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Introduction and Outline

This talk will be devoted to two particle transfer reactions as the specific
probe to study pairing correlations. Emphasis will be made in the
connection between structure aspects and the resulting two particle
transfer cross sections.

Outline:

Reaction mechanism : two particle transfer in second order DWBA
ASn(p, t)A−2Sn reactions: transition between pairing vibrational
(closed shell) to pairing rotational (superfluid) regimes in the tin
isotopic chain.
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Two nucleon transfer reactions

Two valence nucleons go from core b of nucleus a to core A of
nucleus B

Probing two particle correlations.

Investigating structure properties such as pairing and superfluidity in
a finite fermion system (the atomic nucleus).

Get absolute values as well as the angular distribution for the cross
sections in second order DWBA.

A(a, b)B
Examples:
112Sn(p,t)110Sn
1H(11Li,9Li)3H
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First Part

Reaction mechanism:

second order DWBA
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Elements of the calculation

Ψa(~r1,~r2), ΨB(~r1,~r2): internal wave functions of the transferred nucleons
in each nucleus
χ(R): distorted wave describing the relative motion in the optical

potential U(R) = V (R) + iW (R)
(

P2
R

2µ + U(R)
)
χ(R) = ECMχ(R)

VA,Va: mean field
potentials of the two
nuclei

VA (Va) is the interaction potential that transfers
the nucleons from one nucleus to the other in the
prior (post) representation

it is a single particle
potential!!
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Simultaneous and Successive contributions

|α〉 = φa(ξb, r1, r2)×
φA(ξA)χaA(raA)

|β〉 = φb(ξb)φB(ξA, r1, r2)×
χbB(rbB)

Haφa = Eaφa

HAφA = EAφA

(TaA + UaA)χaA = EaAχaA

Hbφb = Ebφb

HBφB = EBφB

(TbB + UbB)χbB = EbBχbB .
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Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for
two–nucleon transfer reactions

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
dσ

dΩ
=

µiµf

(4π~2)2

kf

ki
|T2NT |2

Simultaneous transfer

T (1)(ji , jf ) = 2
∑
σ1σ2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0 χ

(−)∗
bB (rbB)

× v(rb1)[Ψji (rb1, σ1)Ψji (rb2, σ2)]Λµχ
(+)
aA (raA)
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∑
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(2)
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(2)
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)
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T
(2)
NO(ji , jf ) = 2

∑
K ,M

∑
σ1σ2
σ′

1σ
′
2
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1)]Λµχ

(+)
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Cancellation of simultaneous and non-orthogonal
contributions

very schematically, the first order (simultaneous) contribution is

T (1) = 〈β|V |α〉,

while the second order contribution can be separated in a successive and a
non-orthogonality term

T (2) = T
(2)
succ + T

(2)
NO

=
∑
γ

〈β|V |γ〉G 〈γ|V |α〉 −
∑
γ

〈β|γ〉〈γ|V |α〉.

If we sum over a complete basis of intermediate states γ, we can apply the

closure condition and T
(2)
NO exactly cancels T (1)

the transition potential being single particle, two-nucleon transfer is a
second order process.
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Ingredients of the calculation

Structure input for, e.g., the 112Sn(p,t)110Sn reaction:
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plus the Bj spectroscopic amplitudes needed to define the two–neutron
wavefunction:

Φ(r1, σ1, r2, σ2) =
∑

j

Bj

[
ψj(r1, σ1)ψj(r2, σ2)

]0
0
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“Standard procedure”: first order DWBA

112Sn(p,t)110Sn reaction, Ep = 26 MeV
(Guazzoni et al. PRC 74 054605 (2006))
with first order DWBA one obtains the
angular distribution of the angular
differential cross section

absolute normalization ⇒ relative cross
sections

Give up absolute cross sections!!
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Early results with second order DWBA

Götz, Ichimura, Broglia and Winther, Phys. Rep. 16 (1975)
Igarashi, Kubo and Yagi, Phys. Rep. 199(1991)1
Bayman and Chen, PRC 26 (1982)1509, respectively
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Examples of calculations

good results obtained for halo nuclei,
population of excited states,
superfluid nuclei,
normal nuclei (pairing vibrations),
heavy ion reactions...
Potel et al., arXiv:0906.4298.
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Second Part

From pairing vibrations

to pairing rotations:

Tin isotopic chain
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112Sn(p,t)110Sn, reaction mechanism
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112Sn(p,t)110Sn, results
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Pairing correlations and two–particle transfer cross sections

two–particle transfer transition strength: |〈ΨA−2|P|ΨA〉|2
In superfluid nuclei (open shell):

〈ΨA−2|P|ΨA〉 ≈ 〈BCS |P|BCS〉 = α0 =
∑
ν>0

UνVν = ∆/G

dσ/dΩ(A, g .s → A + 2, g .s.) ∼ α2
0

In normal nuclei (closed shell), ∆ = α0 = 0:

dσ/dΩ ∼ 〈(α− α0)2〉 =
[
〈ΨA|P†P|ΨA〉 − 〈ΨA|PP†|ΨA〉

]
/2
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ASn(p,t)A−2Sn, results
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Potel et al., PRL 107, 092501 (2011)
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ASn(p,t)A−2Sn, superfluid isotopic chain
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134,132Sn(p,t)132,130Sn, pairing vibrations

132Sn(p,t)130Sn and 134Sn(p,t)132Sn
reactions can probe the predicted
pairing vibrations of the exotic
double magic nucleus 132Sn
Potel et al., PRL 107, 092501 (2011)
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132Sn(p,t)130Sn cross sections
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Conclusions

Second order DWBA has proven to be a valuable reaction formalism
to obtain reliable absolute values,along with angular distributions, for
the two particle transfer nuclear reactions angular differential cross
sections.

Two nucleon transfer reactions are an ideal tool to probe two
neutrons correlations in nuclei.

We have studied the transition between pairing vibrational (closed
shell) to pairing rotational (superfluid) regimes in the tin isotopic
chain.

We hope that the predictions made for reactions with exotic beams
such as 132Sn(p,t)130Sn will stimulate future experiments!.
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Thank You!
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