Nuclear reaction codes development for the particles and nuclei production in meteoroids and planetary atmospheres

Jason Hirtz

CEA Saclay - 22 November 2019

Introduction

- INCL++ to INCL++6
- ③ Variance reduction scheme
- INCL++6 results

- **5** CosmicTransmutation
- 6 Cosmogenic nuclides production

Introd	uction					
00000	0000000	0000	00000	0000000	000000	0
Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion

Main concepts

- Cosmic rays
- Nuclear spallation
- Cosmogenic nuclides

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion		
000000	0000000	0000	00000	0000000	0000000			
Cosmic ravs								

- Protons ($\sim 90\%$)
- Alphas ($\sim 10\%$)
- Others $(\sim 1\%)$

Introduction	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation 0000000	Cosmogenic nuclides production	Conclusion O
Nucle	ar spallatio	n				

Spallation reaction

Spallation with numbers

- Light projectile (p, π, α,...)
 Heavy target (¹²C, ²⁰⁸Pb,...)
- Kinetic energy around the GeV Time scale: $\sim 10^{-22} 10^{-20}$ s

Introduction INCL++ to INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion 000000 000000 00000 00000 000000 000000 000000 000000 000000 000000 0000000</

or How to transmute lead into gold (Did you say cosmochemistry? No! Alchemy!)

Spallation with numbers

- Light projectile (p, π , α ,...)
- Kinetic energy around the GeV
- Heavy target (¹²C, ²⁰⁸Pb,...)
- Time scale: $\sim 10^{-22}-10^{-20}~\text{s}$

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
○○○○●○	0000000	0000	00000	0000000		O
Cosmo	ogenic nucl	ides				

Dating techniques • ¹⁴C

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000						
Cosmo	ogenic nucl	ides				

Dating techniques $^{14}C/C$ τ $\sim 10^3$ years $^{10}Be/^{14}C$ τ $\sim 10^4$ years $^{26}AI/^{21}Ne$ τ $\sim 10^6$ years $^{40}K/K$ τ $\sim 10^9$ years...

Cosmo	oconic nucl	idoc	00000	000000	000000	0				
Cosmogenic nuclides										

• ¹⁴ C/C	$ au~\sim 10^3$ years
• ¹⁰ Be/ ¹⁴ C	$ au~\sim 10^4$ years
• ²⁶ AI/ ²¹ Ne	$ au~\sim 10^{6}$ years
• ⁴⁰ K/K	$ au~\sim 10^9$ vears

- Natural abundance low \rightarrow resolve production vs natural occurrence
- ⇒ Order of magnitude of production: $10^4 \text{ atom } g^{-1} \text{ year}^{-1} \text{ vs } \mathcal{N}_a$

Cosmogenic nuclides									
000000	000000	0000	00000	000000	0000000				
Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion			

• ¹⁴ C/C	$ au~\sim 10^3$ years
• ¹⁰ Be/ ¹⁴ C	$ au~\sim 10^4$ years
• ²⁶ AI/ ²¹ Ne	$ au~\sim 10^6$ years
• ⁴⁰ K/K	$ au \sim 10^9$ vears

- Natural abundance low \rightarrow resolve production vs natural occurrence
- ⇒ Order of magnitude of production: $10^4 atom g^{-1} year^{-1} vs N_a$
 - Stable or half-life comparable to the event of interest

Cosmo	ogenic nucl	ides				
000000						
Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion

• ¹⁴ C/C	$ au~\sim 10^3$ years
• ¹⁰ Be/ ¹⁴ C	$ au~\sim 10^4$ years
• ²⁶ AI/ ²¹ Ne	$ au~\sim 10^6$ years
• ⁴⁰ K/K	$ au~\sim 10^9$ years

- Natural abundance low \rightarrow resolve production vs natural occurrence
- ⇒ Order of magnitude of production: $10^4 atom g^{-1} year^{-1} vs N_a$
 - Stable or half-life comparable to the event of interest
 - Measurable

Cosmo	Cosmogenic nuclides										
000000	0000000	0000	00000	0000000	000000						
Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion					

- ¹⁴C/C $\tau \sim 10^3$ years • ${}^{10}Be/{}^{14}C$ $\tau \sim 10^4$ years • ${}^{26}AI/{}^{21}Ne$ $au~\sim 10^6$ years
- ${}^{40}K/K$

 $au~\sim 10^9$ years

- Natural abundance low \rightarrow resolve production vs natural occurrence
- ⇒ Order of magnitude of production: $10^4 atom g^{-1} vear^{-1} vs \mathcal{N}_a$
 - Stable or half-life comparable to the event of interest
 - Measurable
 - Theoretical understanding of production processes

Introduction INCL++ to INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production processes

Need of improved spallation reaction description

Interest in spallation reaction applications

Need of improved cosmic ray irradiation simulation

Interest in cosmic ray behaviour

INCL	improveme	ent				
Introduction 000000	INCL++ to INCL++6 ●000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

Improvement of the intra-nuclear cascade simulation code at high energy through a new degree of freedom: **Strangeness**

Standard Model of Elementary Particles

Ingred	lients					
Introduction 000000	INCL++ to INCL++6 ○●○○○○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

- Nucleons (protons and neutrons)
- Pions $(\pi^-,\pi^0, \text{ and } \pi^+)$
- Deltas (Δ^- , Δ^0 , Δ^+ , and Δ^{++})

New particles

- Kaons (K^0 and K^+)
- Antikaons (\overline{K}^0 and K^-)
- Sigmas (Σ^- , Σ^0 , and Σ^+)
- Lambda (Λ)

Ingred	lients					
Introduction 000000	INCL++ to INCL++6 ○●○○○○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

- Nucleons (protons and neutrons)
- Pions $(\pi^-,\pi^0, \text{ and } \pi^+)$
- Deltas (Δ^- , Δ^0 , Δ^+ , and Δ^{++})

Particle properties

- Mass
- Half life
- Decay channel
- Nuclear potential

New particles

- Kaons (K^0 and K^+)
- Antikaons (\overline{K}^0 and K^-)
- Sigmas $(\Sigma^-, \Sigma^0, \text{ and } \Sigma^+)$
- Lambda (Λ)

Ingi	redients					
Introduct 00000	ion INCL++ to INCL++6 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

- Nucleons (protons and neutrons)
- Pions $(\pi^-,\pi^0, \text{ and } \pi^+)$
- Deltas (Δ^- , Δ^0 , Δ^+ , and Δ^{++})

New particles

- Kaons (K^0 and K^+)
- Antikaons (\overline{K}^0 and K^-)
- Sigmas $(\Sigma^-, \Sigma^0, \text{ and } \Sigma^+)$
- Lambda (Λ)

Particle properties

- Mass
- Half life
- Decay channel
- Nuclear potential

Cross sections

- Production
- Interaction
- Absorption

Ingree	lients					
Introduction 000000	INCL++ to INCL++6 ○●○○○○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

- Nucleons (protons and neutrons)
- Pions $(\pi^-,\pi^0, \text{ and } \pi^+)$
- Deltas (Δ^- , Δ^0 , Δ^+ , and Δ^{++})

New particles

- Kaons (K^0 and K^+)
- Antikaons (\overline{K}^0 and K^-)
- Sigmas $(\Sigma^-, \Sigma^0, \text{ and } \Sigma^+)$
- Lambda (Λ)

Particle properties

- Mass
- Half life
- Decay channel
- Nuclear potential

Cross sections

- Production
- Interaction
- Absorption

١	Angular distributions
	Energy
	Direction
- 8	

Introduction 000000	INCL++ to INCL++6 ○○●00○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation 0000000	Cosmogenic nuclides production	Conclusion O
Cross	sections to	o par	ametrise			

NN	\rightarrow	$N\Lambda K$	πN	\rightarrow	ΛK	NK	\rightarrow	NK	NK	\rightarrow	NK
	\rightarrow	ΝΣΚ		\rightarrow	ΣΚ		\rightarrow	$NK\pi$		\rightarrow	$\Lambda\pi$
	\rightarrow	$N\Lambda K\pi$		\rightarrow	$\Lambda K\pi$		\rightarrow	$NK\pi\pi$		\rightarrow	$\Sigma\pi$
	\rightarrow	$N\Sigma K\pi$		\rightarrow	$\Sigma K\pi$	NΛ	\rightarrow	NΛ		\rightarrow	$N\overline{K}\pi$
	\rightarrow	$N\Lambda K\pi\pi$		\rightarrow	$\Lambda K \pi \pi$		\rightarrow	NΣ		\rightarrow	$\Lambda\pi\pi$
	\rightarrow	$N\Sigma K\pi\pi$		\rightarrow	$\Sigma K \pi \pi$	NΣ	\rightarrow	NΛ		\rightarrow	$\Sigma \pi \pi$
	\rightarrow	$NNK\overline{K}$		\rightarrow	NKK		\rightarrow	NΣ		\rightarrow	$N\overline{K}\pi\pi$

Initial set: \sim 400 channels

Cross	sections to	par	ametrise			
000000	000000	0000	00000	000000	000000	0
Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion

NN	\rightarrow	ΝΛΚ	πN	\rightarrow	ΛK	NK	\rightarrow	NK	NK	\rightarrow	NK
	\rightarrow	ΝΣΚ		\rightarrow	ΣΚ		\rightarrow	$NK\pi$		\rightarrow	$\Lambda\pi$
	\rightarrow	$N\Lambda K\pi$		\rightarrow	$\Lambda K\pi$		\rightarrow	$NK\pi\pi$		\rightarrow	$\Sigma\pi$
	\rightarrow	$N\Sigma K\pi$		\rightarrow	$\Sigma K\pi$	NΛ	\rightarrow	NΛ		\rightarrow	$N\overline{K}\pi$
	\rightarrow	$N\Lambda K\pi\pi$		\rightarrow	$\Lambda K \pi \pi$		\rightarrow	NΣ		\rightarrow	$\Lambda\pi\pi$
	\rightarrow	$N\Sigma K\pi\pi$		\rightarrow	$\Sigma K \pi \pi$	NΣ	\rightarrow	NΛ		\rightarrow	$\Sigma \pi \pi$
	\rightarrow	$NNK\overline{K}$		\rightarrow	NKK		\rightarrow	NΣ		\rightarrow	$N\overline{K}\pi\pi$

Initial set: \sim 400 channels

ΔN	\rightarrow	ΝΛΚ	NN	\rightarrow	K + X
	\rightarrow	ΝΣΚ			
	\rightarrow	$\Delta \Lambda K$	πN	\rightarrow	K + X
	\rightarrow	ΔΣΚ			
	\rightarrow	NNKK			

Second set: No data but needed. \rightarrow Thousands of new channels.

10 channels, 29 data points

26 channels, 43 data points

Data for 17% of the channels of the first set, including the above channels. (0% for the second set)

First se	et					
Data	completion					
Introduction 000000	INCL++ to INCL++6 ○○○○●○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation 0000000	Cosmogenic nuclides production	Conclusion O

• Experimental data

17%

000000	0000000	0000	00000	0000000		O				
Data	completion									
First se	First set									
• Experimental data			17%							
• By	stricky proced	ure		18%	total: 35%					

Symmetries between the channels

Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O			
Data	completion								
First set									
• Experimental data				17%					
• By	stricky proced	ure		18%	total: 35%				

• Hadron exchange model 37% total: 72%

Symmetries between the Feynman diagrams

Introduction 000000	INCL++ to INCL++6 ○○○○●○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O
Data	completion					
First se	et					
• Ex	perimental da	ta		17%		
• Ву	stricky proced	ure		18%	total: 35%	
• Ha	adron exchange	e mod	el	37%	total: 72%	
• M	odels-hypothes	ses-ap	proximatior	ıs 28%	total: 100%	

Introduction 000000	INCL++ to INCL++6 ○○○○●○○	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O			
Data	completion								
First set									
• Ex	perimental da	ta		17%					
• Ву	stricky proced	ure		18%	total: 35%				
• Ha	adron exchang	e mod	el	37%	total: 72%				
• M	odels-hypothe	ses-ap	proximatior	ıs 28%	total: 100%				

Second set: Models-hypotheses-approximations 100%

J. Hirtz, J.C. David, et al., Eur. Phys. J. Plus 133:436 (2018)

Angul	ooooooo or distribut	0000	00000	000000	000000	0			
Angular distributions									

Angular distributions:

the direction and the energy of the particles in the final state

Α	Angular distributions							
Int OC	roduction 00000	INCL++ to INCL++6 00000●0	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O	

Angular distributions: the direction and the energy of the particles in the final state

Use of phase space generators when no experimental data

A refine model when possible

0.9

0.8

J. Hirtz, J.C. David, et al., Eur. Phys. J. Plus 133:436 (2018)

1.0

ο.5 cos(θcm)

-1.0

Variance reduction scheme									
Introduction 000000	INCL++ to INCL++6 0000000	VRS ●○○○	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O			

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

Variance reduction scheme									
Introduction 000000	INCL++ to INCL++6 0000000	VRS ●○○○	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O			

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

My solution: I cheat!

Variance reduction scheme									
Introduction 000000	INCL++ to INCL++6 0000000	VRS ●○○○	INCL++6 results 00000	Cosmic Transmutation	Cosmogenic nuclides production	Conclusion O			

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

My solution: I cheat! (and I correct the results a posteriori)

INCL++ to INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion occords occords

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

My solution: I cheat! (and I correct the results a posteriori)

Scheme: Increase the production of strangeness, register "how much I cheat", and correct the results accordingly (plus a lot of mathematics) INCL++ to INCL++ to INCL++6 VRS INCL++6 results CosmicTransmutation Cosmogenic nuclides production Conclusion occords occords

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

My solution: I cheat! (and I correct the results a posteriori)

Scheme: Increase the production of strangeness, register "how much I cheat", and correct the results accordingly (plus a lot of mathematics)

How to use the scheme?

Strangeness production represents 0.014% (0.15%) of the total cross section in p-p collision at kinetic energies of 2(3) GeV. Computational time problem

My solution: I cheat! (and I correct the results a posteriori)

Scheme: Increase the production of strangeness, register "how much I cheat", and correct the results accordingly (plus a lot of mathematics)

How to use the scheme?

The user requires an increase of the statistics by a factor 10 and the scheme increases the statistics by a factor 10 and tells you how to weight the results
Introduction 000000	INCL++ to INCL++6 0000000	VRS ○●○○	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O
Efficie	ency					

A production in p(1.7 GeV) + Ca collision

Rapidity

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	○○●○	00000	0000000		O
Physic	al limits					

K^+ momentum in $p(1.6 \text{ GeV}) + {}^{12} C$ with 10^7 events

	11					
000000	0000000	0000	00000	0000000	000000	0
	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion

Borderline cases

 $p(10 \text{ GeV}) + ^{208} Pb$ (10⁷ shots)

Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results ●○○○○	Cosmic Transmutation	Cosmogenic nuclides production	Conclusion O
INCL-	++6 result	S				

Time to control the results!

Good points

Excellent agreement with experimental data

Observations

Threshold very different compared to the Bertini model because of repulsive K^+ 's potential

$$\mathsf{p}(\mathsf{2.1~GeV}) + ^{\mathsf{208}}\mathsf{Pb} o \mathsf{K}^+ + \mathsf{M}$$

 $H^2(2.1~GeV/A) + ^{208}Pb
ightarrow K^+ + X$

Rapidity

 $p + A \rightarrow K^+ + X$

Remark

• Threshold $pp \rightarrow p\Lambda K^+$ 1580 *MeV*

Observations

- Factor 4 with experimental data
- Far sub-threshold
 - \rightarrow Use of biasing (speed up by a factor 1 000)

Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O
Cosmi	icTransmut	atio	า			

Simulation of spallation reactions improved

New version implemented in the Geant4 toolkit (open source)

Time to simulate cosmic ray irradiation Creation of a new program: CosmicTransmutation (Geant4 based)

Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O
Object	tives					

Observables

- Cosmogenic nuclide production rates
- Light particle fluxes (p, n, α)

Meteoroids (asteroids, moons)

- Shape
- Composition
- Size

Planets

- Planet size
- Atmosphere size, composition, density profile
- Magnetic field

Requirements

- User-friendly
- Simple input and output
- Code documentation for analyses

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	00000	0000000	

User-friendly interface

					0	× ×				~ ^ 😣
Projectile			Visualisation			Longitude (deg)	\$000 (C	Manazzie Bald I	cotion (km)	
Proj			Visualisation	1 0						
Energ		0.00					0.0000 0			
	MeV)	550.00	Run option	Random option		Mag. field inclination (deg)	0.00 0	Solar win		
Target			100 miles 1 a C	l la contra l						
				francismi 200						
			Insult	3000 789	 1			valic		
			1940							
Radius (km)			PhysicList FTFP_INCLOC	нр						
			Outputs							
NLayer										
			Output tet							
		trik								

Interface

- A few steps to run the program
- Simple definition of input parameters
- Able to tell the user if something is wrong or if an input file is missing

Simple	e output					
Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O

Different type of output as a function of the needs

Data file

- Small output file
- Automatically normalised results
- Only the fluxes of light particles

ROOT file

- All the information
- Possibility to cross observables
- More complex to manipulate

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	000000	
Daval	opmont					

Development

Algorithms - interface

- Uniform irradiation (symmetries)
- User defined compositions

• etc...

	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	0000000	

Planets and magnetospheres

Algorithms

- 2 phases
- Reverse kinematic calculations
- Map of allowed trajectories (Longitude, Latitude, Zenith, Azimuth, Rigidity)

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
				000000		
Cut o	ff mans					

Cut-off maps

New considerations

• Structure of the penumbra

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
				000000		
	ff mans					

New considerations

- Structure of the penumbra
- Consideration of focusing and dispersion Funnel effect

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	000000	
Cosmi	icTransmut	atio	n results			

Time to control the results! (Again)

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000		O
Metec	proids					

What to compare with?

Cosmogenic nuclide production rate

- What we try to understand
- Models use fluxes to calculate cosmogenic nuclide production

Particle fluxes

- No experimental data
- Other models

	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	000000	
Neutr	on flux - Si	urfac	<u>`</u> 0			

	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	0000000	
Proto	n flux - Su	rface				

Observations

- Factor 2 below LAHET
- \rightarrow Confirmation error of normalisation
- High energy flux corresponds to the cosmic ray spectrum
- High energies (INC): similar shapes
- Low and intermediate energies: very different

Introduction 000000	INCL++ to INCL++6 0000000	VRS 0000	INCL++6 results 00000	CosmicTransmutation	Cosmogenic nuclides production	Conclusion O
Plane ⁻	tary atmos	phere	es			

What to compare with?

Particle fluxes

- Experimental data: Input data or unmeasured
- Models: No data found + funnel effect

Cosmogenic nuclide production rate

- Experimental data: hard to measure, atmosphere aerodynamics
- Models: funnel effect should not be considered to be comparable

- ·						
000000	0000000	0000	00000	0000000	0000000	
	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion

Solar modulation parameter

	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	0000000	0000	00000	0000000	000000	
Cosm	ogonic nucl	lida r	ration			

Cosmogenic nuclide ratios

Observations

- Isotope ratio can change with a modification of the irradiation spectrum
- No observation of isotope ratio modification due to the funnel effect

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
000000	000000	0000	00000	0000000	000000	•
Conclu	usion					

Successful implementation of strangeness in INCL

- Improved simulation at high energy
- New fields of simulation opened
- Very good results for most of the observables studied
- Bonus: Variance reduction scheme

Creation of CosmicTransmutation

- State-of-the-art simulation models used
- New features: alpha particles, ellipsoidal meteorite, penumbra structure, funnel effect, ...

Future and perspective

- Study of the impact of funnel effect (cosmic ray flux, cosmogenic nuclides)
- Date things!

Introduction	INCL++ to INCL++6	VRS	INCL++6 results	CosmicTransmutation	Cosmogenic nuclides production	Conclusion
						•
Conclu	usion					

Backup

Graph theory

Isospin symmetry - Bystricky procedure

$$rac{d\sigma}{d\Omega} = rac{1}{64\pi^2 s^2} rac{P_f}{P_i} |\mathcal{M}_{fi}|^2 \qquad
ightarrow \sigma \propto |\mathcal{M}_{fi}|^2$$

$$\mathcal{M}(\mathit{NN}
ightarrow \mathit{NN} x\pi) = (\langle \mathit{NN} | \otimes \langle x\pi |) \mathit{M} | \mathit{NN}
angle$$

Superposition of state

$$\Rightarrow \langle I^{(1)} I_3^{(1)} \ I^{(2)} I_3^{(2)} | M | I^i I_3^i \rangle = CG \ M_{I^{(1)} I^{(2)} I^i}$$

Equations of the type $\sigma_1 = ax + by$, $\sigma_2 = cx + dy$, ...

$$\mathcal{M} \left(\text{Initial state} \to x_N N \ x_\pi \pi \ x_Y Y \ x_K K \ x_{\overline{K}} \overline{K} \right) \\ = \left(\langle x_N N | \otimes \langle x_\pi \pi | \otimes \langle x_Y | \otimes \langle x_K K | \otimes \langle x_{\overline{K}} \overline{K} | \right) M | \text{Initial state} \rangle \\ = \left(\langle \text{system1} | \otimes \langle \text{system2} | \right) M | \text{Initial state} \rangle$$

Isospin symmetry - Bystricky results

$$\sigma(pp \to p\Sigma^+ K^0) = \sigma(nn \to n\Sigma^- K^+)$$

$$\sigma(pn \to p\Sigma^{-}K^{+}) + \sigma(pp \to n\Sigma^{+}K^{+}) + \sigma(pp \to p\Sigma^{+}K^{0})$$

= $2\sigma(pn \to p\Sigma^{0}K^{0}) + 2\sigma(pp \to p\Sigma^{0}K^{+})$

Data for $17\% \to 35\%$ of the channels.

Isospin projection

$$\begin{split} |p\Sigma^{+}\rangle &= |3/2 \ 3/2 \rangle \\ |pp\rangle &= |1 \ 1 \rangle \\ |pn\rangle &= \frac{\sqrt{2}}{2} |1 \ 0 \rangle + \frac{\sqrt{2}}{2} |0 \ 0 \rangle \\ |np\rangle &= \frac{\sqrt{2}}{2} |1 \ 0 \rangle - \frac{\sqrt{2}}{2} |0 \ 0 \rangle \\ |np\rangle &= \frac{\sqrt{2}}{2} |1 \ 0 \rangle - \frac{\sqrt{2}}{2} |0 \ 0 \rangle \\ |n\Sigma^{+}\rangle &= \sqrt{\frac{1}{3}} |3/2 \ 1/2 \rangle \\ |np\rangle &= |1 \ -1 \rangle \\ |n\Sigma^{0}\rangle &= \sqrt{\frac{2}{3}} |3/2 \ -1/2 \rangle \\ |n\Sigma^{-}\rangle &= |3/2 \ -1/2 \rangle \\ |n\Sigma^{-}\rangle &= |3/2 \ -3/2 \rangle \end{split}$$

Isospin symmetry - Hadron Exchange Model

Zoom from reactions level to Feynman diagrams level. More powerful but need more hypotheses.

Isospin symmetry - HEM results

Data for $35\% \to 72\%$ of the channels.

Model, Hypotheses, and approximations

Still 28% of the channels without possible parametrisation. All important!

$$\sigma_{NN \to N\Lambda K\pi}(\sqrt{s}) = 3 \ \sigma_{NN \to N\Lambda K}(\sqrt{s}) \times \frac{\sigma_{NN \to NN\pi\pi}(\sqrt{s} - 540)}{\sigma_{NN \to NN\pi}(\sqrt{s} - 540)}$$
$$\sigma_{NN \to N\Sigma K\pi}(\sqrt{s}) = 3 \ \sigma_{NN \to N\Sigma K}(\sqrt{s}) \times \frac{\sigma_{NN \to NN\pi\pi}(\sqrt{s} - 620)}{\sigma_{NN \to NN\pi}(\sqrt{s} - 620)}$$
$$\sigma_{NN \to N\Lambda K\pi\pi}(\sqrt{s}) = \sigma_{NN \to N\Lambda K\pi}(\sqrt{s}) \times \frac{\sigma_{NN \to NN\pi\pi}(\sqrt{s} - 675)}{\sigma_{NN \to NN\pi}(\sqrt{s} - 675)}$$

$$\sigma_{NN \to N\Sigma K\pi\pi}(\sqrt{s}) = \sigma_{NN \to N\Sigma K\pi}(\sqrt{s}) \times \frac{\sigma_{NN \to NN\pi\pi}(\sqrt{s} - 755)}{\sigma_{NN \to NN\pi}(\sqrt{s} - 755)}$$

Data for 100% of the channels! This is what I fought...

_

Angular distributions

Negative density of probability

Smoothing splines vs Nadaraya-Watson kernel regression

Fritiof rates

KaoS Experiment

(W. Scheinast et al., PRL 96, 072301 (2006))

A word about K^- production

Relatively bad results, notably at low energy

→ Possible explanation: missing channels. \overline{K} production in strangeness exchange reaction not taken into account (e.g. $\Lambda N \rightarrow NN\overline{K}$)

ITEP experiment

A test for unmeasured cross sections

A. V. Akindinov et al., JETP Letters, Vol. 72, No. 3, 2000, pp. 100-105

FOPI experiment M. L. Benabderrahmane et al., Phys. Rev. Lett. 102, 182501

$$\pi^-(1150 {\it MeV}/c) + {\it A}
ightarrow {\it K}^0 + {\it X}$$

ANKE experiment

M. Büscher et al., Eur.Phys. J. A 22, 301-317(2004) Thanks Nikolai Mokhov for LAQGSM data

CEA Seminar

ANKE invariant cross section

Backup

HADES - The Λ

HADES Collaboration, Eur. Phys. J. A (2014) 50:81

HADES - The Λ

HADES Collaboration, Eur. Phys. J. A (2014) 50:81

HADES experiment - The K_S^0

HADES Collaboration, T.Gaitanos and J. Weil, Phys. Rev. C 90, 054906 (2014)

Observations

- Same experiment as the previous one but results very different
- Reaction cross section: HADES - $848 \pm 127 \text{ mb}$, INCL - 1047.87 mb, Bertini - 1164 mb

Remark

GiBUU has been rescaled Impossible to make proper comparisons

Backup

GiBUU versions

HADES Collaboration, T.Gaitanos and J. Weil,

Phys. Rev. C 90, 054906 (2014)

FIG. 4. (Color online) K_s^0 rapidity distribution in p + p collisions (black circles) and GiBUU transport model simulations (dashed curve–original resonance model [30], solid curve–modified resonance model; see text).

Simple input - Irradiation flux

Only one input parameter to fully define proton and alpha spectra: The solar modulation parameter M

proton

$$\mathsf{J}_{p}(\mathsf{T},\mathsf{M}) = c_{p} \times \frac{\mathsf{T} \, \left(\mathsf{T} + 2m_{p}c^{2}\right) \, (\mathsf{T} + 780 \times e^{-2.5 \ 10^{-4} \times \mathsf{T}} + \mathsf{M})^{-2.65}}{(\mathsf{T} + \mathsf{M}) \, (\mathsf{T} + 2m_{p}c^{2} + \mathsf{M})}$$

alpha (new)

$$\mathsf{J}_{\alpha}(\mathsf{T},\mathsf{K}) = \frac{\mathsf{c}_{\alpha} \times \mathsf{T}^{\mathsf{K}} \times (\mathsf{T} + 2\mathsf{m}_{\alpha}\mathsf{c}^{2})}{(\mathsf{T} + 700)(\mathsf{T} + 2\mathsf{m}_{\alpha}\mathsf{c}^{2} + 700)(\mathsf{T} + 312500\ \mathsf{T}^{-2.5} + 700)^{1.65 + \mathsf{K}}}$$

$${\sf K} = (1.786 \,\, 10^{-3} imes {\sf M}) - 0.1323$$

Cut-off effects

New effects

- Modified irradiation flux
- Modified ratio p/α particles

Meteoroid types

Observations

- Increased flux at 10 cm
- Higher neutron flux with heavier elements
- Composition influence the spectrum shape

Funnel effect

CosmicTransmutation vs CosmicTransmutation

Magnetic field intensity

Observations

 Higher magnetic field increases the particle flux at the poles (higher focusing)

Test Funnel algorithm

