

SPIN PHYSICS DETECTOR PROJECT AT JINR (DUBNA)

Alexey Guskov, JINR

on behalf of the SPD collaboration

<u>Alexey.Guskov@cern.ch</u>

28.5.2021

THE JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA, RUSSIA

The Joint Institute for Nuclear Research is an international intergovernmental scientific research organization in the science city Dubna of the Moscow region (Russia)

TEST OF QCD BASICS AT NICA

MultiPurpose Detector

Study of hot and dense baryonic matter in heavy ion collisions

Spin Physics Detector http://spd.jinr.ru

Study of the nucleon spin structure and spin-related phenomena in polarized p-p, d-d and p-d collisions

POLARIZED BEAMS AT NICA

d↑- was accelerated in 1986 (Synchrophasotron) and 2002 (Nuclotron). It is quite simple procedure: there is just 1 depolarizing spin resonance at 5.6 GeV.

p↑- was first obtained only in 2017.

Source of Polarized Ions: $H^0 \uparrow + D^+ \rightarrow H^+ \uparrow + D^0$ $D^0 \uparrow + H^+ \rightarrow D^+ \uparrow + H^0$

Spin Transparency mode for NICA ring

SPD – VS OTHERS

In the $p^{\uparrow}p^{\uparrow}$ mode:

Experimental	SPD	RHIC	EIC	AFTER	LHCspin
facility	@NICA			@LHC	
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	$p^{\uparrow}-p^{\uparrow}$	$p^{\uparrow} p^{\uparrow}$	$e^{\uparrow}-p^{\uparrow}, d^{\uparrow}, {}^{3}\mathrm{He}^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	$p - p^{\uparrow}$
& polarization	$d^{\uparrow} - d^{\uparrow}$				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	$\leq 27 (p-p)$	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	~0.1 (<i>d</i> - <i>d</i>)			~10(<i>p</i> - <i>p</i>)	
Physics run	>2025	running	>2030	>2025	>2025

In the $d^{\uparrow}d^{\uparrow}$ mode we are unique

CINEMATIC RANGE

CONCEPT OF THE SPD PHYSICS PROGRAM

SPD - a universal facility for comprehensive study of gluon content in proton and deuteron at large x

Charmonia

Prompt photons

Open charm

Other physics

Other spin-related phenomena

GLUON PDFs

arXiv:2011.15005

GLUON PROBES AT SPD

GLUON PROBES AT SPD

not only J/ψ!

Sharp signal Relatively large cross section

Largest cross section

Model-dependent probability for $c\bar{c} \rightarrow [c\bar{c}]$

 Challenging experimental requirements
 Model-dependent
 fragmentation functions

Almost no fragmentation

Strong background especially at low p_T

CHARMONIA PRODUCTION

UNPOLARIZED GLUONS IN PROTON AT HIGH x

14

GLUON HELICITY FUNCTION $\Delta g(x)$

GLUON HELICITY FUNCTION $\Delta g(x)$: EXPECTATIONS FOR A_{LL}

16

total

direct

frag.

6

5

fact./ren. scale p

7

p, (GeV/c)

GLUON-INDUCED TMD EFFECTS : GLUON SIVERS FUNCTION Δ_N^g (x,k_T)

Sivers effect: left-right asymmetry of unpolarized k_T distribution in transversely polarized nucleon

Sivers effect

- due to fragmentation of polarized quark

 A_N

Collins effect in the first approximation is absent for chamonia and prompt-photon production:

GLUON-INDUCED TMD EFFECTS: EXPECTATIONS FOR A_N

GLUON-INDUCED TMD EFFECTS : BOER-MULDERS FUNCTION $h_1 \perp g(x, k_T)$

 $gg \rightarrow D\bar{D}, \gamma\gamma, J/\psi\gamma, \dots$

The hadronic cross section can be written with corrections of order $\mathcal{O}(\infty/S)$ in the form [D. Boer, P. Mulders, C. Pisano, 2008]

$$\frac{d\sigma(pp \to D\bar{D}X)}{d\eta_1 d\eta_2 d^2 k_{1T} d^2 k_{2T}} = \frac{\alpha_S}{SK_T^2} \left[A(Q_T^2) + B(Q_T^2)Q_T^2 \cos 2(\phi_T - \phi_\perp) + C(Q_T^2)Q_T^4 \cos 4(\phi_Q - \phi_K) \right]$$
$$\frac{d\sigma(pp \to D\bar{D}X)}{d\eta_1 d\eta_2 d^2 k_{1T} d^2 k_{2T}} = \frac{\alpha_S}{SK_T^2} \left[A(Q_T^2) + B(Q_T^2)Q_T^2 \cos 2(\phi_T - \phi_\perp) + C(Q_T^2)Q_T^4 \cos 4(\phi_Q - \phi_K) \right]$$

$$egin{aligned} A:& f_1^q\otimes f_1^{ar q},\ f_1^g\otimes f_1^g\,,\ B:& h_1^{\perp\,q}\otimes h_1^{\perp\,ar q},\ rac{M_Q^2}{M_\perp^2}f_1^g\otimes h_1^{\perp\,g}\,,\ C:& h_1^{\perp\,g}\otimes h_1^{\perp\,g}\,. \end{aligned}$$

 $h_1^{\perp g} < 0$

UNPOLARIZED GLUONS IN DEUTERON AT HIGH x

Fig. 6. Gluon PDF in the deuteron and in the nucleon.

GLUON TRANSVERSITY **Agt(x)** IN DEUTERON

RATES FOR MAIN PROBES

	$\sigma_{27 GeV}$,	$\sigma_{13.5\text{GeV}}$,	N _{27 GeV} ,	N _{13.5 GeV}
Probe	nb (×BF)	nb (×BF)	10 ⁶	10 ⁶
Prompt- $\gamma(p_T > 3 \text{ GeV/c})$	35	2	35	0.2
J/ψ	200	60		
$ ightarrow \mu^+\mu^-$	12	3.6	12	0.36
$\psi(2S)$	25	5		
$ ightarrow J/\psi\pi^+\pi^- ightarrow \mu^+\mu^-\pi^+\pi^-$	0.5	0.1	0.5	0.01
$ ightarrow \mu^+\mu^-$	0.2	0.04	0.2	0.004
$\chi_{c1} + \chi_{c2}$	200			
$ ightarrow \gamma J/\psi ightarrow \gamma \mu^+\mu^-$	2.4		2.4	
η_c	400			
$ ightarrow par{p}$	0.6		0.6	
Open charm: $D\overline{D}$ pairs	14000	1300		
Single D-mesons				
$D^+ \to K^- 2\pi^+ (D^- \to K^+ 2\pi^-)$	520	48	520	4.8
$D^0 \rightarrow K^- \pi^+ (\overline{D}^0 \rightarrow K^+ \pi^-)$	360	33	360	3.3

OTHER TASKS RELATED WITH THE PARTONIC STRUCTURE

Tensor structure of deuteron:

STSA with light hadrons contribution to global fit of quark TMDs

New structure functions: **b**₁,**b**₂,**b**₃,**b**₄

 $k = \overline{k}$ –

 $p = \overline{p} - \frac{\Delta}{2}$

GPD

PHYSICS OF THE FIRST STAGE OF **SPD** RUNNING

Non-perturbative QCD

Perturbative QCD

- Spin effects in p-p, p-d and d-d elastic scattering
- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions
- > Open charm and charmonia near threshold
- Auxiliary measurements for astrophysics

Charmonia

MAGNETIC SYSTEM

6 superconductive solenoidal coils inside the ECAL:

- compact
- 1 T at the beam axis
- Z-optimization

Still 2 options

TRACKING SYSTEM

5 layers of Double-Sided Strip Detectors

3 internal layers in barrel replaced by MAPS

- Reconstruction of secondary vertices for D-mesons decay
- Participation in track reconstruction and momentum measurement

Requirements:

Goals:

- Spatial resolution <100 μm
- Low material budget
- Has to be installed as close as possible to the IP

Straw tracker Carbon fiber 30 double frame layers of straw Carbon (x2 zoom) capsule 2360

Goals:

- Track reconstruction and momentum measurement
- Participation in PID via dE/dx measurement

Requirements:

- Spatial resolution $\sim 150 \, \mu m$
- Low material budget
- Operation in magnetic field of about 1 T

some **R&D** is still needed

PARTICLE IDENTIFICATION SYSTEM

ELECTROMAGNETIC CALORIMETER

- Detection of prompt photons, photons from π^0 , η and χ_c decays
- Identification of electrons and positrons, participation in muon identification *Requirements*:
- Granularity ~4 cm
- Low energy threshold (\sim 50 MeV)
- Energy resolution ~ 5 % / \sqrt{E}

RANGE (MUON) SYSTEM

Goals:

- Muon identification
- Rough hadron calorimetry
- Yoke of the magnetic system

Requirements:

• should have at least $4\lambda_I$

Event examples at 5 GeV/c

LOCAL POLARIMETRY AND LUMINOSITY CONTROL

- Charged particles in BBC
- π^0 in the end-cap part of ECAL
- Neutrons in ZDC

 $\mathbf{X}_{\mathbf{F}}$

DAQ & COMPUTING

No hardware triggers to avoid possible bias!

	CPU [cores]	Disk [PB]	Tape [PB]
Online filter	6000	2	none
Offline computing	30000	5	9 per year

DETECTOR PERFORMANCE

PHYSICS PERFORMANCE: GLUON PROBES (1 YEAR=10⁷ S)

PHYSICS PERFORMANCE: ACCURACIES

PHYSICS PERFORMANCE: ACCURACIES

TENTATIVE RUNNING PLAN

Physics goal	Required time	Experimental conditions	
	j		
Spin effects in <i>p</i> - <i>p</i> scattering	0.3 year	$p_{L,T} - p_{L,T}, \sqrt{s} < 7.5 \text{ GeV}$	
dibaryon resonanses			
Spin effects in <i>p</i> - <i>d</i> scattering,	0.3 year	d_{tensor} - $p, \sqrt{s} < 7.5 \text{ GeV}$	
non-nucleonic structure of deuteron, \bar{p} yield			
Spin effects in <i>d</i> - <i>d</i> scattering hypernuclei	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} <7.5 GeV	\geq 5 years
Hyperon polarization, SRC,	together with MPD	ions up to Ca	of data taking
multiquarks			
	Second stage]
Gluon TMDs,	1 year	$p_T - p_T, \sqrt{s} = 27 \text{ GeV}$	
SSA for light hadrons			
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV< \sqrt{s} <27 GeV	
charm production near threshold, onset of deconfinment, \bar{p} yield		(scan)	
Gluon helicity,	1 year	$p_L p_L, \sqrt{s} = 27 \text{ GeV}$	
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$	
non-nucleonic structure of deuteron,		or/and? $d_{tensor} p_T$, $\sqrt{s_{NN}} = 19 \text{ GeV}$	
"Tensor porlarized" PDFs			37

.

.

SPD INTERNATIONAL COLLABORATION

SPD CDR was issued in the beginning of 2021: <u>arXiv:2102.00442</u> CDR in now under expertise of the international **Detector Advisory Committee** First version of the SPD TDR should be presented in the beginning of 2022

DIRECTIONS FOR COLLABORATION

SUMMARY

➤ The **Spin Physics Detector** at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized **gluon content of proton and deuteron**; in polarized high-luminosity **p-p** and **d-d** collisions at $\sqrt{s} \le 27 \text{ GeV}$

.

- Complementing main probes such as charmonia (J/ψ and higher states), open charm and prompt photons will be used for that;
- SPD can contribute significantly to investigation of

O gluon helicity;

O gluon-induced TMD effects (Sivers and Boer-Mulders);

O unpolarized gluon PDFs at high-x in proton and deuteron;

O gluon transversity in deuteron.

0...

- ➤ The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, EIC) and mesons (COMPASS++/AMBER, EIC).
- ► SPD CDR could be found at <u>arXiv:2102.00442</u> for more details.
- More information could be found at http://spd.jinr.ru