

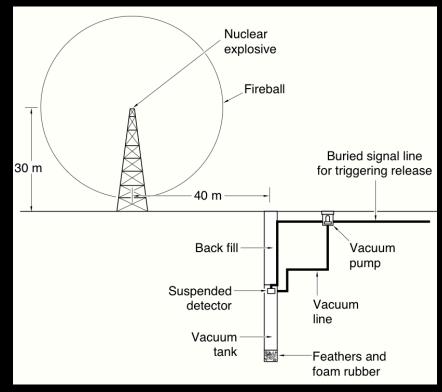
ECT Lecture 2

Reactor Antineutrino Detection The Discovery of Neutrinos

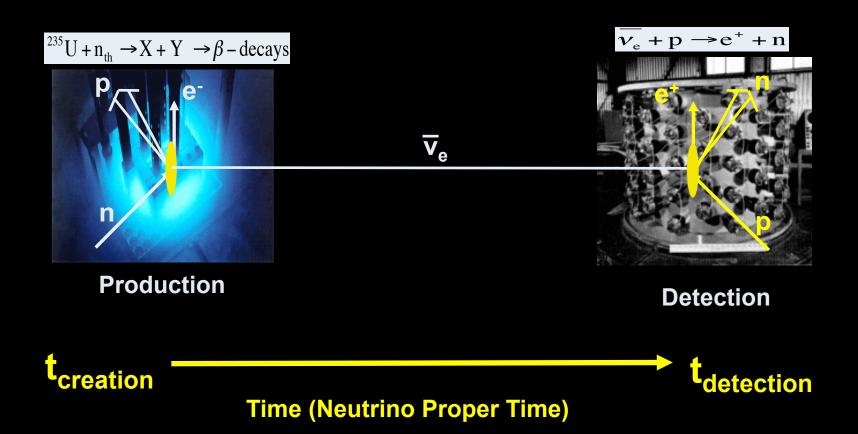
Thierry Lasserre (Saclay)

CEC Discovering Neutrinos from Nuclear Explosion

Inverse Beta-decay Cross Section


- σ_{IBD}<10⁻³⁷ cm² (H.R. Crane, 1948)
- Theoretical prediction: σIBD=10⁻⁴⁴ cm²
- Experiment sensitivity: σ_{IBD} > 10⁻⁴⁰ cm²
- \rightarrow experiment approved!

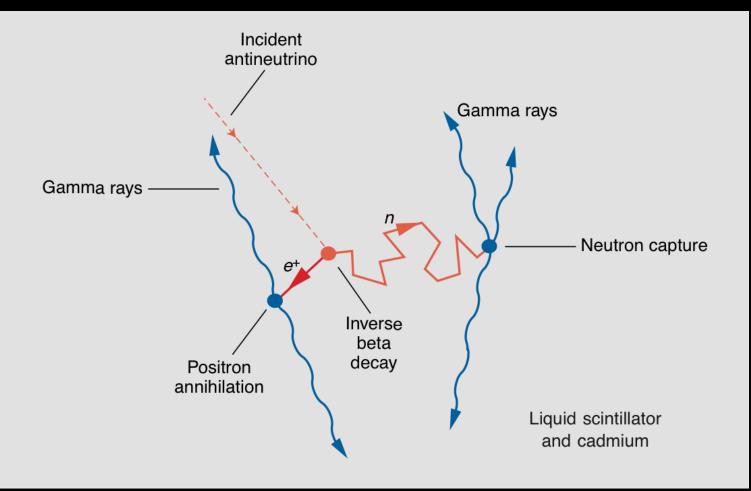
 Pyramidal ton scale toluene/teraphenyl liquid scintillator coupled to 4 PMTs: 'a giant liquid scintillation device' called 'El Monstro'


 2 second free-fall in a vacuum shaft detector in coincidence with the nuclear blast → several interactions at 50 meters from the tower-based explosion of a 20-kiloton bomb

But J. M. B. Keylogg pushed for an experiment close to a fission reactor & Reines & Cowan considered (e+,n) coincidence detection → project canceled

Approved experiment (early 1950's) Reines & Cowan's Group

Cerron Towards Neutrino Discovery



The Poltergest Project

Electron antineutrino detection

Positron Detection

Positron:

• m_n = 0.511 MeV, +1 electric charge

Energy Loss

- Collision/Scattering with nuclei
 - Bethe-Bloch dE/dx formula
 - multiple-scattering complicated the analytical computation \rightarrow MC
- Bremsstrahlung
 - Emission of atomic radiation as e⁺ scatter in the electric field of the nucleus
 - A few % of the total loss for MeV e⁺
- Total dE/dx = (dE/dx)_{coll} + (dE/dx)_{rad}
- Mean free path is on the mm to cm scale

Annihilation

- Positron looses its kinetic energy and start diffusing
- Annihilation with electron : $e^+ + e^- \rightarrow \gamma + \gamma$
 - Prompt signal
 - Gamma energy : E_g=1.022 MeV
 - Back-to-back gammas (momentum conservation)
 - Attenuation length in oil is about 10 cm at 511 keV

œ

Neutron Physics Basics

Neutron:

- m_n = 938.27 MeV
- no electric charge, main interaction through strong interaction
- Must path close to nucleus to interact $(10^{-11} \text{ cm}) \rightarrow \text{penetrating particle}$

Interactions

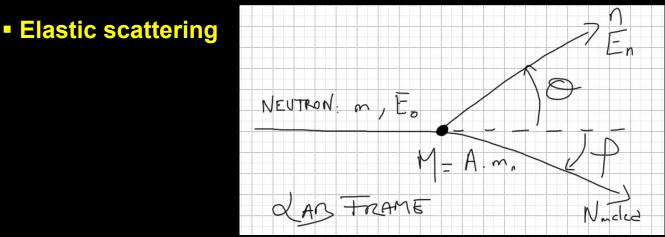
- Elastic scattering (main): A + n → A + n'
- Inelastic scattering (main): $A + n \rightarrow A^* + n$; $A + n \rightarrow B + n' + n''$
- Radiative neutron capture: n + (Z,A) \rightarrow (Z,A+1) + γ
 - cross section ∞ 1/v ; resonances
- Others: (n,p), (n,d), (n,α), ...

Energy & terminology

- Fast n: E > 100 keV ten's of MeV
- Slow n: E = 0.025 eV 1 eV

Epithermal n: E = 1 eV - 100 keVThermal n: E = 0.025 eV

Mean free path length


- $1/\lambda$ (cm⁻¹) = n (cm⁻³) . σ (cm²)
- collimated n beam : N=N₀ exp(-x/λ)

Neutron Physics Basics

Moderation:

Œ

- Fast neutrons scatter loosing their energy until thermal equilibrium
- Then neutrons diffuse until they are captured

Energy of the scattered neutron (A-1)²/(A+1)² E₀ < E_n < E

Implication for neutron shielding

- The lighter the target nucleus, the more recoil energy is absorbed by the neutron
- Low-Z material are being used to slow down neutrons
 - Water
 - Paraffin (CH₂)
 - Oil

œ

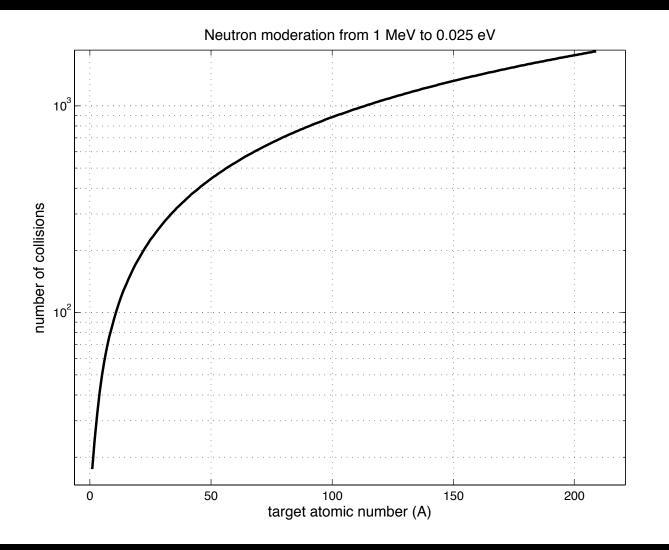
Neutron Moderation

• How many collisions before thermalization?

Depends on the target material atomic number

Lethargy change

- Neutron initial energy : Ei
- Neutron final energy : Ef
- u = ln (Ei/Ef)
- $Ef/Ei = (A^2+1+2A\cos\theta)/(A+1)^2$ (center of mass)
- Average lethargy change by collision :
 - $\xi = 1 + (A-1)^2/2A \ln (A-1)(1+1) = cte(A)$
 - independent of the initial energy


Number of collisions before thermalization

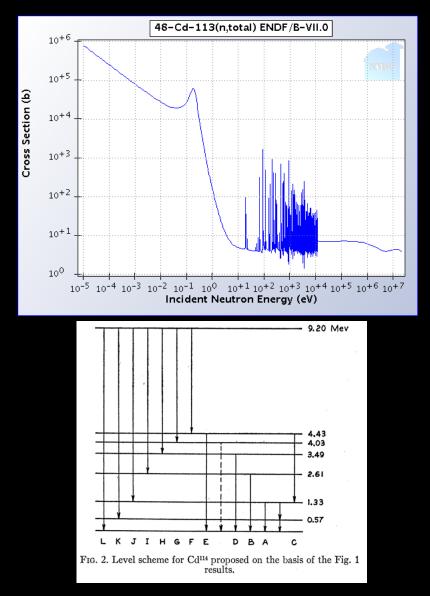
• N_c= In (Ei/Ef) / ξ

Application

- A=1 (hydrogen): 18 collisions
- A=12 (carbon): 111 collisions
- A=207 (lead) : 1818 collisions

Neutron Moderation

Detecting the neutron capture


Few tens of keV neutrons emitted in inverse beta decay

Toluene acts as a moderator

- neutron collides with hydrogen nuclei
- 1/2 of its energy lost at each collision
- Takes about 20 collisions to thermalize

Cadmium enhancing neutron capture

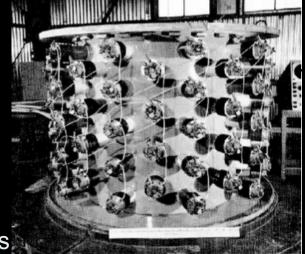
- ■12.2% of ¹¹³Cd
- ¹¹³Cd+n→¹¹⁴Cd→¹¹⁴Cd+γ's
 ¹¹³Cd, high neutron capture cross section of >10⁴ barns for E<0.5 eV
 Emission 9.21 MeV gamma's on average, well above any natural radioactive gamma ray emission

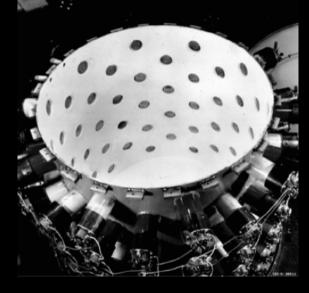
œ⊐ The Hanford Experiment (1953)

'Herr Auge' Detector

- 283 liter of toluene based liquid scintillator (largest detector at that time)
- 90 PMTs (two inches)
- Deployed at to the Hanford plutonium producing reactor

Electronics & DAQ

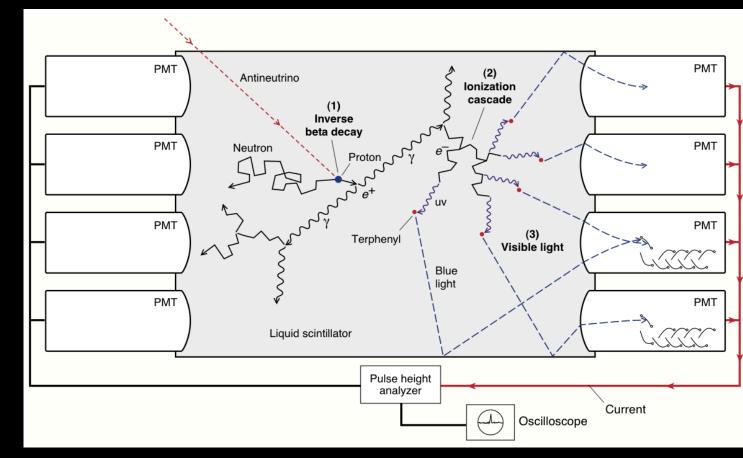

- Two gates accepting prompt-like & delayed-like signals
- 9 µs coincidence gate


Backgrounds not know at that time

- Surface detector
- 1.2-1.8 m boron-paraffin shielding (neutrons)
- 10-20 cm lead (gammas)

No neutrino detection, but background...

- Expected rate: 0.1-0.3 counts per minute
- Measured rate: 5 counts per minute...

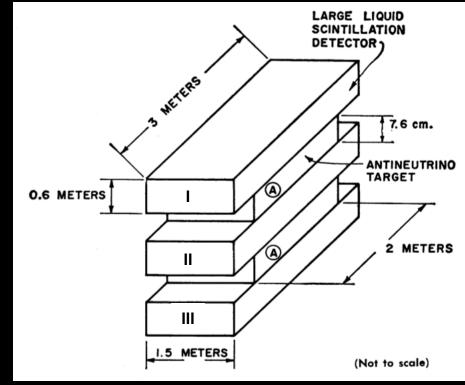


Cerror The Hanford experiment concept

 Target protons transparent medium : toluene liquid scintillator

 Terphenyl+PPO as the wavelenght shifter

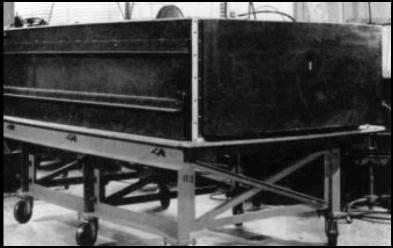
Cadmium
 phopionate mixed
 with methanol as
 neutron eater

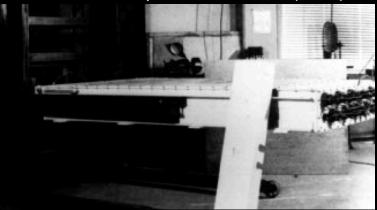

The Savannah River Experiment

Identification of the cosmic rays as major source of background

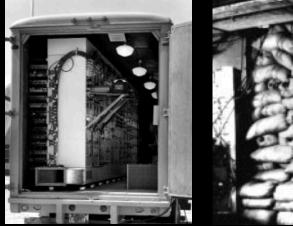
New detector (ready by 1955)

Œ

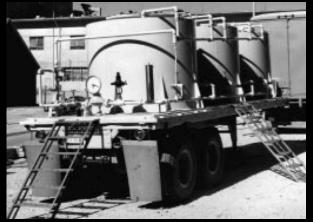

- Two large 200 I plastic tanks filled with water acting as target H medium (A & B)
- Cadmium salt dissolved in water
- I, II, III large 1,400 I purified triethylbenzene solution of terphenyland POPOP liquid scintillator
- each tanki is viewed by 110 PMTs
- Scintillator tank coated with epoxy inside to preserve the scintillator purity
- 10 tons detector (without the shieldings)
- Whole detector wrapped with fiberglass insulating material for temperature control
- New site: Savahnnah River Plant (SC, US)
 - Basement of the reactor building
 - 11 meters of concrete from the core
 - 12 meter overburden to shield from cosmic rays
 - ON-OFF cycles

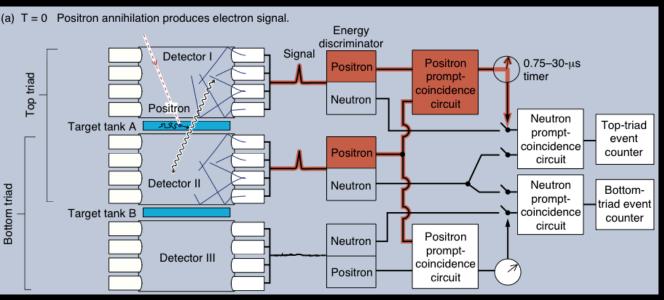


The Savannah River Experiment


liquid scintillator tank (I, II, III)

cadmium doped water tank (A, B)


electronics truck


water soaked sawdust (d=0.5)

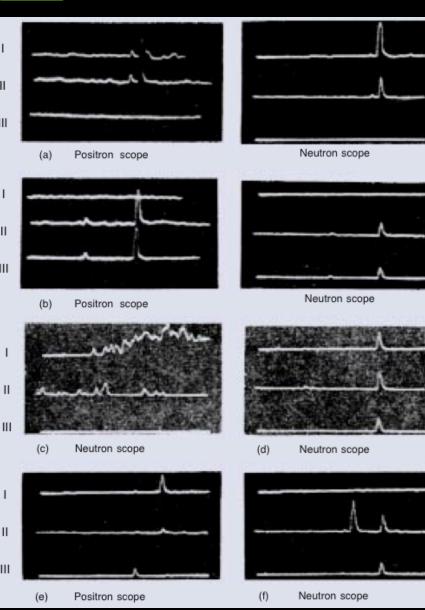
fluid handling system (4,500 I steel tanks)

Delayed Coincidence Signal Tagging

Positron-like

- Two energy depositions in I,II or II,III
- No energy deposition in the farthest tank
- 0.2 < E < 0.6 MeV, each
- Within 200 ns
- Start neutron-prompt

coincidence timer


(b) T = 3 μs Neutron capture produces neutron signal. Energy discriminator Signal Detector I 🐴 3 μs Positron Positron Top triad promptcoincidence Neutron circuit Neutron Neutron Target tank A Siner Top-triad promptevent coincidence To recording Positron counter Detector II Neutron Neutron Bottom triad Bottomprompttriad event Target tank B coincidence counter circuit Positron Neutron prompt-Detector III coincidence Positron circuit

Neutron-like

- -Two energy depositions in I,II or II,III
- No energy deposition in the
- farthest tank
- E > 0.2 MeV each
- 3< E_{tot} < 11 MeV
- within 200 ns
- less than 30 microsecond

after the prompt signal trigger

True Signals (from Reines, Cowan, Harisson, et al. 1960)

a) neutrino-like signal

• e⁺ scope (I,II): E_I =0.3 MeV, E_{II} =0.35 MeV, Δt <0.2 µs • n scope (I,II): E_I =5.8 MeV, E_{II} =3.3 MeV, Δt <0.2 µs • 2.5 µs coincidence time

b) neutrino-like signal

- e⁺ scope (II,III): E_{II}=0.3 MeV, E_{III}=0.35 MeV, Δt<0.2 μs - n scope (II,III): E_I=2.0 MeV, E_{II}=1.7 MeV, Δt<0.2 μs - 13.5 μs coincidence time

c) electrical noise signal

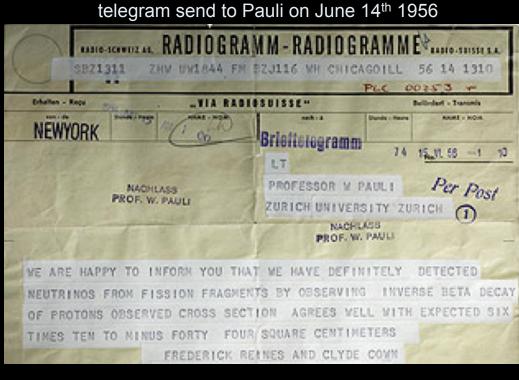
e⁺ scope (I,II): strange non physical pulse shape n scope (I,II,II): cosmic ray induced event

d) background signal

- e⁺ scope (I,II,III): cosmic ray event
- n scope (I,II): ? but rejected since extra-pulse in II

Announcement of the discovery

Signal


- Reactor-power dependent
- 1371 hours running time
- 2.88+/-0.22 events per hours

Backgrounds

- Signal to background ratio : 3 /1
- Reactor induced background : 1/20 of the signal
- check with reactor on-off periods

Consistency checks

- $\frac{1}{2}$ dilution with D₂O to reduce the target proton density
- proton signal calibrated using ⁶⁴Cu 0.3 MeV source dissolved in water`
- neutron detection efficiency measured with
- a plutonium-beryllium source
- Doubling of the cadmium concentration
- Increase of the 'neutron' shield

IDB Cross Section

Measured neutrino rates depends on:

- Neutrino flux (10¹³/cm²/sec at the Savannah River experiment site)
- Target Proton number (10²⁸ for the Savannah River detector)
- IDB cross section (parity non-conservation no yet discovered in 1956)
- Cross section per fission (>25% uncertainty on reactor neutrino spectrum in 1956)
- Detector efficiency

Savannah River Cross Section per fission, 1956

- Predicted: 6.3+/-1.6 10⁻⁴⁴ cm²
- Reines et al. article in Science (20 July 1956, Volume 124, Number 3212) reported a cross section in agreement with the predicted value, within 5%

Parity non-conservation was found soon after neutrino discovery

Two component neutrino (instread of four). Predicted increased by a factor of 2

Savannah River Cross Section per fission revisited, 1960

Reines et al. in Physical Review 117 (159) 1960 reported 12⁺⁷₋₄ 10⁻⁴⁴ cm²

In 1995 Reines was awarded by the Nobel price for the neutrino discovery