβ (left figure). Describing the system for t > 0 implies
calculating G(t1, t2) on an extending time-contour (right).

BBGKY hierarchy [10], that it is easy to find approxima-
tions which give observables in agreement with macro-
scopic conservation laws.

The two time-arguments of the Green function are lo-
cated on a time-contour as illustrated in Fig. 1. It solves
the equation of motion (we suppress the space- and spin-
variables for notational simplicity)

[i∂t − h(t)] G(t, t′) = δ(t, t′) +

∫

C
dt̄ Σ(t, t̄)G(t̄, t′), (1)

where h(t) is the non-interacting part of the hamiltonian
(which may include an arbitrarily strong time-dependent
potential), and the self-energy Σ accounts for the effects
of the electron interaction. We use atomic units through-
out. The time-integral is performed along the contour,
and the delta-function δ(t, t′) is defined on the contour
[11]. We only consider systems initially (at t = 0) in the
ground state. This is facilitated by describing the system
within the finite-temperature formalism [12], letting the
time-contour start at t = 0 and end at the imaginary time
t = −iβ = −i/(kBT ), as illustrated in Fig. 1. This choice
of initial conditions means that the first step consists of
calculating the Green function for both time-arguments
on the imaginary track. The calculations are carried out
in a basis of Hartree-Fock (HF) molecular orbitals, such
that G(xt,x′t′) =

∑

i,j φi(x)Gij(t, t′)φ∗
j (x

′). The Green

consistency between macroscopic and microscopic observables



‣ numerical solution of coupled integro-differential equations 

iterative scheme

‣ code in Fortran 77

‣ use Fast Fourier Transform (FFT) and convolution theorem

 

‣ discretization on a fixed-spacing grid

‣ cut-off dependence under control

‣ each point (T, ρ, δ, V) ~ 100 hours     

Technical aspects

26 Self-consistent calculation of thermodynamic quantities

into (1.48) we get the partial waves retarded T-matrix equation

〈k|TR (JST )
LL′ (P,Ω)|k′〉 = V (JST )

LL′ (k, k′)

+
∑

L′′

∫
p2 dp

(2π)3
V (JST )

LL′′ (k, p) 〈p|Gnc R
2 (P,Ω)|p〉 〈p|TR (JST )

L′′L′ (P,Ω)|k′〉 , (2.2)

in which we are left with a one-dimensional momentum integration only. The imaginary
self-energy is then computed as a sum over all partial waves

ImΣR(p,ω) =
1

8π

∑

(JST ) L

(2T + 1) (2J + 1)

×
∫

dk

(2π)3
dω′

2π

[〈
|p − k|

2

∣∣∣Im TR (JST )
LL (|p + k|,ω + ω′)

∣∣∣
|p − k|

2

〉

−
〈
|p− k|

2

∣∣∣ImTR (JST )
LL (|p + k|,ω + ω′)

∣∣∣
|k − p|

2

〉]

×
[
b(ω + ω′) + f(ω′)

]
A(k,ω′) . (2.3)

From (2.3) the real part of ΣR is derived using the dispersion relation (1.53), where
the Hartree-Fock contribution is

ΣHF (p) =
1

8π

∑

(JST )L

(2T + 1) (2J + 1)

{
ρV (JST )

LL (0)

−
∫

dk

(2π)3
dω

2π
V (JST )

LL (|p − k|/2, |p − k|/2)A(k,ω) f(ω)

}
. (2.4)

The evaluation of the multi-dimensional integrals which appear in the set of equa-
tions requires a huge computational effort. We discretize the various quantities in the
momentum and energy domains and use for the calculations a Fortran 77 code.

The energy integrations we encounter in the equations are often convolution inte-
grals of the type

J(p,ω) =

∫
dω′

2π

∫
q2dq

8π2

∫
d cos ΘF1(k+,ω′ − ω)F2(k−,ω′) , (2.5)

where k± = |p±q| =
√

p2 + q2 ± 2 p q cos Θ. Such formulae can be more conveniently
calculated by means of the convolution theorem, which expresses a convolution integral
as the inverse transform of the product of the two Fourier-transformed functions

∫
dω′F1(ω

′ − ω)F2(ω
′) =

[
F T

1 (t)F T
2 (t)

]T
. (2.6)

In the program they are performed using fast Fourier transform (FFT) algorithms
for numerical convolutions [51] as follows [52]: first the two functions are Fourier
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The need for three-body forces

‣ empirical values for saturation

[ Akmal et al., Phys. Rev. C 58 (1998) ]

[ Baldo and Maieron, J. Phys. G 34 (2007) ]

Chapter 4

Nuclear matter properties with
three-body forces

4.1 Energy in symmetric nuclear matter

ρsat ≡ ρ0 = 0.16± 0.01 fm−3 (4.1)
Esat/N ≡ B = 16± 1 MeV (4.2)

We consider in the following only two of the four realistic NN interactions employed
in Chapter 2, namely the CD-Bonn and the Nijmegen potentials. These proved to be
the most stable at low/high density and high temperature, moreover the A18 and Reid
calculations are characterized by an excessive repulsive behaviour below saturation
density, which cannot be cured with the introduction of three-body forces. This is
possibly due to the inability of the T-matrix scheme to treat correctly the strong
repulsive core in the case of Argonne, and the quantitative inaccuracy of the dated
Reid interaction.

For the two mentioned potentials the averaged three-body forces have been added
to the two-body contributions as outlined in details in Chapter 3. First the calculations
have been performed around saturation density in order to tune the two parameters
U and A which control the overall and relative strength of the two contributions (cf.
(3.4) and (3.10)). The parameters have been adjusted separately for the CD-Bonn and
for the Nijmegen potential by requiring the energy particle to reproduce the empirical
values of the saturation density ρ0 and the binding energy EB. We do expect different
values of {A, U} for the two NN interactions: since they yield different saturation
curves the missing effects do not have to be necessarily the same. This argument surely
applies to the more phenomenological repulsive term (3.10). We believe that however
it is also the case of the 2π-exchange contribution, due to the averaging procedure
which unavoidably makes the resulting two-body interaction an effective one. As long
as TBF are not derived consistently within the same theoretical framework, one should
expect this motivation to be valid also for other approaches.

Once the parameters have been fixed, we extend the calculations to the whole
density domain ρ ∈ [0.4 ρ0, 3 ρ0] starting with the case of symmetric nuclear matter.
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
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Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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other words, the results indicate that the missing of the saturation point is not
due to a lack of accuracy in the treatment of the nuclear many-body problem,
but to a defect of the nuclear hamiltonian. The need of three-body forces in nu-
clear matter is consistent with the findings in the study of few nucleon systems,
where also the binding energy and radii, as well as scattering data, cannot be
reproduced with only two-body forces. Not surprisingly, the effects of three-body
forces seem to be more pronounced in nuclear matter than in few body systems.

The standard NN interaction models are based on the meson–nucleon field
theory, where the nucleon is considered an unstructured point-like particle. The
Paris, the Argonne v14 (with the improved version v18 [11]), and the set of Bonn
potentials [12] fall in this category. In the one-boson exchange potential (OBEP)
model one further assumes that no meson–meson interaction is present and each
meson is exchanged in a different interval of time from the others. However,
the nucleon is a structured particle, it is a bound state of three quarks with
a gluon-mediated interaction, according to Quantum Chromodynamics (QCD).
The absorption and emission of mesons can be accompanied by a modification of
the nucleon structure in the intermediate states, even in the case of NN scattering
processes, in which only nucleonic degrees of freedom are present asymptotically.
A way of describing such processes is to introduce the possibility that the nucleon
can be excited (“polarized”) to other states or resonances. The latter can be the
known resonances observed in meson–nucleon scattering. At low enough energy
the dominant resonance is the ∆33, which is the lowest in mass. If the internal
nucleon state can be distorted by the presence of another nucleon, the interaction
between two nucleons is surely altered by the presence of a third one. This effect
produces clearly a definite three-body force, which is absent if the nucleons are
considered unstructured. The simplest of such process is depicted in Fig. 13b.

Fig. 13. An interaction process among three nucleons with only two-body force (a),
and a process involving a genuine three-body force (b).

Such a process can be interpreted in different but equivalent ways. One way is to
view the pion (meson) coming from the first nucleon to polarize the second one,
which therefore interacts with a third one as a ∆33 resonance, surely in a different
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way than if it had remained a nucleon, like in Fig. 13a. The process of Fig. 13a
is not indeed a three-nucleon force, but just a repetition of a two-nucleon force.
The introduction of a three-nucleon interaction is a consequence of viewing pro-
cesses like the one of Fig. 13b as an effective interaction among three nucleons,
which eventually will be medium-dependent. The genuine three-nucleon forces
can be extracted from processes like the one of Fig. 13b by projecting out the
∆33 (or other resonances) degrees of freedom in some approximate way. The
theory of three-nucleon forces has a very long history, and it started to be de-
veloped since the early stage [13] of the theory of nuclear matter EOS, as well
as of few nucleon systems [14]. The most extensive study of the three-nucleon
forces (TNF) has been pursued by Grangé and collaborators [15]. Fig. 14, re-
produced from Ref. [16], indicates some of the processes which can give rise to
TNF. Graph of Fig. 14a is a generalization of the process of Fig. 13b, where
other nucleon resonances (e.g. the Roper resonance) can appear as intermedi-
ate virtual excitation and other exchanged mesons can be present. Graph 14b
includes possible non-linear meson-nucleon coupling, as demanded by the chiral
symmetry limit [16]. Graph 14c is the simplest one which includes meson-meson
interaction. Other processes of this type are of course possible [15,16], which in-
volves other meson-meson couplings, and they should be included in a complete
treatment of TNF. Diagram 14d describes the effect of the virtual excitation of

Fig. 14. Some of the processes which can produce a genuine three-body force.

a nucleon-antinucleon pair, and it is therefore somehow of different nature from
the others. It gives an important (repulsive) contribution and it has been shown
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‣ modification of the internal structure of hadrons

22 Three-Body Forces

4.2 Three-body Hamiltonian

Formally three-body forces are included by adding a term to the two-body Hamil-
tonian (2.6)

H = H2 body → H ′ = H2 body + H3 body , (4.1)

where

H3 body =
1
3!

∫
dr1 dr2 dr3 ψ†(1)ψ†(2)ψ†(3)V3(r1, r2, r3) ψ(3)ψ(2)ψ(1) . (4.2)

We employ in this work the three-body potential developed by the Urbana group
[16], composed of two terms

V Urbana
ijk = V 2π

ijk + V R
ijk . (4.3)

The first part, attractive and dominant at low densities, is constructed from two-
pion exchange with a ∆ appearing as intermediate state as described in the pre-
vious section; the repulsive contribution is responsible for the correct saturation
and prevails at high densities.

The two potentials are structured as a sum over cyclic permutations of the
three particles, denoted by the indeces {i, j, k}. The 2π-exchange term reads

V 2π
ijk = A

∑

cyc

(
{Xij , Xjk} {τi · τj , τj · τk} +

1
4

[Xij , Xjk] [τi · τj , τj · τk]
)

, (4.4)

where
Xij = Y (rij) σi · σj + T (rij) Sij . (4.5)

Here rij ≡ ri − rj is the distance between particles i and j and the non-bold
character denotes the vector norm rij ≡ |rij |. The tensor operator is defined as
Sij = [3 (σi · r̂ij)(σj · r̂ij) − σi · σj ] where r̂ij ≡ rij

|rij | is the unit vector. The two
radial functions Y (r) and T (r) are respectively the Yukawa

Y (r) =
e−ar

ar
Ycut(r) (4.6)

and the tensor function

T (r) =
(

1 +
3
ar

+
3

a2r2

)
e−ar

ar
Tcut(r) , (4.7)

in which it is necessary to introduce a short-range cutoff

Ycut(r) = 1− e−br2
, (4.8)

Tcut(r) =
(
1− e−br2

)2
. (4.9)

⇢ and others:

⇢  Δ-excitation ↔   2π exchange



Derivation of the effective potential

‣ need to derive an effective two-body potential

24 Three-Body Forces

The two parameters take the values a = 0.7 fm−1 and b = 2.0 fm−2. The repulsive
contribution has the form

V R
ijk = U

∑

cyc

T 2(rij) T 2(rjk) . (4.10)

There are in these expressions two free parameters, A < 0 and U > 0, which
tune the overall normalization and the relative strength of the 2π-exchange and
the repulsive term. The two parameters have to be fixed by demanding that the
saturation properties of symmetric nuclear matter are correctly reproduced. This
usually corresponds to requiring that the binding energy per particle and the sat-
uration density agree with the empirical values EB and ρ0. One expects the values
of the parameters to depend on the particular choice of the two-body interaction
and the method employed, since in general they lead to different saturation curves.

The three-body potential depends on the spatial, spin and isospin coordinates of
the three particles. In such a form it can not be directly inserted in the T-matrix
scheme, and one needs to derive an effective two-body force which incorporates
the action of one of the nucleons on the other two. The effects caused by this
“spectator” particle are approximated by a mean field felt by the other two nu-
cleons, expressed in the form of a two-body potential which can be added to the
bare NN interaction. This effective force is derived through an integration over
all possible momenta characterizing the third nucleon and a sum over its spin and
isospin degrees of freedom

V eff
3 (q,q′) =

∑

σ τ

∫
dk

(2π)3
n(k) V FT

3 (k,q,q′) . (4.11)

After summing the contributions from all topologically distinct permutations, one
obtains a function which has the general structure

V eff
3 (q,q′) = V R

s (q,q′) + V 2π
s (q,q′) (4.12)

+ V 2π
στ (q,q′) σ · σ′ τ · τ ′ + V 2π

Sτ (q,q′) S(q,q′) τ · τ ′ ,

where V R
s , V 2π

s , V 2π
στ and V 2π

Sτ are scalar in the spin-isospin space. This effective po-
tential is then projected into partial waves and included in the T-matrix formalism
according to

V → V ′ = V + V eff
3 , (4.13)

and the iterative procedure is performed as in the two-body case.

4.3 Derivation of the effective two-body potential

Let us now treat the derivation of the effective potential more in details. There
are three main steps which have to be performed:

  to be inserted in the T-matrix
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Fourier transform

spin-isospin average

projection into partial waves

2 The Erice test

〈Hint〉 =
1
2

∑

n

[
... − ...

]

=
1
2

[
T − T

]

µ = 0.4 fm−1

E

A
=

1
ρ

[
〈Htot〉

V

]
=

1
ρ

[
〈Hkin〉

V
+
〈Hpot〉

V

]
(1.4)

ρsat ≡ ρ0 = 0.16 ± 0.01 fm−3

Esat/A ≡ B = 16 ± 1 MeV

〈q|V S=0
J (P )|q′〉 =

1
4π2

∫
dΩqq′ PJ(Ωqq′)×

{
V R

s + V 2π
s − 3V 2π

στ for J even
V R

s + V 2π
s + 9V 2π

στ for J odd
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- Fourier transform of Vijk and average over the third momentum

- spin-isospin average

- projection into partial waves

In order to move to momentum space we notice that Vijk can be seen as a sum
of terms (the permutations) which are in fact functions of only two interparticle
distances. For the moment let us forget about the spin-isospin structure, then

V3(r12, r23, r31) = U(r12)U ′(r23) + U(r23)U ′(r31) + U(r31)U ′(r12) , (4.14)

where U(r) and U ′(r) stand for Y (r), T (r)Sij(r) or T 2(r) depending on what
term we are considering. It can be shown that the Fourier transform of such a
function is

V FT
3 (p12,p23,p31) = W (p12)W ′(p23) + W (p23)W ′(p31) + W (p31)W ′(p12) ,

(4.15)
where W (W ′) is the Fourier transform of U(U ′) and pij is the momentum ex-
changed between particles i and j during the interaction.

In general, in order to understand how to average the three-body forces over
one of the three nucleons we can make use of diagrams. In Fig. 4.3 the full

p3

p2

p1

k3

k2

k1

Figure 4.2: Momenta in a three-body diagram.

three-nucleon interaction is schematized, with three incoming and three outgoing
particles. The integration over one of the nucleons corresponds to closing one of
the outgoing lines with one of the incoming ones, in all possible ways. This gives
rise to 27 diagrams (9 different averages × 3 permutations), which are 3 by 3
topologically equivalent. This factor cancels the 1/3 in front of (4.2), a 1/2 is left

so that H3 body
eff will have the same factor of Hint. The resulting 9 diagrams are

shown in Fig. 4.3.

Let us consider the form of H3 body in (4.2). We see that in order to contract
two of the six anticommuting operators to obtain 〈ψ† ψ〉 for all possible permuta-
tions we may need to switch two of them one or more times. This generates some
(−1) factors, implying that not all the diagrams contribute with the same sign
(see Table 4.1).
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Chapter 4

Nuclear matter properties with
three-body forces

4.1 Energy in symmetric nuclear matter

E/N = −16.3 MeV (4.1)
ρ = 0.171 fm−3 (4.2)

We consider in the following only two of the four realistic NN interactions employed
in Chapter 2, namely the CD-Bonn and the Nijmegen potentials. These proved to be
the most stable at low/high density and high temperature, moreover the A18 and Reid
calculations are characterized by an excessive repulsive behaviour below saturation
density, which cannot be cured with the introduction of three-body forces. This is
possibly due to the inability of the T-matrix scheme to treat correctly the strong
repulsive core in the case of Argonne, and the quantitative inaccuracy of the dated
Reid interaction.

For the two mentioned potentials the averaged three-body forces have been added
to the two-body contributions as outlined in details in Chapter 3. First the calculations
have been performed around saturation density in order to tune the two parameters
U and A which control the overall and relative strength of the two contributions (cf.
(3.4) and (3.10)). The parameters have been adjusted separately for the CD-Bonn and
for the Nijmegen potential by requiring the energy particle to reproduce the empirical
values of the saturation density ρ0 and the binding energy EB. We do expect different
values of {A, U} for the two NN interactions: since they yield different saturation
curves the missing effects do not have to be necessarily the same. This argument surely
applies to the more phenomenological repulsive term (3.10). We believe that however
it is also the case of the 2π-exchange contribution, due to the averaging procedure
which unavoidably makes the resulting two-body interaction an effective one. As long
as TBF are not derived consistently within the same theoretical framework, one should
expect this motivation to be valid also for other approaches.

Once the parameters have been fixed, we extend the calculations to the whole
density domain ρ ∈ [0.4 ρ0, 3 ρ0] starting with the case of symmetric nuclear matter.
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Chapter 1

The Erice test

iG(1, 1′) = i

(
Gc(1, 1′) G<(1, 1′)
G>(1, 1′) Ga(1, 1′)

)
=

( 〈
T ψ(1)ψ†(1′)

〉
−

〈
ψ†(1′) ψ(1)

〉
〈
ψ(1)ψ†(1′)

〉 〈
Ta ψ(1)ψ†(1′)

〉
)

i G>(p, ω) = [1− f(ω)]A(p, ω) (1.1a)

−i G<(p, ω) = f(ω) A(p, ω) (1.1b)

(
i

∂

∂t1′
+
∇2

1′

2m

)
G(1, 1′) = δ(1, 1′)− i

∫
dr2 V (r1 − r2)G2(1, r2, t1; 1′, r2, t

+
1 )

G2(12; 1′2′) = G(1, 1′)G(2, 2′)−G(1, 2′)G(2, 1′)

+i

∫

C
d3 d4 d5 d6 [G(1, 3)G(2, 4)−G(1, 4)G(2, 3)]T(34; 56)G(5, 1′)G(6, 2′)

E

A
(ρ, δ) =

E

A
(ρ, δ = 0) + δ2Esym(ρ) (1.2)

δ ≡ N − Z

A
(1.3)

δ ≡ ρn − ρp

ρtot
(1.4)

Y (r) =
e−ar

ar
Ycut(r)

T (r) =
(

1 +
3
ar

+
3

a2r2

)
e−ar

ar
Tcut(r)

V 2π
ijk = A

∑

cyc

(
{Xij , Xjk} {τi · τj , τj · τk} +

1
4

[Xij , Xjk] [τi · τj , τj · τk]
)
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Figure 4.4: Energy per particle in neutron matter at T = 0MeV with the CD-Bonn and
Nijmegen potentials plus three-body forces. The results are compared to BBG [57],
variational [2] and AFDMC [72] calculations which all use the Argonne V18 interaction
and Urbana TBF.

formally from the total energy per particle

Esym(ρ) =
1
2

(
∂2 E/N

∂ δ2

)

δ=0

, (4.4)

where δ = (ρn − ρp)/ρ is the asymmetry parameter. If we consider a system with an
arbitrary fraction of neutrons, its energy per particle can be expanded as follows (only
quadratic terms in δ appear because of the isospin symmetries in the NN potentials)

E

N
(ρ, δ) =

E

N
(ρ, δ = 0) + δ2 Esym(ρ) + O(δ4) . (4.5)

It has been proved explicitly by Bomabaci and Lombardo [74] that the terms of or-
der δ4 and higher can be neglected, resulting in a parabolic approximation for the
energy per particle. Knowing the energy for the δ = 0 and δ = 1 systems we obtain
straightforwardly the symmetry energy.

Using the parabolic approximation we derive the symmetry energy for the CD-
Bonn and Nijmegen potentials and compare it as before with the APR and BBG

0.5 1 1.5 2 2.5 3

20

40

60

80

100

120 CD-Bonn
Nijmegen
CD-Bonn + TBF
Nijmegen + TBF
BHF + TBF
APR + TBF
AFDMC + TBF

! / !0

E 
/ N

 [M
eV

]



Density dependence

BRIEF REPORTS PHYSICAL REVIEW C 74, 047304 (2006)

4

5

6

0.25 0.3 0.35 0.4

ρ (fm-3)

P
D
 (

%
)

PAR

V14

V18

A

B

C

CD

R93N93
NI

NII

N3

IS

FIG. 3. Correlation between deuteron D-state probability and
saturation density for the BHF results with different potentials.

correlated with the value of the deuteron D-state probability
PD =

∫
d3ru2

L=2(r), i.e., with the strength of the tensor force
of the given potential [3]. We test this supposition in Fig. 3.
In fact, a definite linear dependence is found only for the
various Bonn and the N3LO potentials, whereas the remaining
potentials do not exhibit any well-defined correlation between
the two quantities.

Finally, Fig. 4 shows the symmetry energies, defined as
difference between the binding energies of pure neutron
matter and symmetric matter, obtained with the different

FIG. 4. (Color online) Symmetry energy obtained with different
potentials within the BHF approach with (upper, red curves) and
without (lower, black curves) TBF. The inset shows the values at
normal density ρ0 = 0.17 fm−3 on a magnified scale.

TABLE I. Properties of nuclear matter obtained with different
potentials.

ρ (fm−3) −B/A (MeV) Esym (MeV) PD (%)

Paris 0.270 17.6 29.4 5.8
Argonne V14 0.276 18.1 28.6 6.1
Argonne V18 0.259 17.3 29.9 5.76
Bonn A 0.419 28.4 32.1 4.4
Bonn B 0.341 22.0 31.8 5.0
Bonn C 0.257 16.4 28.5 5.6
CD-Bonn 0.374 21.9 31.1 4.85
Reid 93 0.328 19.8 30.0 5.70
Nijmegen 93 0.285 19.6 30.4 5.76
Nijmegen I 0.348 20.7 30.5 5.66
Nijmegen II 0.326 19.4 29.5 5.64
N3LO 0.408 24.5 31.2 4.51
IS 0.412 26.0 32.6 3.60
Paris + TBF 0.220 17.3 30.1
V14 + TBF 0.225 15.6 29.8
V18 + TBF 0.211 15.0 32.1

models. One observes in all cases values that increase nearly
linearly with increasing density. Generally, including TBF
increases strongly the symmetry energy at high densities
and leads therefore in astrophysical applications to larger
proton fractions in β-stable matter, a stiffer EOS, and larger
maximum neutron star masses than the (unrealistic) pure BHF
results [8]. In particular, the threshold value of an 11% proton
fraction allowing direct Urca cooling is easily traversed with
the EOS including TBF. The symmetry energies obtained
at saturation density ρ = 0.17 fm−3 range from 28.5 MeV
(Bonn C) to 32.6 MeV (IS) and are shown in the inset of the
figure.

We summarize our results for the saturation point, sym-
metry energy, and D-state probability obtained with the
different potentials in Table I. In conclusion, we have reviewed
the current status of the Coester line, i.e., the saturation
points of nuclear matter obtained within the BHF approach
using continuous single-particle energies and employing the
most recent accurate nucleon-nucleon potentials. Our results
confirm the concept of a “line” or “band,” density and energy of
the various saturation points being strongly linearly correlated.
The BHF results including TBF (as well as the DBHF results),
predict saturation in close proximity of the empirical point,
whereas some of the most recent potentials yield strong
overbinding of nuclear matter within the Brueckner scheme.
The supposition of a strict correlation between the deuteron
D-state probability and saturation is not generally confirmed
by our extended data set. Furthermore, all calculations yield
symmetry energies of about 30 MeV at normal density,
which are increasing monotonously and roughly linearly with
density.

For the future we recommend studying and refining in
even more detail the microscopic TBF to narrow the margin
of uncertainty associated with these forces. Also, DBHF
calculations employing potentials other than the Bonn ones
or including the effect of TBF are thus far unavailable and
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‣ large uncertainties in the density dependence of the energy and symmetry energyBRIEF REPORTS PHYSICAL REVIEW C 74, 047304 (2006)

and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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Entropy and pressure

‣ direct (diagrammatic) calculation of P 
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V
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− q

P

2
+ q

P

2
− q′

P

2
+ q′

ωp =
p2

2m
+ Re Σ(p, ωp) (1.9)

Re Σ(p, ω) = ΣHF (p) + P

∫
dω′

π

Im ΣR(p, ω′)
ω − ω′ (1.10)

E,P, S(T, ρ, δ) (1.11)

Ω[G, Σ,Φ] = −P V (1.12)

‣ entropy from
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Φ =
∑

n

1

2n

[
... − ...

]

Figure 1.8: Functional Φ; n represents the number of interaction lines in each diagram.

of the system. Since Ω = −P V one has also the big advantage of being able to calcu-
late the pressure P directly from the diagrammatic expansion, whereas the standard
method of deriving P from the free energy

P = ρ

(
µ −

E

N
+ T

S

N

)
(1.64)

requires the prior knowledge of the entropy per particle S/N . If the quantities in (1.64)
are not evaluated with sufficient precision, the propagation of numerical inaccuracies
may lead to big uncertainties on the pressure calculations. From (1.64) we compute
instead the entropy

S

N
=

1

T

(
E

N
− µ +

P

ρ

)
(1.65)

which can be reliably estimated for sufficiently large temperatures.
It is possible to derive the entropy directly as a derivative of the grand-canonical

potential

S =
∂Ω

∂T

∣∣∣∣
µ

. (1.66)

Carneiro and Pethick [47] proved that the main contribution is given by the so-called
dynamical quasi-particle entropy

SDQ

N
=

1

ρ

∫
dp

(2π)3
dω

2π
σ(ω)

[
A(p,ω)

(
1 −

∂ ReΣR(p,ω)

∂ω

)
+

∂ ReGR(p,ω)

∂ω
Γ(p,ω)

]
,

(1.67)
where

σ(ω) = −f(ω) ln[f(ω)] − [1 − f(ω)] ln[1 − f(ω)] , (1.68)

and that all other terms can be usually neglected in the actual calculations.
In a conserving approximation all the different ways of getting the thermodynamic

observables should lead to the same result, constituting a tool for monitoring the
thermodynamic consistency. At zero temperature this check is given by general re-
quirements for many-body fermionic systems. In particular hold the Hugenholtz-Van
Hove and Luttinger identities [48, 49], which are as well preserved by Φ-derivable
approximations. The Hugenholtz-Van Hove theorem states that at saturation density

E

N
= µ . (1.69)
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energy (cf. Fig. 1.7) differ only by a factor 1/n in front of each diagram of the series,
where n is the number of the interaction lines. We can then express Φ in terms of the
interaction energy with the potential multiplied by a factor λ

Φ =

∫ 1

0

dλ

λ
Hpot(λV,Gλ=1) . (2.20)

Let us remark that here G is the dressed nucleon propagator computed in the presence
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Figure 2.5: Pressure in symmetric nuclear matter for various densities. Calculations
are performed in the T-matrix approximation and make use of the CD-Bonn potential.

of the full-strength interaction (λ = 1). This expression then should not be confused
with the textbook formula for the pressure of an interacting system [46, 61]

PV = P0V +

∫ 1

0

dλ

λ
< Hpot(λV,Gλ) > , (2.21)

where P0 is the pressure of the noninteracting system and the average interaction
< Hpot > is calculated in a system with the potential reduced by a factor λ and the
propagator Gλ calculated self-consistently in the system with the reduced interaction.
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Figure 4.7: Pressure as a function of density for different temperatures with the CD-
Bonn potential (left panel) and the CD-Bonn potential plus three-body forces (right
panel).

chemical potential
∂ P

∂ ρ

∣∣∣∣
T

< 0 ,
∂ µ

∂ ρ

∣∣∣∣
T

< 0 . (4.5)

The border of this region is the spinodal line. Inside this region the system is unstable
and tends to separate in two different phases, gas at a lower and liquid at a higher
density. The two phases may coexist in an interval of densities and temperatures up
to the point in which

P (ρ gas) = P (ρ liquid) and µ(ρ gas) = µ(ρ liquid) . (4.6)

We compute the spinodal and the coexistence line for the CD-Bonn and the Nijmegen
potential without and with the inclusion of three-body forces.

The limits of the spinodal region defined by eq. (4.5)1 are found as local maxima
and minima of the pressure. We use two methods: we compute the derivative directly
from the interpolation of P and apply the one suggested by Baldo and Ferreira [63]
which consists in plotting the chemical potential as a function of the pressure, looking
for the back bending of the curves. The results obtained with the two techniques do
coincide, confirming the stability of the calculations even in the low density regime.
The critical lines are displayed in Figs. 4.9 and 4.10 for CD-Bonn and Nijmegen
respectively. At low temperatures the unstable and coexistence phases are present over

1The two conditions are equivalent for a one-component system.

56 Nuclear matter properties with three-body forces

! !"# !"$ !"% !"& ' '"# '"$ '"% '"&

('

!

'

#

)

$

*
+,-,&,./0

+,-,'!,./0

+,-,'#,./0

+,-,'$,./0

+,-,'%,./0

+,-,'&,./0

+,-,#!,./0

1,2,1!

3
,4
.
/
0
,5
6
()
7

! !"# !"$ !"% !"& ' '"# '"$ '"% '"&

('

!

'

#

)

$

*

1,2,1!

89(:;<<

Figure 4.7: Pressure as a function of density for different temperatures with the CD-
Bonn potential (left panel) and the CD-Bonn potential plus three-body forces (right
panel).

chemical potential
∂ P

∂ ρ

∣∣∣∣
T

< 0 ,
∂ µ

∂ ρ

∣∣∣∣
T

< 0 . (4.5)

The border of this region is the spinodal line. Inside this region the system is unstable
and tends to separate in two different phases, gas at a lower and liquid at a higher
density. The two phases may coexist in an interval of densities and temperatures up
to the point in which

P (ρ gas) = P (ρ liquid) and µ(ρ gas) = µ(ρ liquid) . (4.6)

We compute the spinodal and the coexistence line for the CD-Bonn and the Nijmegen
potential without and with the inclusion of three-body forces.

The limits of the spinodal region defined by eq. (4.5)1 are found as local maxima
and minima of the pressure. We use two methods: we compute the derivative directly
from the interpolation of P and apply the one suggested by Baldo and Ferreira [63]
which consists in plotting the chemical potential as a function of the pressure, looking
for the back bending of the curves. The results obtained with the two techniques do
coincide, confirming the stability of the calculations even in the low density regime.
The critical lines are displayed in Figs. 4.9 and 4.10 for CD-Bonn and Nijmegen
respectively. At low temperatures the unstable and coexistence phases are present over

1The two conditions are equivalent for a one-component system.
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maxima and minima of the pressure. The conditions on
pressure and chemical potential are equivalent for a one-
component system such as symmetric or pure neutron
matter. For the case of arbitrary isospin asymmetries
one should in principle consider both of them, but there
is evidence that chemical and mechanical instabilities co-
incide also for asymmetric nuclear matter [19].

We use two methods for determining the spinodal line:
we compute the pressure derivative directly from the in-
terpolation of P and apply the one suggested by Baldo
and Ferreira [10] which consists in plotting the chemical
potential as a function of the pressure, looking for the
back bending of the curves. The results obtained with
the two techniques do coincide, confirming the stability
of the calculations even in the low density regime. The
critical lines are displayed in Figs. 4 and 5 for CD-Bonn
and Nijmegen respectively. At low temperatures the un-
stable and coexistence phases are present over a large
range of densities. As the temperature increases the in-
stability region becomes smaller ending up with the point
defining the critical temperature for the liquid-gas tran-
sition. The critical temperature is Tc = 18 MeV for the
CD-Bonn and Tc = 20.5 MeV for the Nijmegen poten-
tial. Both the spinodal and the coexistence regions get
strongly reduced when three-body forces are included,
with the critical point at Tc = 12.5 MeV when CD-Bonn
is employed and Tc = 11.5 MeV if we consider the Ni-
jmegen potential.

Another quantity which characterizes the liquid-gas
phase transition is the adimensional parameter that com-
prises the critical pressure, density and temperature,
Pc/(ρc Tc), which assumes the value 3/8 for a van der
Waals equation of state. In Table I we summarize these

potential Tc (MeV) ρc (fm−3) Pc (MeV fm−3)
Pc

ρc Tc

CD-Bonn 18 0.107 0.43 0.22

CD-Bonn + TBF 12.5 0.096 0.14 0.12

Nijmegen 20.5 0.094 0.50 0.26

Nijmegen + TBF 11.5 0.088 0.15 0.14

TABLE I: Critical values of temperature, density and pres-
sure at the liquid-gas phase transition for the CD-Bonn and
Nijmegen potentials without and with three-body forces.

critical quantities for the various potentials without and
with three-body forces. The values for the CD-Bonn and
the Nijmegen potentials are rather similar, with a strong
decrease of the adimensional parameter after the inclu-
sion of three-body forces, signaling a departure from the
van der Waals equation of state.

Our estimates with the nucleon-nucleon interactions
only are in agreement with other microscopic calcula-
tions. Rios et al. [20] use a self consistent Green’s
functions approach but compute the free energy from
the Carneiro-Pethick quasiparticle entropy [21], obtain-
ing for the CD-Bonn potential a critical temperature

Tc = 18.5 MeV and Pc/(ρc Tc) = 0.20. When using the
Argonne V18 parameterization, however, they find that
Tc is reduced to about 11 MeV and Pc/(ρc Tc) = 0.14.
Baldo and Ferreira [10] performed calculations within
the Bloch-de Dominicis finite temperature generalization
of the Brückner-Hartree-Fock method. Using the Ar-
gonne V18 potential they estimate the critical temper-
ature to be Tc ! 21 MeV. However, when they include
the Urbana three-nucleon potential in the calculations
they find, in contrast with our result, that three-body
forces do not strongly affect the critical temperature,
which is reduced to Tc ! 20 MeV. Other calculations
within the Bloch-de Dominicis formalism [22] or the rel-
ativistic Dirac-Brückner-Hartree-Fock approach [5, 23],
on the other hand, yield lower values of Tc, respectively
9, 12 and10.4 MeV, closer to our result with three-body
forces.

We compute the entropy per particle in the interacting
system from the thermodynamic relation

S

N
=

1

T

[

E

N
+

P

ρ
− µ

]

. (7)

The results for symmetric nuclear matter at ρ = ρ0

are shown in Fig. 6 for different temperatures. The
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FIG. 6: Entropy per particle for symmetric nuclear matter at
ρ = ρ0 with the CD-Bonn and Nijmegen potentials without
and with three-body forces.

effects of three-body forces are very small, as well as
the dependence on the nucleon-nucleon potential. The
entropy appears to be independent of the details of the
interaction, supporting the conclusion that it is not
much affected by nucleon correlations. The reliability of
calculations of the entropy at the level of a quasiparticle

[ Somà and Bożek, Phys. Rev. C 80 (2009) ]
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‣ Coulomb and surface effects

the nucleus undergoes a mechanical
instability before reaching Tc

δP = Pc + Ps (T)
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Single-particle properties

1.4 Approximations for the two-particle propagator 13

−i G<(p, ω) = f(ω) A(p, ω) , (1.24b)

where
f(ω) =

1
eβ (ω−µ) + 1

(1.25)

is the Fermi-Dirac distribution. This implies that in equilibrium it is sufficient to
determine only one quantity to have complete knowledge of all the different one-body
propagators. The physical interpretation of the spectral function is the following. We
can identify −i G< with the average density of particle with momentum p and energy
ω

−i G<(p, ω) = 〈n(p, ω)〉 . (1.26)

While the distribution function tells us about the occupation of the various modes,
characterized by an energy ω, A(p, ω) determines the spectrum of the possible energies
for a particle with momentum p. The total weight must be equal to unity

∫
dω

2π
A(p, ω) = 1 . (1.27)

For free particles, since no scattering can spread the energy spectrum, A(p, ω) is
proportional to a delta function

A0(p, ω) = 2π δ(ω − p2/2m) . (1.28)

When an interaction is present, this is no longer the case: the spectral function has a
non trivial structure and is non-zero over the entire energy range. For some momenta
(close to the Fermi momentum pF ), A(p, ω) still shows a peak which resembles the
one of free particles. One can associate this behavior with the concept of quasiparti-
cle, and assume that the system is composed of these weakly-interacting long-living
excited states. In nuclear matter, however, the strong correlations between particles in
the medium cannot be neglected and the quasiparticle picture becomes a very crude
approximation when moving away from the Fermi surface.

1.4 Approximations for the two-particle propagator

Starting from the equations of motion for ψ(r, t) or ψ†(r, t) it is possible to derive an
equation of motion for the single-particle Green’s function on a contour

(
i

∂

∂t1′
+
∇2

1′

2m

)
G(1, 1′)

= δ(1, 1′)− i

∫
dr2 V (r1 − r2)G2(1, r2, t1; 1′, r2, t

+
1 ) (1.29)

where t+1 represents a time infinitesimally larger than t1 on the contour. Similarly one
can obtain an equation for G2 which involves the three-particle propagator G3 and
so on, constructing expressions in which Gn is determined from Gn+1. This system

‣ spectral representation

‣ effective mass
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12 The nuclear many-body problem

Instead of working with Gc and Ga, it is useful, because of their direct physical
interpretation, to introduce other two quantities, the retarded and advanced Green’s
functions GR and GA

GR(1, 1′) = θ(t1 − t′1) [G>(1, 1′)−G<(1, 1′)] , (1.17a)

GA(1, 1′) = θ(t′1 − t1) [G<(1, 1′)−G>(1, 1′)] . (1.17b)

It follows that
GR(1, 1′)−GA(1, 1′) = G>(1, 1′)−G<(1, 1′) , (1.18)

and since [GA(1, 1′)]∗ = GR(1, 1′)

2i Im GR(1, 1′) = G>(1, 1′)−G<(1, 1′) . (1.19)

Some useful rules to derive equations for the different components of the matrix G
are the Langreth-Wilkins formulae [39]. Valid for any quantity defined on the contour,
they state that when we have a convolution of path-ordered functions

C(1, 1′) =
∫

C
d2A(1, 2)B(2, 1′) (1.20)

if follows

C≷(1, 1′) =
∫

d2
[
AR(1, 2) B≷(2, 1′) + A≷(1, 2) BA(2, 1′)

]
, (1.21a)

CR(A)(1, 1′) =
∫

d2 AR(A)(1, 2) BR(A)(2, 1′) . (1.21b)

A feature of systems at the equilibrium is that the Green’s functions depend only
on the differences of their arguments, i.e. G(r, t; r′, t′) = G(r− r′, t− t′). Then we can
define the Fourier transforms as follows

G(r− r′, t− t′) =
∫

dp
(2π)3

dω

2π
eip (r−r′) e−i ω(t−t′) G(p, ω) . (1.22)

The smaller and larger Green’s functions G< and G> are particularly important be-
cause of they can be interpreted as densities of particles and holes in the medium.
Starting from their definition as grand-canonical averages, in momentum space one
can derive a useful relation, known as the Kubo-Martin-Schwinger condition [40, 41]:

−i G<(p, ω) = e−β (ω−µ) i G>(p, ω) . (1.23)

If now we introduce a new quantity, the spectral function A(p, ω), it is possible to
re-express G> and G< such that they automatically fulfill (1.23)

i G>(p, ω) = [1− f(ω)]A(p, ω) , (1.24a)

   recall that the free spectral function is

   ⇢ quasiparticle approximation

36 Self-consistent calculation of thermodynamic quantities

T SGK/N Sdiag/N Sfree/N Sfree!/N SDQ/N m!

2 0.24 −0.37 0.27 0.24 0.28 873
5 0.53 0.35 0.66 0.60 0.58 853
10 1.04 0.98 1.22 1.07 1.05 802
20 1.76 1.76 2.02 1.74 1.70 745

Table 2.2: Entropy per nucleon. The results for the interacting system in the T -matrix
approximation using the Galitskii-Koltun’s sum rule (1.59) and Eq. (1.56) expressions
for for the internal energy are shown in columns SGK/N and Sdiag/N respectively.
SDQ/N denotes the dynamical quasi-particle formula (1.67). Sfree/N and S!

free/N
are the entropies per baryon in a free Fermi gas with the free and in medium masses
respectively, eqs (2.25) and (2.26). Temperatures and effective masses are expressed
in MeV.

In Table 2.2 the results for different temperatures are summarized together with the
values of the effective mass, defined at each temperature as

∂ ωp

∂ p2

∣∣∣∣
p=pF

=
1

2m!
. (2.27)

The three calculations agree well over all the temperature domain. The quasi-particle
formula of Carneiro and Pethick is proven to be very close to the result from the full
diagram expansion, which can be reliably estimated only for T ≥ 5 MeV. The expres-
sion for the free gas is remarkably similar to the other more sophisticated calculations
if the change in the mass due to the presence of the medium is taken into account.
Granted that it needs further investigations, this property could be of great utility
in the astrophysical applications, in particular the simulation of protoneutron stars
evolution in which the equation of state of hot nuclear matter has to be modeled [64].

The results obtained so far can be used to check the thermodynamic consistency
of the T-matrix approximation. A first constraint is given by the equality of the mi-
croscopic chemical potential µ, fixed by the momentum integral normalization (2.13),
and the thermodynamic one µ′, computed as a derivative of the free energy F

µ′ =
∂ F

∂ N
= ρ

∂ (F/N)
∂ ρ

+
F

N
. (2.28)

In particular, this implies that µ = F/N when the free energy per particle has its
minimum. In Fig. 2.4 (left panel) we show these three quantities as a function of the
density at the temperature T = 10 MeV. We observe an overall agreement between µ
and µ′ with differences within the numerical uncertainty of 1 MeV.

A second requirement concerns the pressure: the one obtained from the diagram-
matic expansion must be consistent with the derivative of the free energy (right panel
in Fig. 2.4)

P ′ = ρ2 ∂ (F/N)
∂ ρ

. (2.29)

1

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0

Ψ =



S
∏

i<j

F (rij)



Φ
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δV
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Vij
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∂
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+
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2m
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Spectral function - symmetric matter
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Effective mass - symmetric matter

 200 300 400
0.7

0.8

0.9

1

1.1

p  [MeV]p  [MeV]

0.4 !0

m
* /

 m

p  [MeV]

T 
= 

0
T 

= 
10

 M
eV

m
* /

 m

 200 300 400
0.7

0.8

0.9

1

1.1
!0

 200 300 400
0.5

0.6

0.7

0.8

0.9

1
2 !0

 200 300 400
0.7

0.8

0.9

1

1.1
!0

 200 300 400
0.7

0.8

0.9

1

1.1
CD-Bonn
CD-Bonn + TBF0.4 !0

 200 300 400
0.5

0.6

0.7

0.8

0.9

1
2 !0



Spectral function - neutron matter
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Effective mass - neutron matter
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⍟ Summary of the results ⍟

‣ first spectral calculations of the nuclear matter EOS with TBF

‣ study of the liquid-gas phase transition

‣ entropy not affected by nucleon correlations

4.3 Thermodynamic quantities 57

Figure 4.8: Pressure as a function of density for different temperatures with the Ni-
jmegen potential (left panel) and the Nijmegen potential plus three-body forces (right
panel).

a large range of densities. As the temperature increases the instability region becomes
smaller ending up with a point defining the critical temperature for the liquid-gas
transition. The critical temperature is Tc ! 18 MeV for the CD-Bonn and Tc ! 21 MeV
for the Nijmegen potential. Both the spinodal and the coexistence regions get strongly
reduced when three-body forces are included, with the critical point at Tc ! 13 MeV
when CD-Bonn is employed and Tc ! 12 MeV if we consider the Nijmegen potential.

These estimates are in agreement with other microscopic calculations. Rios et
al. [62] using a self consistent Green’s functions approach obtain for the CD-Bonn
potential a critical temperature Tc = 18.5 MeV. When using the Argonne V18 param-
eterization, however, Tc is reduced to about 11 MeV. Baldo and Ferreira [63] performed
calculations within the Brückner-Hartree-Fock method with the Argonne V18 poten-
tial also including three-body forces. In contrast with our result, they find that three-
body forces do not strongly affect the critical temperature, obtaining Tc ! 21 MeV and
Tc ! 20 MeV without and with TBF respectively.

The liquid-gas critical temperature in nuclear matter can be related to the exper-
imentally accessible limiting temperature of nuclei, i.e. to the maximal temperature
nuclei can sustain before reaching mechanical instability [76]. Because of the presence
of Coulomb and finite-size effects, however one can not establish a direct correspon-
dence and has to extrapolate the nuclear matter result to the case of a finite nucleus
by means of some approximation. Baldo et al. report that this limiting temperature
is indeed sensitive to the nuclear EOS and estimate it to be, for different approaches,

‣ correct saturation properties

‣ single-particle properties ⇢ TBF effects above saturation density

‣ spectral function ⇢ opposite effect in symmetric and in pure neutron matter

Extensions of the technique:

‣ asymmetric nuclear matter

‣ explicit inclusion of superfluidity

‣ application to nuclei
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The nuclear many-body problem

‣ many-body system with two-body interaction

‣ we need suitable methods to take into account the short-range correlations 
   induced in the medium

in the nuclear case, the strong repulsive core precludes an 
ordinary perturbation expansion in terms of the bare interaction

‣ alternative: employ an effective potential (Skyrme, Gogny)

ab-initio calculations

phenomenological (mean-field) calculations

predictive power?

1

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0

Ψ =
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F (rij)



Φ
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δV

= T + U + δV

H =
N∑

i=1

Ti +
N∑
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Vij

[
z − L(x, x′)

]
G(x, x′; z) = δ(x− x′)

[
i

∂

∂t
+
∇2

2m

]
G(xt, x′t′) = δ(x−x′) δ(t−t′)−i

∫
d3y U(x−y) G2(xt, x′t′; yt, y′t+)
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low-momentum interactions

‣ take into account part of the short-range correlations already in the potential



Bridging SCGF and EDFs

‣ in finite nuclei ab-initio calculations are limited

‣ energy density functionals ⇢ lack of predictive power
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many-body theory

DFT

EDF

low-momentum interactions 
very promising...

many-body perturbation theory


