13 décembre 2016

 

Mardi 13 décembre 2016, un chercheur de  l’Irfu/SPP a présenté au Cern, au nom de la collaboration Atlas, la première mesure de la masse du boson W effectuée avec les données du LHC. Les données analysées sont celles des collisions proton-proton enregistrées en 2011 à une énergie de collision de  7 TeV et correspondent à une luminosité intégrée de 4,6 fb-1. La valeur mesurée est 80370 ± 19 MeV, compatible avec la prédiction du modèle standard et avec la moyenne mondiale des mesures précédentes. Le résultat présenté par Atlas égale en précision la mesure de l'expérience CDF au TeVatron, la plus précise à ce jour.

20 juin 2016

Le LHC a démarré sa deuxième période de prise de données en 2015 à une énergie encore jamais atteinte par un collisionneur, permettant aux expériences Atlas et CMS d’étudier environ 3 fb-1 de données à la recherche de physique non standard. Le 13 juin 2016, les deux collaborations ont simultanément soumis à publication les résultats de leurs recherches de nouvelles résonances se désintégrant en deux photons dans les données enregistrées à 13 TeV en 2015 (Atlas et CMS) et à 8 TeV en 2012 (CMS). Atlas a proposé ses résultats au Journal of High Energy Physics, JHEP, et CMS à Physcal Review Letters.

20 juin 2016

Le LHC a démarré sa deuxième période de prise de données en 2015 à une énergie encore jamais atteinte par un collisionneur, permettant aux expériences Atlas et CMS d’étudier environ 3 fb-1 de données à la recherche de physique non standard. Le 13 juin 2016, les deux collaborations ont simultanément soumis à publication les résultats de leurs recherches de nouvelles résonances se désintégrant en deux photons dans les données enregistrées à 13 TeV en 2015 (Atlas et CMS) et à 8 TeV en 2012 (CMS). Atlas a proposé ses résultats au Journal of High Energy Physics, JHEP, et CMS à Physcal Review Letters.

17 mars 2016

La collaboration D0, dont le coordinateur de la Physique est un physicien de l’Irfu, vient d’annoncer l’observation d’un tout nouveau tetraquark, assemblage de quatre quarks, appelé X(5568). La famille de ces particules exotiques s’enrichit pour la première fois d’un membre composé de quatre quarks de saveurs différentes : up, down, étrange et beau.  Les résultats de cette analyse ont été soumis à la revue Physical Review Letters en février 2015. Cette découverte ouvre une nouvelle fenêtre sur l’interaction forte qui lie les quatre quarks entre eux et aide les théoriciens à développer les modèles : trois semaines après l'annonce, on compte déjà une vingtaine d'interprétations théoriques publiées sur le site ArXiv.

27 octobre 2016

 

La collaboration Double Chooz vient de présenter au CERN de nouveaux résultats fondés sur l’apport des données du détecteur « proche » localisé à 400 m des réacteurs nucléaires de Chooz. Ce détecteur permet désormais la mesure la plus précise de la section efficace des antineutrinos de réacteur, avec une incertitude de 1.2%. Par ailleurs les mesures concernant les oscillations de neutrinos ont été affinées.

14 mars 2016

Lors des 51èmes Rencontres de Moriond (La Thuile, Italie) la collaboration Double Chooz a affiné sa mesure de la disparition d'antineutrinos en provenance du réacteur nucléaire de la centrale de Chooz dans les Ardennes. Ces nouveaux résultats sont fondés sur la comparaison des données du détecteur proche (400 m, 9 mois de données) et lointain (1.1 km, 2 ans de données). La nouvelle valeur mesurée est sin2(2θ13) = 0.111±0.018. Ainsi la sensibilité de l’expérience anticipée dans la lettre d’intention (2004) est déjà atteinte. Ces résultats seront encore améliorés avec plus de données. La nouvelle valeur de θ13 mesurée par Double Chooz dépasse celle de l’expérience Daya Bay, d’environ 30 %, se rapprochant ainsi de la valeur mesurée par les expériences T2K and NOvA exploitant les neutrinos issus d'accélérateurs de particules.

06 septembre 2016

L’observatoire H.E.S.S. en Namibie traque la matière noire sous forme de WIMPs via la détection des rayons gamma produits lors de leur annihilation. A l’aide des 4 télescopes Tcherenkov phase 1, H.E.S.S. recherche le signal gamma de ces particules candidates à la matière noire dans les régions denses de l’Univers. L’analyse de l’ensemble des observations du centre de la Voie Lactée accumulées pendant les 10 ans de la phase 1 de H.E.S.S. permet de poser les contraintes les plus fortes à ce jour pour des WIMPs dans la plage en masse du TeV. Pour la première fois, les observations gamma au sol permettent de sonder les sections efficaces d’annihilation attendues par la densité relique thermique de particules de matière noire. Ces résultats viennent d’être publiés dans Physical Review Letter.

16 mars 2016

Sur les hauts plateaux Khomas de Namibie, trônent les 5 télescopes imageurs à effet Cherenkov de H.E.S.S.. Situés ainsi dans l’hémisphère Sud, ils sont idéalement placés pour scruter les phénomènes violents à l’œuvre dans les 300 parsecs centraux de la Voie Lactée. Leur quête? Traquer les rayons cosmiques galactiques à haute énergie, allant du Téra au Pétaélectronvolt (1012 à 1015 eV) pour comprendre leur origine. Ainsi, la mise en évidence d’un accélérateur de protons au PeV, un « PeVatron », avec l’appui de dix années de prise de données est une première historique. Ces protons sont 100 fois plus énergétiques que ceux produits par le plus performant accélérateur construit par l’homme. Plus étonnant encore, l’existence du PeVatron est très probablement liée à la présence d’un objet hors du commun : Sagittarius A*, le trou noir supermassif situé au centre de notre galaxie. Ce résultat remet aujourd’hui en question l’origine du rayonnement cosmique galactique aux plus hautes énergies, attribuées aux seuls vestiges de supernova. Il laisse également entrevoir d’importantes implications sur la physique des trous noirs en accrétion.

 

Intervenant : Emmanuel Moulin SPP/ Irfu / CEA
Réalisation : Alice Mounissamy – communication de l’Irfu / CEA

03 août 2016

La collaboration T2K a présenté de nouveaux résultats sur les oscillations des neutrinos à la 27ème Conférence sur la Physique du Neutrino (Neutrino 2016) à Londres. Les nouvelles données indiquent des probabilités d'oscillation différentes pour les neutrinos et les antineutrinos, une différence qui pourrait être liée à la violation de la symétrie de charge-parité. Les neutrinos pourraient ainsi détenir une des clés pour expliquer la différence entre matière et antimatière, une des questions les plus profondes sur l'évolution de l'Univers.

24 février 2016

Pour mesurer les oscillations de neutrinos, l’expérience T2K, utilisant le faisceau de neutrinos produit par l’accélérateur du laboratoire JPARC au Japon, compare les nombres de neutrinos muoniques et électroniques interagissant avec un détecteur proche de ceux interagissant avec un détecteur lointain. Pour ce faire, il faut maîtriser précisément la probabilité d’interaction, ou section efficace, des neutrinos avec les nucléons (protons et neutrons) des noyaux constituant la cible des détecteurs. C’est ce que réalise le groupe T2K du SPP qui a mesuré la section efficace de la réaction (νμ + n → μ- + p+), mesure faite pour la première fois dans T2K en fonction de l'impulsion et de l'angle du muon. Ceci permet d’étudier précisément les « effets nucléaires », autrement dit le fait que le neutron cible n’est pas libre mais lié au cœur de noyaux atomiques. Les résultats, en cours de publication dans Physics Review D, ouvrent la voie dans T2K à la mesure des effets nucléaires dans les interactions neutrinos/nucléons. Effets qui constituent aujourd'hui la source d'incertitude systématique la plus importante pour les futures mesures d'oscillation de neutrinos.

 

Retour en haut