Weak Binding Effects in Nuclear Structure: ⁴⁰Mg and The Kerman Problem in the Continuum

Augusto O. Macchiavelli

Nuclear Science Division Lawrence Berkeley National Laboratory

Recent advances on proton-neutron pairing, session II 2-6 September 2019

ENERGY Office of Science

Work supported under contract number DE-AC02-05CH11231.

Part 1

Short introduction

Spectroscopy of ⁴⁰Mg at RIKEN Some technical details and results

Qualitative interpretation of the spectra Weak binding effects

Part 2

What is the Kerman's Problem anyway?

What we did and why

Some (preliminary) results

Part 1

Short introduction

Spectroscopy of ⁴⁰Mg at RIKEN Some technical details and results

Qualitative interpretation of the spectra Weak binding effects

Elusive magic numbers

Robert V. F. Janssens

Standard magic numbers are generally correct only for stable and near stable isotopes

Experimental studies of new isotopes has given insight into the role of tensor and 3-body forces in nuclei

N/Z (Isospin) dependence

Role of weak binding and coupling to the continuum

Evolution of Shell Structure and Collectivity

A. Poves and J. Retamosa, Phys. Lett. B 184, 311 (1987).

E.K. Warburton, J.A. Becker and B.A. Brown, Phys. Rev. C 41, 1147 (1990).

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

O. Sorlin and M. Porquet, Prog. Part.Nucl. Phys. 61, 602 (2008).

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

Evolution of Shell Structure and Collectivity

A delicate balance between the monopole field and correlations.

$$H = Esp + GP^+P + xQ.Q$$

Evolution of Shell Structure and Collectivity

Or in the words of Andres Zuker:

"Pairing plus Quadrupole propose and Monopole disposes" Coherent and Random Hamiltonians, CRN Preprint 1994

Nuclear Science Division O. Sorlin and M. Porquet, Prog. in Part. and Nucl. Phys. 61, 602, (2008)

N/Z _____

"Exotic" Shell Structure and Collectivity

Weakly bound systems

• low / levels $(s, p) \rightarrow$ extended wavefunctions ("halos")

• Valence nucleons can become decoupled from the core

Coupling to continuum states

A.Bohr and B.R. Mottelson, Nuclear Structure Vol. 1

Weakly bound systems

J. Dobaczewski et al. / Progress in Particle and Nuclear Physics 59 (2007) 432-445

What to expect in ⁴⁰Mg

Gaudefroy and Grevy, Nucl. Phys. News 20, 13 (2010); Li et al., PRC 84, 054304 (2011). Nowacki and Poves, PRC 79, 014310 (2009); Doornenbal et al., PRL 111, 212502 (2013)

A brief history

December 2010 – Sunday Campaign (NP1312-RIBF03)

⁴²Si produced at a rate of 25 pps/100 pnA following fragmentation of a highintensity ⁴⁸Ca primary beam at RIBF in RIKEN

2p Knockout: ⁴²Si ⇒ ⁴⁰Mg

- Approximately 10 hours of beam-on-target
- 5 events of ^{40}Mg observed -- measured inclusive $\sigma_{(-2p)}$ of 40(18) µb

N = 28 Coexisting Shapes

Calculations and data indicate that the low-energy structure in ⁴⁴S, ⁴²Si, and ⁴⁰Mg is dominated by two major, co-existing configurations:

Spherical and Prolate in ⁴⁴S, Oblate and Prolate in ⁴²Si and ⁴⁰Mg.

This suggests that a two-state(shape) mixing model can provide a description of their structure

 $|^{44}S,0^+_1\rangle = 0.35 \, |0^+;S\rangle + 0.94 \, |0^+;P\rangle$ Force et al., Phys. Rev. Lett. 105, 102501 (2010).

42Si

$$|^{42}\mathrm{Si}, 0^+_1\rangle = +\alpha |0^+; \mathrm{O}\rangle + \beta |0^+; \mathrm{P}\rangle$$

$$|^{42}\mathrm{Si}, 0^+_2\rangle = -\beta |0^+; \mathrm{O}\rangle + \alpha |0^+; \mathrm{P}\rangle$$

$$\mathcal{R} = \frac{[\sigma_{42}(0^+_1) + \sigma_{42}(0^+_2)]}{[\sigma_{42}(0^+_1) + \sigma_{42}(0^+_2)]} = +\gamma |0^+; O\rangle + \delta |0^+; P\rangle$$

σ Ratios to Constrain "Shape" Amplitudes

Cross-section ration \not{R} plotted as a function of the prolate component (probability) in the ⁴²Si (α^2) and ⁴⁰Mg (β^2) ground-state wave functions.

$$|^{42}\text{Si}, 0^+_1\rangle = +\alpha |0^+; O\rangle + \beta |0^+; P\rangle$$

$$|^{42}\text{Si}, 0^+_2\rangle = -\beta |0^+; O\rangle + \alpha |0^+; P\rangle$$

$${}^{40}\mathrm{Mg}, 0^+_1 \rangle = +\gamma \left| 0^+; \mathrm{O} \right\rangle + \delta \left| 0^+; \mathrm{P} \right\rangle$$

Experimental value

$$\mathcal{R} = 3.3^{+2.4}_{-1.6}$$

Dominant deformations in the ⁴²Si and ⁴⁰Mg ground states are consistently opposite.

Crawford et al., Phys. Rev. C 89, 041303(R) (2014).

⁴⁰Mg: Where we left it in 2014

Based on the inclusive cross-section from ⁴²Si(-2p):

- ⁴⁰Mg likely only has one bound 0⁺ state (the ground state)
- The ground state deformation is likely opposite in sign to that of ⁴²Si

Open questions:

- Are there *any* bound excited states in ⁴⁰Mg?
- Is E(2⁺) in line with expectations from shell-model?
- Is the ground state consistent with prolate deformation?
- Is there evidence for weak-binding effects in the spectrum of ⁴⁰Mg?

⁴⁰Mg in December 2016

What did we learn in NP0906-RIBF03 for spectroscopy in ⁴⁰Mg?

- Cross-section for ⁴²Si(-2p) is low with 150 pnA of ⁴⁸Ca primary beam, we expect only 25 ⁴⁰Mg / day using a 4g/cm² C target
- With branch to 2⁺ as predicted by shell-model calculations^{*} would expect only 10 counts in a photopeak
- Measured production rate for ⁴¹Al (0.6pps/100pnA ⁴⁸Ca)
- Measured background with thick carbon target in -1p channel

Proposed for NP0906-RIBF03R2

* Tostevin and Brown, private communication

PHYSICAL REVIEW LETTERS 122, 052501 (2019)

Editors' Suggestion

First Spectroscopy of the Near Drip-line Nucleus ⁴⁰Mg

H. L. Crawford,^{1,*} P. Fallon,¹ A. O. Macchiavelli,¹ P. Doornenbal,² N. Aoi,³ F. Browne,² C. M. Campbell,¹ S. Chen,² R. M. Clark,¹ M. L. Cortés,² M. Cromaz,¹ E. Ideguchi,³ M. D. Jones,^{1,†} R. Kanungo,^{4,5} M. MacCormick,⁶ S. Momiyama,⁷ I. Murray,⁶ M. Niikura,⁷ S. Paschalis,⁸ M. Petri,⁸ H. Sakurai,^{2,7} M. Salathe,¹ P. Schrock,⁹ D. Steppenbeck,⁹ S. Takeuchi,^{2,10} Y. K. Tanaka,¹¹ R. Taniuchi,⁷ H. Wang,² and K. Wimmer⁷ ¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²RIKEN Nishina Center, Wako, Saitama 351-0198, Japan ³Research Center for Nuclear Physics (RCNP), Osaka University, Mihogakoa, Ibaraki, Osaka 567-0047, Japan ⁴Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada ⁵TRIUMF, Vancouver, British Columbia V6T 2A3, Canada ⁶Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay Cedex 91406, France ⁷Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan ⁸Department of Physics, University of York, Heslington, York, England YO10 5DD, United Kingdom ⁹Center for Nuclear Study, University of Tokyo, RIKEN Campus, Wako, Saitama 351-0198, Japan ¹⁰Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan ¹¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany

Production of ⁴⁰Mg by fast-beam fragmentation

Two Measurements at RIKEN/RIBF - high energy ⁴⁸Ca beam 345 MeV/u

December 2010 ⁴⁸Ca → ⁴²Si (200 MeV/u), 2p Knockout: ⁴²Si -2p → ⁴⁰Mg (v/c ~ 60%)

December 2016

⁴⁸Ca \rightarrow ⁴¹Al (240 MeV/u), 1p Knockout: ⁴¹Al -1p \rightarrow ⁴⁰Mg (v/c ~ 60%)

⁴⁰Mg: 2016 setup

ZDS

BigRIPS

d basement

Self-supporting Carbon (graphite) and CH_2 targets $CH_2 \Rightarrow 3.82 \text{ g/cm}^2$; Carbon $\Rightarrow 3.80 \text{ g/cm}^2$

DALI2 γ detector 186 NaI(TI) scintillators covering 4π

Event-by-event identification of incoming beam

- BigRIPS fragment separator was centered on ⁴¹AI
- ~3% of incoming beam was ⁴¹Al; ⁴²Si and ⁴⁰Mg were both in acceptance of BigRIPS
- Average ⁴⁸Ca primary beam intensity of order 400 pnA for ~6 days !!

Event-by event identification of reaction products

Secondary reaction products identified at the focal plane

Results

- 500 keV transition assigned to 2⁺→0⁺
- Observe a 20% decrease in ⁴⁰Mg 2⁺ energy relative to ³⁸Mg.
- Relative change in 2⁺ (more robust prediction than absolute value) is not captured in calculations

Results: ⁴⁰Mg (670 keV transition)

Weakly bound neutrons in ⁴⁰Mg

- 2-body NN interaction works to reduce the N=28 shell gap when removing protons from ⁴⁸Ca
- Occupation of low I levels (p_{3/2}) may lead to extended wavefunctions ("halos")

Could we consider ⁴⁰Mg as a deformed ³⁸Mg core and a 2-neutron *p-wave* halo ?

Weakly bound neutrons in ⁴⁰Mg

- 2-body NN interaction works to reduce the N=28 shell gap when removing protons from ⁴⁸Ca
- Occupation of low I levels (p_{3/2}) may lead to extended wavefunctions ("halos")

Could we consider ⁴⁰Mg as a deformed ³⁸Mg core and a 2-neutron *p-wave* halo ?

Weakly bound neutrons in ⁴⁰Mg

 Energy separation between the Ω= 1/2 and 3/2 Nilsson levels as a function of the WS depth (V₀), showing the approach to the spherical limit for weak binding

Indications of weak binding - geometric overlap

Volume p_{3/2} overlap as a function of BE calculated in a Woods-Saxon*

*https://www.volya.net/

Indications of weak binding – PV coupling

A dimensionless parameter that is often useful in characterizing the strength of the particle-vibration coupling is obtained by dividing a standard coupling matrix element by $\hbar\omega_{\lambda}$. Thus, for a shape vibration, we may employ the parameter (see Eq. (6-209))

$$f_{\lambda} = \left(\frac{2\lambda + 1}{16\pi}\right)^{1/2} \left(\frac{\hbar\omega_{\lambda}}{2C_{\lambda}}\right)^{1/2} \frac{\langle k_{\lambda} \rangle}{\hbar\omega_{\lambda}}$$
(6-212)

B&M, Vol II pag.419

Weak coupling of two degrees of Freedom

Weak coupling of two degrees of Freedom

Relative populations from gamma-ray and particle singles intensities

Nilsson proton levels

	- 1		28		~	1	
A	1/2-		17/2	\leqslant	\sim	5/2	(312) (321)
-	1/2+		20	1		3/2	(321)
	7/2.	_	1			3/2(202)
			1			~~1/2(330)
	1/24						200)
	-		d 5/2	2		5/20	202)
3	5- 3/2+						
			s1/2		0	1/2(2	211)
	3/2+			\leq	(12)		
			d 5/2			3/2(211)
	1/2+		i				
	5/2+		I.				
K = 1/2,	(211)						
E	3.628406	3.584660	3.533333	3.500000	3.506007	3.488141	3.457374
a	.884746	1.199178	1.400000	1.000000	,800406	.142953	113242:
lj							
0 1/2	357242	490690	.730296	1.000000	.805854	.529234	.370421
2 3/2	.609920	.513667	326599	.000000	.424450	.677771	,753501
2 5/2	.707373	.703825	000001	.000000	.412044	.010429	.040102

Rotational part

Single particle part (1/2 \rightarrow 2⁺_{2n}) treated as a parameter S_{sp}

Minimization results

BE = 877 keV $V_{nn-Core}$ = 69 keV S_{sp} = 0.13

Relative populations from gamma-ray and particle singles intensities

An alternative scenario: Rotation and Alignment

Rotation in ⁴⁰Mg – aligned-band crossing

In ⁴⁰Mg, the <u>energy to break a neutron $p_{3/2}$ pair needs to be reduced by 1/2</u> Quenched pairing due to reduced overlap?

HFB Calculation of Mg deformed ground states

H. NAKADA AND K. TAKAYAMA

PHYSICAL REVIEW C 98, 011301(R) (2018)

HFB Calculation of Mg deformed ground states

H. NAKADA AND K. TAKAYAMA

PHYSICAL REVIEW C 98, 011301(R) (2018)

 $p_{3/2}$ deformed halo and quenched pairing

Summary

- First data on excitation modes in a heavy weakly bound nucleus ⁴⁰Mg
 - Observed spectrum does not fit with existing expectations and existing calculations
 - Breakdown of experimental systematics and theory may suggest something new is happening at the neutron dripline
 - Qualitative arguments indicate that weak binding effects could reproduce the spectrum seen in ⁴⁰Mg
 - The observation of two low lying states maybe a consequence of "weakly coupled" (deformed?) 2 neutron-halo
 - Next \rightarrow Implications for population pattern \rightarrow SF's
 - Microscopic models taking into account extended wavefunctions and coupling to the continuum would be needed to provide a quantitative description

Summary

- First data on excitation modes in a heavy weakly bound nucleus ⁴⁰Mg
 - Observed spectrum does not fit with expectations and existing calculations
 - Breakdown of experiment something new is har
 - Qualitative ar reproduct
 - The obs "weakly c
 - Next → Im

Inding effects could

may suggest

مtes maybe a consequence of 2 neutron-halo population pattern → SF's

 Microscopic modules taking into account extended wavefunctions and coupling to the continuum would be needed to provide a quantitative description

Many Thanks to George Bertsch, Rolo Id Betan, Osvaldo Civitarese, Roberto Liotta and Nicu Sandulescu !

Part 2

What is the Kerman's Problem anyway?

What we did and why

Some (preliminary) results

Arthur Kerman 1929-2017

Det Kangelige Danuske Widenskabernes Sekskab Natamäist Gesk Maldelar, kind 30, m. 15 Im. Mat Pys. Matt. 30, m. 15(1983)

ROTATIONAL PERTURBATIONS IN NUCLEI APPLICATION TO WOLFRAM 183

3857

A. IK. KIERANANS

The Particle plus Rotor Model 101

$$H = H_p + H_{rot} = H_p + (\hbar^2/23)\mathbf{R}^2$$
$$= H_p + (\hbar^2/23)(R_x^2 + R_y^2),$$

$$\begin{split} H &= H_p + (\hbar^2/23) [I(I+1) - K^2] + H_c \\ &+ (\hbar^2/23) [\langle \mathbf{j}^2 \rangle - \Omega^2], \end{split}$$

$$H_{c} = -2(\hbar^{2}/23)[I_{x}j_{x} + I_{y}j_{y}]$$

= -(\kappa^{2}/23)[I_{+}j_{-} + I_{-}j_{+}].

$$\begin{split} \langle I, \Omega \pm I \mid H_c \mid I, \Omega \rangle \\ &= -(\hbar^2/23) [(I \mp K) (I \pm K + 1)]^{1/2} \langle \Omega \pm 1 \mid j_{\pm} \mid \Omega \rangle . \end{split}$$

 $\langle j, \Omega \pm 1 | j_{\pm} | j, \Omega \rangle = [(j \mp \Omega)(j \pm \Omega + 1)]^{1/2}.$

Kerman, A. K., 1956, Dan. Mat. Fys. Medd. 30, No. 15.

Weakly Bound Systems

I. Hamamoto, Phys. Rev. C 79, 014307 (2009)

K. Fossez, J. Rotureau, N. Michel, Quan Liu, and W. Nazarewicz, Phys. Rev. C 94, 054302(2016)

Thus :

\rightarrow Kerman's Problem in the Continuum

\rightarrow Kerman's Problem in the Continuum

Arthur Kerman to Rick Casten, ca. 1980

"Experimentalists should not dabble in thought ..."

Two-level \rightarrow N levels

In the limit $\Gamma \rightarrow 0$

for which Mathematica tells me that the lowest eigenvalue is:

Consider now

Take $e_2 - e_1 = e$

And energies in units of the rotational constant A !

First order perturbation solution (Vc << e) :

In the original Kerman paper :

a = 0.2 e = 210 keV, A = 15keV, and Vc = 20 keV

Full solution:

ao a. E. a, a, az az 82

 $E_0 + \sum \frac{V_i^2}{E - \varepsilon_i}$

 $E_0 + \sum_{i=\varepsilon_i}^{V_i} =$

Summary

The evolution of Shell Structure and Collective motion in weakly bound nuclei is a topic of much interest in nuclear structure

A "2x2" Kerman-model calculation, including Coriolis mixing with an unbound state, was used to explore possible (general) consequences on rotational properties of an odd-A system

Qualitative effects seem to appear when the width becomes comparable to the intrinsic level separation energy.

Next steps:

- 1) Full solution
- 2) Extension to a single-j Nilsson multiplet

Summary

The evolution of Shell Structure and Collective motion in weakly bound nuclei is a topic of much interest lear structure

A "2x2" Kerman-model calcul an unbound state, was use consequences on rote

Qualitative e. comparable to

riolis mixing with eral) -A system

In the width becomes oparation energy.

Next steps:

- 1) Full solution
- 2) Extension to a single-j Nilsson multiplet

