

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations.

Jérémie Dudouet

## Laboratoire de Physique Corpusculaire de Caen



radio-resistant tumours.



A high biological efficiency













## Monte Carlo codes for hadrontherapy

- Development of a reference MC code to constrain and optimize analytical treatment planning systems (TPS),
- Up to now, simulation codes do not reproduce fragmentation with the required accuracy (3% on the dose deposited inside the tumor).

Experimental data are needed to constrain nuclear models in the domain of energy useful for carbon-therapy (up to 400 MeV/u).

#### The E600 experiment at GANIL (may 2011)

- Projectile: 95 MeV/A <sup>12</sup>C
- Thin targets: C, CH<sub>2</sub>, Al, Al<sub>2</sub>O<sub>3</sub>, <sup>nat</sup>Ti and PMMA (C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>)

 $\Rightarrow \frac{\partial^2 \sigma}{\partial \Omega \partial E}$  fragmentation measurements of <sup>12</sup>C on C, H, O and Ca (A<sub>Ti</sub> ~A<sub>Ca</sub>)

 $\approx 95\%$  of a human body composition

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks Relevance of  $\frac{\partial^2 \sigma}{\partial \Omega \partial \Sigma}$  fragmentation measurements

## Monte Carlo codes for hadrontherapy

- Development of a reference MC code to constrain and optimize analytical treatment planning systems (TPS),
- Up to now, simulation codes do not reproduce fragmentation with the required accuracy (3% on the dose deposited inside the tumor).

Experimental data are needed to constrain nuclear models in the domain of energy useful for carbon-therapy (up to 400 MeV/u).

### The E600 experiment at GANIL (may 2011)

- Projectile: 95 MeV/A <sup>12</sup>C
- Thin targets: C, CH<sub>2</sub>, Al, Al<sub>2</sub>O<sub>3</sub>, <sup>nat</sup>Ti and PMMA (C<sub>5</sub>H<sub>8</sub>O<sub>2</sub>)

 $\Rightarrow \frac{\partial^2 \sigma}{\partial \Omega \partial E} \text{ fragmentation measurements of } {}^{12}\text{C on } \underbrace{\text{C}, \text{H}, \text{O}}_{\text{and Ca}} (\text{A}_{\text{Ti}} \sim \text{A}_{\text{Ca}})$ 

 $\approx 95\%$  of a human body composition









- Systematic errors
- 4 Results
- **5** G4 simulations
- 6 Homemade model
- 7 Conclusions





Cross section expression

$$\frac{d\sigma}{d\Omega}(^{Z}_{A}X) = \frac{N^{Z}_{A}X \times A_{target}}{N^{12}C_{inc} \times \Omega \times \rho \times th \times N_{a}}$$



• Well known target: thickness(*th*) and density( $\rho$ ) ( $\Delta(\rho \times th) \approx 1\%$ )

• Charged particle telescope: isotope identification, energy and angles measurements  $\Rightarrow Z, A, E, \theta, \Omega$  ( $\Delta N \approx 5 - 10\%, \Delta E \approx 10\%$ )

• Beam monitor  $\Rightarrow N_{^{12}C_{inc}} (\Delta N_{^{12}C_{inc}} \approx 5\%)$ 



Setup

Well known target: thickness(th) and density(ρ) (Δ(ρ × th) ≈ 1%)
Charged particle telescope: isotope identification, energy and angles measurements ⇒ Z, A, E, θ, Ω (ΔN ≈ 5 - 10%, ΔE ≈ 10%)



# Setup

- Well known target: thickness(*th*) and density( $\rho$ ) ( $\Delta(\rho \times th) \approx 1\%$ )
- Charged particle telescope: isotope identification, energy and angles measurements ⇒ Z, A, E, θ, Ω (ΔN ≈ 5 − 10%, ΔE ≈ 10%)
- Beam monitor  $\Rightarrow N_{^{12}C_{inc}} (\Delta N_{^{12}C_{inc}} \approx 5\%)$





Séminaire CEA Saclay: vendredi 31 Janvier 2014

8/39



Séminaire CEA Saclay: vendredi 31 Janvier 2014



Séminaire CEA Saclay: vendredi 31 Janvier 2014

8/39

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks

# Telescope analysis: Energy calibration

- Development of an algorithm to simplify the analysis. By building an identification grid for each telescope, the algorithm will process:
  - $\Rightarrow$  the energy calibration,
  - $\Rightarrow$  the particle identification.



J. Dudouet et al., Nucl. Instrum. Methods A 715, 98 (2013)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks

# Telescope analysis: Energy calibration

- Development of an algorithm to simplify the analysis. By building an identification grid for each telescope, the algorithm will process:
  - $\Rightarrow$  the energy calibration,
  - $\Rightarrow$  the particle identification.











**3** Systematic errors

- Conclusions



95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. oduction Analysis **Systematic errors** Results G4 simulations Homemade model Conclusions Outlook

## Systematic errors: GEANT4 simulations

## In order to estimate the systematic errors:

- GEANT4 simulations have been performed, taking into account the real experimental setup
- The simulated data have been analyzed with the same method used for the experimental data



95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. duction Analysis **Systematic errors** Results G4 simulations Homemade model Conclusions Outlooks

# Systematic errors: GEANT4 simulations

In order to estimate the systematic errors:

- GEANT4 simulations have been performed, taking into account the real experimental setup
- The simulated data have been analyzed with the same method used for the experimental data





0

2000

4000

6000

8000

14000

10000 12000



Systematic errors Systematic errors: GEANT4 simulations • Two alpha pile-up correction:  $\Rightarrow$  Effect validated by the simulations Thick Silicon (MeV) Thick Silicon (MeV) <sup>7</sup>Li 20



95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Systematic errors Systematic errors: GEANT4 simulations • Two alpha pile-up correction: Effect validated by the simulations  $\Rightarrow$ But corrected from the experimental pulse shape analysis (fast/slow  $\Rightarrow$ map) Csl<sub>Fast signal</sub> (Channel) exp data Proportion of pile-up events (%) B Be С <sup>7</sup>I i QMD 50 - BIC Pile-up of two a 30 Не 5000 20 н 2000 4000 6000 8000 10 15 20 25 30 θ (degrees) Csl<sub>Slow signal</sub> (Channel) J. Dudouet et al., Phys. Rev. C 88, 024606 (2013)







 $\Rightarrow$  These systematic errors have been added in the error bars of the experimental results.

J. Dudouet et al., Phys. Rev. C 88, 024606 (2013)









Systematic errors

# 4 Results





# 7 Conclusions

## 8 Outlooks

 95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy:
 experimental measurements and comparisons with GEANT4 simulations.

 Introduction
 Analysis
 Systematic errors
 Results
 G4 simulations
 Homemade model
 Conclusions
 Outlooks

 The participant-spectator reaction mechanism





#### Uncertainties

- The error bars takes into account:
  - $\Rightarrow$  Statistical & systematic errors (5-10%)
  - $\Rightarrow$  Beam monitor calibration (5%)
  - $\Rightarrow$  Solid angle (2-5%)
  - $\Rightarrow$  Target area density (0.5 %)

## > Total error $\sim$ (7-15 %)

#### Jérémie Dudouet: dudouet@lpccaen.in2p3.fr



#### Uncertainties

- The error bars takes into account:
  - $\Rightarrow$  Statistical & systematic errors (5-10%)
  - $\Rightarrow$  Beam monitor calibration (5%)
  - $\Rightarrow$  Solid angle (2-5%)
  - $\Rightarrow$  Target area density (0.5 %)

> Total error  $\sim$  (7-15 %)



#### Uncertainties

- The error bars takes into account:
  - $\Rightarrow$  Statistical & systematic errors (5-10%)
  - $\Rightarrow$  Beam monitor calibration (5%)
  - $\Rightarrow$  Solid angle (2-5%)
  - $\Rightarrow$  Target area density (0.5 %)

Total error  $\sim$  (7-15 %)
95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors **Results** G4 simulations Homemade model Conclusions Outloo

#### Angular distributions for the carbon target



- Production is dominated by Z=1 and Z=2.
- <sup>4</sup>He production dominates below  $10^{\circ}$ .
- The heavier the fragments, the more focused at small angles.

 95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations.

 Introduction
 Analysis
 Systematic errors
 Results
 G4 simulations
 Homemade model
 Conclusions
 Outlooks

 Hydrogen and oxygen target cross sections

 Cross section combination

  $\frac{d\sigma}{d\Omega}(O) = \frac{1}{3} \times \left(\frac{d\sigma}{d\Omega}(Al_2O_3) - 2 \times \frac{d\sigma}{d\Omega}(Al)\right)$   $\frac{d\sigma}{d\Omega}(H) = \frac{1}{2} \times \left(\frac{d\sigma}{d\Omega}(CH_2) - \frac{d\sigma}{d\Omega}(C)\right)$   $\frac{d\sigma}{d\Omega}(C)$ 

#### Hydrogen example

- O CH<sub>2</sub> cross sections measurement
- Carbon cross section subtraction
- Division by 2 to obtain Hydrogen cross sections

95 MeV/A <sup>12</sup>C fragmentation for hadron therapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks Hydrogen and oxygen target cross sections Cross section combination  $\frac{d\sigma}{d\Omega}(O) = \frac{1}{3} \times \left(\frac{d\sigma}{d\Omega}(Al_2O_3) - 2 \times \frac{d\sigma}{d\Omega}(Al)\right)$   $\frac{d\sigma}{d\Omega}(H) = \frac{1}{2} \times \left(\frac{d\sigma}{d\Omega}(CH_2) - \frac{d\sigma}{d\Omega}(C)\right)$ 





 95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations.

 Introduction
 Analysis
 Systematic errors
 Results
 G4 simulations
 Homemade model
 Conclusions
 Outlooks

 Hydrogen and oxygen target cross sections

 Cross section combination

  $\frac{d\sigma}{d\Omega}(O) = \frac{1}{3} \times \left(\frac{d\sigma}{d\Omega}(Al_2O_3) - 2 \times \frac{d\sigma}{d\Omega}(Al)\right)$   $\frac{d\sigma}{d\Omega}(H) = \frac{1}{2} \times \left(\frac{d\sigma}{d\Omega}(CH_2) - \frac{d\sigma}{d\Omega}(C)\right)$   $\frac{d\sigma}{d\Omega}(C)$ 



θ (degrees)

30 35

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks Hydrogen and oxygen target cross sections Cross section combination  $\frac{d\sigma}{d\Omega}(O) = \frac{1}{3} \times \left(\frac{d\sigma}{d\Omega}(Al_2O_3) - 2 \times \frac{d\sigma}{d\Omega}(Al)\right)$   $\frac{d\sigma}{d\Omega}(H) = \frac{1}{2} \times \left(\frac{d\sigma}{d\Omega}(CH_2) - \frac{d\sigma}{d\Omega}(C)\right)$ 



θ (degrees)



• No emission of fragments heavier than Z=1 at large angles for the hydrogen target.

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr

















#### Zero degree measurements





Séminaire CEA Saclay: vendredi 31 Janvier 2014

21/39



21/39



Séminaire CEA Saclay: vendredi 31 Janvier 2014



Séminaire CEA Saclay: vendredi 31 Janvier 2014





# Composite target cross sections reconstruction from cross sections of elemental targets:





• Very good reconstruction of the experimental PMMA target cross sections by combining the H, C and O targets cross sections.

Cross sections can be deduced for almost all organic tissues.

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr



• Very good reconstruction of the experimental PMMA target cross sections by combining the H, C and O targets cross sections.

 $\implies$  Cross sections can be deduced for almost all organic tissues.

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr









Systematic errors

# 4 Results



6 Homemade model

## 7 Conclusions

## 8 Outlooks

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results **G4 simulations** Homemade model Conclusions Outlooks.

# Geant4 simulations characteristics

| Geant4 parametrization                                     |                                                                                                |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                            |                                                                                                |
| Geant4 version                                             | 9.6-p01                                                                                        |
| Electromagnetic interactions                               | em standard option 3                                                                           |
| Particle transport cuts                                    | $700~\mu{ m m}$                                                                                |
| Total nucleus-nucleus cross sections                       | Glauber-Gribov model:<br>"G4GGNuclNuclCrossSection"                                            |
| Dynamical part of the collision<br>(Entrance Chanel model) | G4BinaryLightIonReaction (BIC)<br>Q4QMDReaction (QMD)<br>Intra Nuclear Cascade of Liège (INCL) |
| Statistical part of the collision<br>(Exit Chanel model)   | Generalized Evaporation model (GEM)<br>Fermi Break Up (FBU)                                    |











• BIC is slightly better at forward angles but does not reproduce large angles.

INCL gives better results for  $Z \le 2$ , but only at forward angles for Z > 2.





INCL gives better results for  $Z \le 2$ , but only at forward angles for Z > 2.





- QMD fails to reproduce the angular distributions.
- BIC is slightly better at forward angles but does not reproduce large angles.

INCL gives better results for  $Z \le 2$ , but only at forward angles for Z > 2.





- QMD fails to reproduce the angular distributions.
- BIC is slightly better at forward angles but does not reproduce large angles.
- INCL gives better results for  $Z \le 2$ , but only at forward angles for Z > 2.



No magic solution!

 $\Rightarrow$  The improvement on the small angles creates a larger disagreement for the large angles.

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr


















- Hydrogen target well reproduced by the three models, especially by INCL.
- The heavier the target, the larger the disagreement.
- Different behavior of INCL for  $^{27}$ Al and  $^{48}$ Ti targets  $\Rightarrow$  kinematic inversion.









Systematic errors





#### 6 Homemade model

### 7 Conclusions





#### The HIPSE model results



Jérémie Dudouet: dudouet@lpccaen.in2p3.fr

Séminaire CEA Saclay: vendredi 31 Janvier 2014



#### The HIPSE model results







- $\Rightarrow$  Projectile boost in the Lab frame
- $\Rightarrow$  Calculation of the overlapping volume of the reaction





 $\Rightarrow$ Random coalescence in  $\vec{p}$  space  $\Rightarrow$ Second parameter: Cut on the mean energy of the fragments

$$\Rightarrow {}^{A}_{Z} X \text{ is rejected if } E_{mean} > 25 \text{ MeV}$$
$$E_{mean} = \frac{1}{A} \times \sum_{i=1}^{A} E_{i}$$













95 MeV/A 12C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Conclusions Outlooks Conclusions 1/2 Experimental conclusions • Fragmentation cross sections of 95 MeV/A <sup>12</sup>C ions on thin targets (H, C, O, Al, Ti) have been measured in a first experiment at GANIL:  $\Rightarrow$  Double differential cross sections  $\partial^2 \sigma / \partial E \partial \Omega$ Angular differential cross sections from 4 to 43°  $\Rightarrow$ Fragment production cross sections

- KaliVeda toolkits.
- Systematic errors have been estimated/corrected (CsI light pulse shape analysis)
- Composite targets can be deduced from the cross sections of elemental targets (→ organic tissues)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model **Conclusions** Outlooks

# Conclusions 1/2

Experimental conclusions

- Fragmentation cross sections of 95 MeV/A <sup>12</sup>C ions on thin targets (H, C, O, Al, Ti) have been measured in a first experiment at GANIL:
  - $\Rightarrow$  Double differential cross sections  $\partial^2 \sigma / \partial E \partial \Omega$
  - $\Rightarrow$  Angular differential cross sections from 4 to 43°
  - ⇒ Fragment production cross sections
- The zero degree cross sections have been measured in a second experiment:
  - $\Rightarrow \partial \sigma / \partial \Omega$  for Z=2 to Z=5.
  - $\Rightarrow$  cross-checked with the first experiment at 9° (3% accuracy).
- Development of a quasi-automated analysis method based on the ROOT and KaliVeda toolkits.
- Systematic errors have been estimated/corrected (CsI light pulse shape analysis)
- Composite targets can be deduced from the cross sections of elemental targets (→ organic tissues)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks

# Conclusions 1/2

Experimental conclusions

- Fragmentation cross sections of 95 MeV/A <sup>12</sup>C ions on thin targets (H, C, O, Al, Ti) have been measured in a first experiment at GANIL:
  - $\Rightarrow$  Double differential cross sections  $\partial^2 \sigma / \partial E \partial \Omega$
  - $\Rightarrow$  Angular differential cross sections from 4 to 43°
  - ⇒ Fragment production cross sections
- The zero degree cross sections have been measured in a second experiment:

 $\Rightarrow \partial \sigma / \partial \Omega$  for Z=2 to Z=5.

- $\Rightarrow$  cross-checked with the first experiment at 9° (3% accuracy).
- Development of a quasi-automated analysis method based on the ROOT and KaliVeda toolkits.
- Systematic errors have been estimated/corrected (CsI light pulse shape analysis)
- Composite targets can be deduced from the cross sections of elemental targets (→ organic tissues)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. ntroduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks

# Conclusions 1/2

Experimental conclusions

- Fragmentation cross sections of 95 MeV/A <sup>12</sup>C ions on thin targets (H, C, O, Al, Ti) have been measured in a first experiment at GANIL:
  - $\Rightarrow$  Double differential cross sections  $\partial^2 \sigma / \partial E \partial \Omega$
  - $\Rightarrow$  Angular differential cross sections from 4 to 43°
  - ⇒ Fragment production cross sections
- The zero degree cross sections have been measured in a second experiment:

 $\Rightarrow \partial \sigma / \partial \Omega$  for Z=2 to Z=5.

- $\Rightarrow$  cross-checked with the first experiment at 9° (3% accuracy).
- Development of a quasi-automated analysis method based on the ROOT and KaliVeda toolkits.
- Systematic errors have been estimated/corrected (CsI light pulse shape analysis)
- Composite targets can be deduced from the cross sections of elemental targets (→ organic tissues)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions Outlooks

# Conclusions 1/2

Experimental conclusions

- Fragmentation cross sections of 95 MeV/A <sup>12</sup>C ions on thin targets (H, C, O, Al, Ti) have been measured in a first experiment at GANIL:
  - $\Rightarrow$  Double differential cross sections  $\partial^2 \sigma / \partial E \partial \Omega$
  - $\Rightarrow$  Angular differential cross sections from 4 to 43°
  - ⇒ Fragment production cross sections
- The zero degree cross sections have been measured in a second experiment:

 $\Rightarrow \partial \sigma / \partial \Omega$  for Z=2 to Z=5.

- $\Rightarrow$  cross-checked with the first experiment at 9° (3% accuracy).
- Development of a quasi-automated analysis method based on the ROOT and KaliVeda toolkits.
- Systematic errors have been estimated/corrected (CsI light pulse shape analysis)
- Composite targets can be deduced from the cross sections of elemental targets (→ organic tissues)

#### Simulations conclusions

#### • GEANT4 Monte Carlo simulations have shown that:

- ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
- ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
- The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
- ⇒ The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - ⇒ The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - ⇒ The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - ⇒ The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - ⇒ The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - ⇒ The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - ⇒ The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

- GEANT4 Monte Carlo simulations have shown that:
  - ⇒ The Fermi Break-Up seems to be the most predictive de-excitation model.
  - ⇒ The BIC model is the least capable to reproduce the data. It does not produce mid-rapidity particles and the QP energies are too high.
  - ⇒ The INCL model reproduces well the QP fragmentation for forward angles but the shape of the mid-rapidity contribution is not reproduced.
  - ⇒ The QMD model does not reproduce the angular distributions but is the model which best reproduces the global shape of the energy distributions, although the mid-rapidity is still underestimated.
- The HIPSE model has shown that the overlap region of the reaction needs to be taken into account to accurately reproduce the mid-rapidity emissions.
- The development of a simple model has shown that the mid-rapidity kinematic is compatible with a randomize coalescence in the momentum space

| 95 M                                                                                                                       | 95 MeV/A <sup>12</sup> C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. |                                                                                                                                    |                                                                                  |                                                                                                          |                                                                                 |                                                        |                                 |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|--|
| Introduction                                                                                                               | Analysis                                                                                                                     |                                                                                                                                    | Results                                                                          | G4 simulations                                                                                           | Homemade model                                                                  | Conclusions                                            | Outlooks                        |  |
| Outlooks                                                                                                                   |                                                                                                                              |                                                                                                                                    |                                                                                  |                                                                                                          |                                                                                 |                                                        |                                 |  |
| • In                                                                                                                       | n order to<br>$\Rightarrow$ Mea<br>at G.<br>$\Rightarrow$ A ne<br>expe<br>$^{12}C)$                                          | o obtain more c<br>surements of <sup>12</sup><br>ANIL for 2015<br>w resource cent<br>toted in Caen in<br>up to 400 Me <sup>3</sup> | constrain<br><sup>2</sup> C fragi<br>5 (France<br>ther for 1<br>1 2019 -<br>V/A. | ning data to in<br>mentation at $\frac{4}{2}$<br>e Hadron bea<br>hadrontherap<br>$\rightarrow$ measureme | mprove nuclear<br>50 MeV/A have<br>m time).<br>y, the ARCHA<br>ents with differ | r models:<br>e been prop<br>DE center,<br>rent beams ( | osed<br>is $(\alpha 	ext{ to }$ |  |
| <ul> <li>Improvement of the proposed model to obtain the entire kinematic<br/>(QP+QT+MR) and production yields.</li> </ul> |                                                                                                                              |                                                                                                                                    |                                                                                  |                                                                                                          |                                                                                 |                                                        |                                 |  |
| The da                                                                                                                     | ta and th                                                                                                                    | e experimental                                                                                                                     | setup d                                                                          | letails are ava                                                                                          | ilable with free                                                                | e access at:                                           |                                 |  |

http://hadrontherapy-data.in2p3.fr

| E600 analysis method                                                                            | : J. Dudouet et al., Nucl. Instrum. Methods A 715, 98 (2013) |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| Systematic errors and data                                                                      | : J. Dudouet et al., Phys. Rev. C 88, 024606 (2013)          |  |  |  |  |
| Comparisons with simulations: J. Dudouet et al., arXiv:1309.1544, submitted to Phys. Med. Biol. |                                                              |  |  |  |  |

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. troduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions **Outlooks** 









# Thank you for your attention!

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr

Séminaire CEA Saclay: vendredi 31 Janvier 2014

39/39

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Introduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions **Outlooks** 

### Telescope analysis: Energy calibration

- Development of an algorithm to simplify the analysis. By building an identification grid for each telescope, the algorithm will process:
  - $\Rightarrow$  the energy calibration,
  - $\Rightarrow$  the particle identification.



J. Dudouet et al., Nucl. Instrum. Methods A 715, 98 (2013)

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations.

#### Telescope analysis: Energy calibration

Introduction

Functional describing the energy loss  $\Delta E$  in a detector as a function of the residual energy E deposited in a second detector in which the particle has stopped:

$$\Delta E = \left[ (gE)^{\mu+\nu+1} + (\lambda Z^{\alpha} A^{\beta})^{\mu+\nu+1} + \xi Z^2 A^{\mu} (gE)^{\nu} \right]^{\frac{1}{\mu+\nu+1}} - gE$$

where  $g, \mu, \nu, \lambda, \alpha, \beta, \xi$  are fitting parameters.



J. Dudouet et al., Nucl. Instrum. Methods A 715, 98 (2013)

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr

Outlooks

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations.

#### Telescope analysis: Energy calibration

Introduction

Functional describing the energy loss  $\Delta E$  in a detector as a function of the residual energy E deposited in a second detector in which the particle has stopped:

$$\Delta E = \left[ (gE)^{\mu+\nu+1} + (\lambda Z^{\alpha} A^{\beta})^{\mu+\nu+1} + \xi Z^2 A^{\mu} (gE)^{\nu} \right]^{\frac{1}{\mu+\nu+1}} - gE$$

where  $g, \mu, \nu, \lambda, \alpha, \beta, \xi$  are fitting parameters.



Outlooks

95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. troduction Analysis Systematic errors Results G4 simulations Homemade model Conclusions **Outlooks** 

### Telescope analysis: Energy calibration

- The energy calibration of the silicon detectors is simplified and very accurate.
- The energy calibration of the CsI crystals is then deduced from the thick silicon energy calibration.

Energy calibration of the silicon detectors:













1000

4000


95 MeV/A <sup>12</sup>C fragmentation for hadrontherapy: experimental measurements and comparisons with GEANT4 simulations. Outlooks A short INCL description projectile-like pre-fragment projectile INCL better reproduces the target fragparticipants mentation. The default parametrization implemented in GEANT4, called "accurate projectile mode" uses inverse kinematics: target calculation  $1^{12}C \rightarrow {}^{12}C \rightarrow {}^{12}C \rightarrow {}^{12}C \rightarrow {}^{12}C$ volume •  ${}^{12}C \rightarrow {}^{16}O \rightarrow {}^{16}O \rightarrow {}^{12}C$ But INCL cannot use projectile heavier than A=18, direct kinematics are then used: excitatio lah  $1^{2}C \rightarrow {}^{27}Al \Rightarrow {}^{12}C \rightarrow {}^{27}Al$ kinetic energy •  ${}^{12}C \rightarrow {}^{48}Ti \Rightarrow {}^{12}C \rightarrow {}^{48}Ti$ If both target and projectile masses are potentia Fermi wel energy above 18, the Binary Cascade is used.

Jérémie Dudouet: dudouet@lpccaen.in2p3.fr

B. Braunn et al., J. Physics: Conf. Series 420, 012163 (2013)