

Transitions par interaction faible en métrologie des rayonnements ionisants

De la physique fondamentale aux applications

Séminaire IRFU/DPhN – Janvier 2020 | X. Mougeot

List CEALECH Sommaire

- > Contexte
- Données nucléaires de décroissance
- Étude de haute précision des effets atomiques
- Étude des spectres bêta aux énergies moyennes
- > Perspectives
- Conclusion

Contexte

Métrologie des rayonnements ionisants

Le LNHB est le laboratoire national désigné pour l'établissement et l'amélioration des étalons primaires en métrologie des rayonnements ionisants.

Définition de l'activité (Bq) et la dose (Sv, Gy) à travers des intercomparaisons internationales et un transfert aux utilisateurs via des étalons. Le référencement au BIPM et l'accréditation COFRAC assurent une traçabilité internationale et nationale.

Instrumentation + Méthodes = Étalons primaires, incertitude de référence Instrumentation + Étalonnage = Étalons secondaires, transfert

La diversité des processus radioactifs rend indispensable une certaine connaissance : schéma de désintégration, données atomiques et nucléaires.

Le LNHB est fortement impliqué dans l'évaluation des données de décroissance (atomiques, nucléaires) et des schémas de désintégration, pour la métrologie.

- Coordination de la collaboration internationale DDEP (Decay Data Evaluation Project), sous les auspices de l'AIEA.
- Données recommandées par le BIPM.

Importance des désintégrations bêta

Métrologie

Mesures d'activité (scintillation liquide, chambres d'ionisation)

Meilleure connaissance → Amélioration des incertitudes

Données atomiques et nucléaires

- DDEP, données de décroissance dans JEFF
- Données de structure nucléaire ENSDF

 30 000 transitions par interaction faible
 Propriétés calculées avec le code LogFT (modèle analytique de Gove et Martin, 1971)

Recherche fondamentale

- Astrophysique nucléaire (r-process)
- Physique des neutrinos (anomalie réacteur, surveillance, non-prolifération)
- Tests du Modèle Standard (unitarité de la matrice CKM, magnétisme faible)
- Nouvelle physique (interférence de Fierz, neutrino stérile, matière noire)

Médecine nucléaire

Microdosimétrie, radiothérapie interne vectorisée, contamination

Cycle du combustible

Puissance résiduelle, déchets nucléaires

Développements

Générateurs bêta-voltaïques, nouveaux détecteurs (ex. LaBr₃)

État de l'art en début d'étude

- > Très peu de mesures depuis 40 ans
- Pas d'information sous 50 keV
- > Problème de cohérence des résultats

Quelques codes disponibles calculant les désintégrations bêta et les captures électroniques

- Modèles analytiques simples
- Cas traités limités, essentiellement transitions permises
- Informations manquantes, parfois pas de spectre bêta
- Incohérence des formalismes

Quelques rares théoriciens nucléaires travaillant sur les transitions bêta

- Cas très spécifiques : superpermises, double bêta, périodes de désintégration
- Composante leptonique simplifiée à l'extrême

list

Ceatech

Données nucléaires de décroissance

BetaShape v2

L'interaction faible dans les données nucléaires

- Transitions bêta : spectres, énergies moyennes, log ft
- Captures électroniques : probabilités de capture, log ft

list

Élaboration des bases de données nucléaires

LogFT est le code de référence pour les évaluations de données nucléaires

- Traite les transitions bêta et les captures électroniques
- Fournit les énergies moyennes des particules bêta, les probabilités de capture des couches principales, les valeurs de log *ft*
- Propage les incertitudes des paramètres d'entrée
- Gère les fichiers standard ENSDF (*Evaluated Nuclear Structure Data File*)

Cependant

- Modèles analytiques trop simples → manque de précision
- Ne traite que les transitions permises, premières et deuxièmes interdites uniques
- Les utilisateurs requièrent désormais les spectres bêta et parfois les spectres neutrino corrélés
- Les utilisateurs requièrent désormais les probabilités de capture pour toutes les sous-couches atomiques

61

Fly me to the moon...

list

Ceatech

La composante nucléaire peut être factorisée pour les transitions permises et interdites uniques

$$C(W) = (2L-1)! \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)} q^{2(L-k)}}{(2k-1)! [2(L-k)+1]!}$$

 → Résolution numérique de l'équation de Dirac pour les leptons

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

Les transitions interdites non-uniques sont calculées selon l'approximation ξ

si $2\xi = \alpha Z/R \gg E_{max}$ 1^{ère} non-unique \rightarrow permise appliquée aux 2^{ème}, 3^{ème}, etc.

- Correction d'écrantage analytique de Bühring adaptée à des potentiels précis
- Corrections radiatives venant de l'étude très précise de transitions super-permises
- Base de données de facteurs de forme expérimentaux
- Propagation des incertitudes

Exemples de calculs améliorés

Ces deux transitions sont calculées comme des permises par le programme LogFT, qui ne fournit pas les spectres bêta.

list

Ceatech

Permises et interdites uniques

- \rightarrow pas de structure nucléaire
- Si énergie de transition $\geq 2m_e$
- ightarrow compétition avec une transition $m{eta}^+$

X. Mougeot, Appl. Radiat. Isot. 154, 108884 (2019)

Fonctions d'onde atomiques

- Résolution numérique de l'équation de Dirac
- Convergence forcée vers des énergies DFT relativiste avec corrélations d'électrons

S. Kotochigova *et al.*, Phys. Rev. A 55, 191 (1997)

list ceatech

Comparaison aux mesures

J. Pengra *et al.*, Phys. Rev. C 5, 2007 (1972) M. Loidl et al., Appl. Radiat. Isot. 134, 395 (2018)

Deuxième interdite unique

F. Quarati et al., Appl. Radiat. Isot. 109, 172 (2016)

list ceatech

Comparaison aux mesures

BetaShape v2

Code

6

- 7 programmes, 9 classes C++, 27 000 lignes au total
- 6 fichiers externes, 6 300 lignes au total
- Interface avec les fichiers standard ENSDF
- Exécutables disponibles sur le site internet du LNHB

Transitions bêta

- Spectres β^+/β^- totaux et pour chaque transition individuelle
- Spectres v_e/\bar{v}_e correspondents
- Énergies moyennes, log ft
- Facteur de forme expérimental, si dans la base de données (131 transitions)

Captures électroniques

- Probabilités de capture et leurs rapports pour chaque sous-couche, log ft
- Gestion des captures impossibles énergétiquement (ex. capture K dans ²⁰⁵Pb)
- Répartition des intensités ε/β^+ dans une même branche

Étude de haute précision des effets atomiques

Influence des électrons à basse énergie

Métrologie

Mesures primaires d'activité par scintillation liquide

R. Broda, P. Cassette, K. Kossert, Metrologia 44, S36-S52 (2007)

Médecine nucléaire

Évaluation de la **dose déposée** à l'échelle de la cellule

M. Bardiès, J.-F. Chatal, Phys. Med. Biol. 39, 961-981 (1994)

Connaissance précise des distributions de probabilités d'émission pour :

- les électrons/positons (désintégration beta)
- les électrons Auger (suite à capture électronique, ionisation)

list

Ceatech

Calorimètres métalliques magnétiques

Système refroidi à 10 mK

M. Loidl *et al.*, App. Radiat. Isot. 134, 395 (2018)

list

Ceatech

list Ceatech

⁶³Ni et ²⁴¹Pu

list Ceatech

⁶³Ni et ²⁴¹Pu

M. Loidl et al., App. Radiat. Isot. 68, 1454 (2010)

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

Application en métrologie

Mesure de l'activité primaire par scintillation liquide

- → Le rendement de détection dépend directement du spectre bêta
- \rightarrow II est fortement non-linéaire à basse énergie
- \rightarrow Incertitude typique : 0,5%
- Système avec 2 PMTs: CIEMAT/NIST (traceur)

$$\boldsymbol{\varepsilon} = \int_{0}^{E_{\text{max}}} \underbrace{\boldsymbol{\varepsilon}(\boldsymbol{E})}_{0} (1 - \boldsymbol{e}^{-\eta})^{2} d\boldsymbol{E} \qquad \qquad \eta = \frac{v}{n} \int_{0}^{E} \frac{A dE}{1 + kB \frac{dE}{dx}}$$

• Système avec 3 PMTs: RCTD (Rapport des Coïncidences Doubles à Triples)

$$TDCR = \frac{R_T}{R_D} = \frac{\int_{0}^{E_{\text{max}}} S(E)(1 - e^{-\eta})^3 dE}{\int_{0}^{E_{\text{max}}} S(E)((3(1 - e^{-\eta})^2 - 2(1 - e^{-\eta})^3)) dE}$$

list

List 6

list ⁶⁰Co Ceatech

Activité de référence indépendante du spectre bêta par mesure des coïncidences en $4\pi\beta$ - γ

⁶⁰Co: *kb* = 0.0075 cm/MeV, classical

a

TDCR-M27

• TDCR-M29

Wallac

1.25

1.00

0.75

0.50

Étude des spectres bêta aux énergies moyennes

Détecteur silicium unique

list

ceatech

Géométrie quasi 4π

Abhilasha Singh (Doctorat 2017-2020)

Configuration de mesure

Doigt froid pour azote liquide

Technique de préparation de source spécifique

Dépôt radioactif

Sources ouvertes : Sources scellées : Activité typique :

Autoradiographie

épaisseur 0,5 à 0,7 μm épaisseur 1 à 1,5 μm ~1 kBq

Simulations PENELOPE

list

Ceatech

list

Ceatech

Facteur de forme théorique

$$C(W_e) = \sum_{Kk_ek_{\nu}} \lambda_{k_e} \left[M_K^2(k_e, k_{\nu}) + m_K^2(k_e, k_{\nu}) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_{\nu}) m_K(k_e, k_{\nu}) \right]$$

Développement multipolaire des courants hadronique et leptonique. Calcul des facteurs de forme, périodes de désintégration, rapports de branchement, log *ft*.

Théorie de Fermi

- > Vertex d'interaction ponctuel, pas de propagation de boson W^{\pm} .
- > Constante de couplage effective G_F .

Approximation soudaine

- Le nucléon ne ressent que l'interaction faible au moment de la désintégration.
- > Les autres nucléons sont spectateurs.

St

Ceatech

Transition décrite comme la transformation d'un seul nucléon

- \rightarrow Éléments de matrice à une particule en symétrie sphérique
- → Fonctions d'onde relativistes nécessaires

Deux modèles nucléaires simples : oscillateurs harmoniques non-relativistes et relativistes dans un modèle en couches naïf. $\hbar\omega = 41 \cdot A^{-1/3}$ MeV

²⁰⁹Pb : première interdite non-unique

list

ceatech

⁴⁰K: troisième interdite unique

list

Ceatech

Perspectives

Théorie

Partie atomique

- ➢ Nouvelles mesures de grande précision par MMC : ¹⁴C, ⁹⁹Tc, ¹⁵¹Sm.
- Extension du formalisme de l'effet d'échange aux transitions interdites.
- Fonctions d'onde atomiques de grande précision : développement en cours d'un code DFT relativiste dans le cadre du projet européen MetroMMC par l'IPCMS (Strasbourg, France).

Partie nucléaire

Fonctions d'onde nucléaires réalistes : NuShellX

- > Déformation du noyau, QRPA \rightarrow Collaborations nécessaires.
- Estimation des incertitudes théoriques, propagation par méthode Monte Carlo.

⁹⁹Tc : deuxième interdite non-unique

list

Ceatech

 $^{99}_{43}\text{Tc}_{56}(\text{gs},9/2^+) \rightarrow ^{99}_{44}\text{Ru}_{55}(\text{gs},5/2^+)$

NushellX : cœur ${}^{88}_{38}$ Sr₅₀, interaction gl

- Valence : p (2p_{1/2}, 1g_{9/2}) et n (3s_{1/2},2d_{5/2})
- $(\hbar\omega)_{p,n}$ déterminés à partir des $\langle r^2 \rangle_{exp}^{1/2}$

Termes dominants de la transition beta

• K = 2, 3 et neutron $2d_{5/2} \rightarrow \text{proton } 1g_{9/2}$

⁹⁹Tc : deuxième interdite non-unique

 $^{99}_{43}$ Tc₅₆(gs, 9/2⁺) $\rightarrow ^{99}_{44}$ Ru₅₅(gs, 5/2⁺)

NushellX : cœur ${}^{88}_{38}$ Sr₅₀, interaction gl

- Valence : p (2p_{1/2}, 1g_{9/2}) et n (3s_{1/2},2d_{5/2})
- $(\hbar\omega)_{p,n}$ déterminés à partir des $\langle r^2 \rangle_{exp}^{1/2}$

Termes dominants de la transition beta

• K = 2, 3 et neutron $2d_{5/2} \rightarrow \text{proton } 1g_{9/2}$

list

<u>ceatech</u>

Silicium noir (black silicon)

Développé dans les années 1990, essentiellement pour l'énergie solaire. Forte réduction de la réflexivité des photons, des infrarouges aux ultraviolets. On peut s'attendre à une forte réduction de la rétrodiffusion des électrons.

J. Lv et al., Nanoscale Research Letters 13, 110 (2018)

→ New! Tests prévus en alpha, électrons et X

list

Ceatech

Projet NEvFAR Matthieu Vivier (IRFU/DPhP) → Réévaluation de l'anomalie de réacteur

list

Clatech

Anthony Onillon (Postdoc 2018-2020) Lorenzo Périssé (Doctorat 2018-2021)

La controverse du neutrino stérile

→ Résultats de RENO en contradiction avec ceux de Daya Bay. Le neutrino stérile revient dans la course !

G. Bak et al., Phys. Rev. Lett. 122, 232501 (2019)

list

ceatech

Modèle Standard et interactions induites

$$N(W)dW \propto pW(W_0 - W)^2 \times \left(1 \left(\frac{\gamma m_e}{W} b_{\text{Fierz}} \pm \frac{4W}{3M} b_{\text{wm}}\right) dW$$

Magnétisme faible : nucléon non-ponctuel à structure interne Interférence de Fierz : courants exotiques au-delà du Modèle Standard

list

Ceatech

Conclusion

Recherche orientée

- Une expertise complémentaire et spécifique : données nucléaires et atomiques, transitions par interaction faible (expériences, théorie), et bien d'autres choses encore.
- > BeEST (Co. Sc. Mines, LLNL, MSU, Standford, TRIUMF)
- > MTAS (ORNL, ANL, BNL, UTK, UW, HIL-W, LSU)
- > TAGS (Subatech, IFIC Valencia, Uni. Surrey, JYFL, ALTO)
- Workshop NEEDS / NACRE : "La structure nucléaire et les données nucléaires pour les réacteurs".

https://indico.in2p3.fr/event/20211/

11-12 mai 2020 à Digiteo Saclay

St

ceatech

Merci de votre attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019