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Introduction

 The LHC is a TeV scale accelerator. Its
primary goal is the study of high energy
phenomena such as the Higgs Boson,
Supersymmetry, Quark-Gluon Plasma, CP ‘7_
violation. P

anti-3He

* At the same time, it delivers a plethora of
groundbreaking measurements at the MeV

(nuclear and hadronic physics) scale, e.g. o ﬁ’\
precision studies on hyper-triton 7
properties and measurements of the anti-hyper-4H

hyperon-nucleon strong interaction
potential.

* Surprisingly, many of these results have
strong implications for fundamental
questions in astroparticle physics.
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Antinuclei at the LHC: a portal to astrophysics



[ALICE, Nature Phys. 19 (2023)]

Search for antinuclei in space (1)
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[ALICE, Nature Phys. 19 (2023)]

Search for antinuclei in space (2)
To-do list for collider based

experiments:
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The LHC as an antimatter factory
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[Phys. Rev. C 97, 024615 (2018)]
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Penalty factor at the LHC
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The production yield of (anti)-nuclei decreases by a factor of
about ~350 for each additional nucleon in Pb-Pb (~1000 in pp).




Antinuclei at the LHC: a portal to astrophysics
antinuclei formation




Measurements of antinuclei production

- Over the last years, ALICE delivered a unique set of high quality on anti-
nuclei production for various collision systems.
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https://doi.org/10.1007/JHEP01(2022)106

Coalescence parameters B,

* (anti-)nuclei production by coalescence of (anti-)protons and (anti-) neutrons which
are close by in momentum and configuration space. Roughly speaking:
“deuteron o proton x neutron => deuteron o proton?”

2 —
d’Ng &N P
Eo—5 =By (Ep—
dpg dp;
* Spherical approximation: maximum momentum difference (coalescence

momentum py) is approx. 100 MeV (5.3 MeV kinetic energy of a nucleon in the
rest frame of the other).

- Can be implemented as an afterburner to standard event generators.

11



Coalescence model parameters as input for astro
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Figure 13. Estimated antideuteron flux on Earth from DM annihilations into bb pairs and from secondary
Fig. 2 The coal factor By for different multiplicit . . .
ol def;ntfe ALTOR + dilboration i;nsorif;:r‘eg production for the considered benchmark cases. The shaded areas on the top are the estimated AMS-02 and
to the predictions by QGSJET II (above) and Pythia 8.2 GAPS sensitivities.

(below) using the WiFunC model (solid lines). The results [KaChelneB et al.’ arX|V:2002.1 0481 V2]

for the standard coalescence model (dashed lines) are shown
for comparison. Class I corresponds to largest multiplicities,
while the multiplicity decreases with increasing class.

[KachelrieB et al.. arXiv:2012.04352v2] N.B.: Several groups perform these calculations, we show here

the example of Kachelriel3 et al.! 12
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Antinuclei production in b-quark decays (1)
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[M. Winkler, T. Linden, PRL 126 (2021)] [ALICE 3 Letter of Intent]

- Anti-3He originating from A, decays from dark matter annihilation might lead to an enhanced flux of anti-3He

near earth.

- Accelerator based experiments like ALICE are in the best position to determine the branching ratios of these
rare decays.

- Precise dca-resolution of ALICE 3 is key to perform the measurement. First layer in beam-pipe removes all

potential ambiguities from Moliere scattering that are difficult to simulate. 13



Antinuclei production in b-quark decays (2)
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e String fragmentation (e.g. Lund model in PYTHIA)
o  Strings = colour-flux tubes between q and @ end-points
o  Gluons represent kinks along the string
o  Strings break via vacuum-tunneling of (di)quark-anti(di)quark pairs \@“\%‘wx\\_

e Cluster decay in HERWIG
o Shower evolved up to a softer scale
o All gluons forced to split into qq pairs
o Identify colour-singlet clusters of partons following color flow
o Clusters decay into hadrons according to available phase space
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After LHC Run 3 & 4, we will have understood the formation mechanisms of A < 5 anti- and hyper-nuclei from
collisions, but will only start to probe their production in b-quark decays. Run 5 & 6 will provide the definitive

answer.

14



Antinuclei at the LHC: a portal to astrophysics
transparency of the galaxy to antinuclei

15



Annihilation of antinuclei in interactions with matter

* The inelastic interaction cross-sections of antinuclei
with matter remained poorly known: since the 70s —
only 2 papers on at high energies from ‘70, ‘71 [1-2].

» This is due to the fact that beams of heavier antinuclei
are very difficult to obtain.

* |dea: we use the ALICE detector material as a target!
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\
il

I8

[1] Binon et al. PLB 31 (1970), [2] Denisov et. al. Nuc. Phys. B 31 (1971)
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Raw °He (TOF) / raw °He (TPC)

Anti-3He inelastic cross-section
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http://arxiv.org/abs/2202.01549

Putting it all together: anti-3He flux near earth

- We calculate the effect of the
inelastic cross sections on the anti-
3He flux near earth

- Uncertainties only from ALICE
measurement are small compared
to other uncertainties in the field!

Flux (o))
Flux(o-inel == O)

Transparency =

- Rather constant transparency of
50% for typical DM scenario and
25%-90% tfor background

- High transparency of the galaxy to
nuclei!
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http://arxiv.org/abs/2202.01549

Strong interaction among hadrons
and neutron stars

19



Hyperon appearance in neutron stars

[J. Schaffner-Bielich NPA 835 (2010)]
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Correlation functions to study the strong interaction

[Nature 588 (2020) 232-238]
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The novel results on hyperon-nucleon and hyperon-hyperon interactions provided by correlation

studies at the LHC by ALICE are key to compute more realistic equation of state for neutron stars
containing hadrons with strange content.
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Access to genuine three-body interactions
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- First look at three-body interactions looks promising. Precision results are awaited for LHC Run 3!
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Nuclear structure, charm- and hyper-nuclei
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Hypertriton lifetime and binding energy
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- Most precise measurements are done at the LHC and not at dedicated low

energy facilities!



Extending the table of nuclides...

N=258

B stable isoto .
B rosceticaycran | > In the antimatter
B fusion/trans! fer . .
B fiheinicn direction..
M predicted driplines 1
4b Bb 1ZJO 1éO 260 2&0 2é0
Neut: umber N
-S-" anHe |
4\ eI‘:]}lL j’;_l; \Li \Li
eeeee
- In the strangeness - e e e {Hie
. . [ f_Be) B 9Be f10
direction.. /Tmy ey oy

- Can we also extend the table of nuclides in
the charm direction in the next 15 years?

o A

M He He - Anti-(hyper)-nuclei up to A=4
are currently in reach at

accelerators.

- Anti-hyper-nuclei of mass
A=5 and anti-nuclei of mass
A=6 will become in reach in
the long term future.
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Zoo of exotic QCD bound states reachable at LHC

Run 1 & 2
(2010-2018)

Run 3 & 4
(2021-2030)

Run 5 & 6
(2032-2038)

-~ new ALICE 3
experiment at LHC-P2
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The statistical-thermal model as a production scenario

o ' '+' L L N
> Production yields of light flavour hadrons * 10°ka. Pb-PDb | 5\=2.76 TeV j
from a chemically equilibrated fireball can & 102_.5 0-10% centrality i
be calculated by statistical-thermal models 2 ™. RA
(roughly dA/dy ~ exp{-m/ T}, in detail > 100 RS E
derived from partition function) © 1E 0 *“ o 3
107'E = g -
- =, ]
- In Pb-Pb collisions, particle yields of 107¢ 3
light flavor hadrons are described over 7 103 T _
orders of magnitude with a common W e sy :
chemical freeze-out temperature of 107 @ Data, ALICE *, 3
T., = 156 MeV. 10°¢ Statistical Hadronization E
10-6_5 tO’FaI (aﬁer decays) "n.‘fHe;

> Light (anti-)nuclei are also well o7 L o
described despite their low binding energy L L
(Eb,d = 2.2 MeV << 7;:h) Mass (GeV)

[A. Andronic et al., Nature 561 (2018) 7723, 321-330]
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Alternative production scenarios for antinuclei (1)

It is often argued that statistical-thermal
production for such weakly bound states is
coincidental.

Coalescence approaches or continuous
generation and destruction via hadronic
interactions are proposed as alternatives.

This is an interesting physics topic, but not the

subject of my talk today.

What is relevant for charm nuclei here: in
central heavy-ion collisions, the statistical-
thermal model is at least a reliable baseline
for the expected yields.

107"
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A
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——— 3-body coalescence - 1o expected

—e— ALICE Pb-Pb |[5,=2.76 TeV

10 10? 10°
(dN _ /dm)

Inl<0.5

[Public note on ALICE pp program]
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Alternative production scenarios for antinuclei (2)

It is often argued that statistical-thermal
production for such weakly bound states is
coincidental.

Coalescence approaches or continuous
generation and destruction via hadronic
interactions are proposed as alternatives.

This is an interesting physics topic, but not the
subject of my talk today.

What is relevant for charm nuclei here: in
central heavy-ion collisions, the statistical-
thermal model is at least a reliable baseline
for the expected yields.

L —-—— Nucleon
Deuteron i

yield(V) / yield(V,)
R S W N

o oo
N o0 \©

o ¢
o

[MeV]

FIG. 8: Evolution of yields (upper panel) and thermodynamic
variables (lower panel) in our toy model without annihilations
for To = 155 MeV. The deuteron yield grows, which is similar
to our simulation within the fourth scenario in Fig.

[Phys. Rev. C 99, 044907 (2019)]
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Thermal production of charm particles

. . Predictions of statistical-thermal hadronization model
* Charm particle production

— 10°F
rates are expected to be % 10F .~ . Pb-Pbysy=502TeV0-10%
enhanced by the factor of the R N lyl<0.5
charm fugacity ~ 107 ¢
: : ' 107
(including charm nuclei). o 1Y
> 107 ¢
o 100 t e 9
* This makes multi-charm ]8_6 e 922
observable at LHC energies 107 b — uds only paricies
despite small branching ratios. 108 F  — c=1 particles 4 Ie
10—9 r —— c =2 particles . e
10_10 r — ¢ =3 particles x e
« Excellent synergy between 10" & N
charm and anti-nuclei physics: 10712 p SHM, 7,,=156.5 MeV N
anti- and hyper-nuclei provide 1071%F o, /dy=0532£0096mb
the baseline to measure g, 1095 2 25 3 35 4 45 5 55 6
with multi-charm hadrons! Mass (GeV)

[A. Andronic et al., JHEPO7 (2021) 035]
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c-deuteron and c-triton

The lightest possible bound states of a charm
baryon and a nucleon without Coulomb
repulsion are bound states of A_* and a neutron:
c-deuteron and c-triton.

Their possible existence is widely and
controversially discussed in the literature since
the 1970s with the c-triton being more likely to
exist than the c-deuteron, see e.g.:

[Phys. Rev. Lett. 39, 1506]
[Eur.Phys.J.A 54 (2018) 11, 199]

Their possible (non-)existence sheds light on the
charm-nucleon potential.
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Fig. 9 A_.N effective potentials for J™ = 0% and 17.

[PTEP 2016 (2016) 2, 023D02]
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Decay channels and branching ratios

Most promising decay channels:
— C4 >d+ K+t
- Ct 9 t + K- + T[+

The relevant decay of the bound
At 2 p + K + nt* has a branching ratio of
6.28+0.32%.

Probability of the decay proton to bind with the
bound neutron can be estimated by requiring

p < 200 MeV in the rest frame of the A.* and is found
to be = 3-10%.

This momentum scale for binding of protons and
neutrons to deuterons is itself constrained by the
deuteron production measurements at LHC energies

-)

®\

5 Pb+Pb, 2. 75 TeV Deuterons from phase-space coalescence.
AR ——rr ———rrr
L —O— Hydro + UrQMD, Pb+Pb
--83--UrQMD v3.4, p+p
4 [FALICE Data: s
® Pb+Pb
[ @ p+p
3
a 3F 4
S |
- We calculate the relative momenta Ap = |7, — 75|
o 2f and the relative distances Ar = |2y — @'3| of the
- i p-n pair in the 2-particle rest-frame at equal times.
N i i The yield of deuteron candidates is then given by
1 =) the condition of Ap < Apmaz and Ar < Arpge.
Here we use the parameter set of Ap,,q: = 0.285
GeV/c and Arp,e, = 3.575 fm.
2 1 00 1000
dN_/dn

[Phys. Rev. C 99, 014901 (2019)]
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Experimental challenges: PID and vertexing

* Rare production of anti-nuclei requires excellent particle identification

* Main background source: primary deuterons that are combined with random pions and
kaons = excellent dca-resolution.
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c-deuteron: physics performance simulation

MC simulation studies
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The ITS3 upgrade will allow ALICE to start to become sensitive to c-deuteron
production (if it exists); a definitive answer will be provided by ALICE 3.
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Excursus: nuclear structure

ALICE, arXiv: 2111.06106
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= Indication of triaxial structure of 129Xe at high energy collisions at the LHC

= New connection of high-energy heavy-ion physics to low-energy nuclear (structure) physics

- See the interesting workshop in Saclay last autumn: Deciphering nuclear phenomena across energy scales


https://esnt.cea.fr/Phocea/Page/index.php?id=107

Summary & Outlook
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Summary

 ALICE was originally designed to study the creation and properties of the
quark-gluon-plasma — a deconfined state of matter that is created in ultra-
relativistic heavy-ion collisions and that also existed in the early universe
shortly after the big bang.

* Recently, the unique particle identification and tracking capabilities of ALICE
have also been utilized to provide crucial input for astrophysical challenges:
the search for anti-nuclei in space and the equation-of-state of neutron stars.

* These two a priori very different topics show intriguing connections.

 The future for the topic is bright: with the new ALICE 2 detector taking data
in LHC Run 3 and the planned ALICE 3 detector in the 2030s!



Wd\ \ -‘1\?‘!\ \.\X\ }!.]‘;\ ) 1 “1-

‘;Hio\..

Pb-Pb 5.36 TeV
LHC22s period
18th November 2022
16:52:47 893




Thank you!
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