CMS Experiment at the LHC, CERN Data recorded: 2016-May-07 02:15:29.192000 GMT Run / Event / LS: 272775 / 36556333 / 49

SUSY/BSM after the LHC restart: what's next?

Lesya Shchutska University of Florida and FNAL LPC

November 28, 2016

New (unexplained) physics in front of us!

H mass stabilization?

Supersymmetry of a theorist

Is a new symmetry between forces and matter (which has not been seen (yet?))

- for each ¹/₂-integer spin particle (fermion) introduces an integer spin partner (boson) and vice versa
 - creates complete spectrum of partners to standard model particles
 - quantum numbers are the same apart from the spins which are different by $\frac{1}{2}$ unit
 - they are heavier (or else we'd have seen them already).

And incidentally solves outlined long-standing questions:

• provides a DM candidate; unifies couplings at $\sim 10^{16}$ GeV; stabilizes Higgs boson mass ...

Supersymmetry of an experimentalist

A convenient framework to look for deviations from the SM in many dimensions:

With missing transverse energy (R-parity conserving SUSY)

 $E_{\rm T}^{\rm miss}$ and many more search variables and bins

All-hadronic	Single-lepton 2 opposite-sign leptons		
(b-)jets, $(M)H_{\rm T}$, $M_{\rm T2}$	(b-)jets, $H_{\rm T}$, $M_{\rm T2}$, $M_{\rm T}$	(b-)jets, $H_{\rm T}$, $M_{\rm T2}$, $M_{\ell\ell}$	
Photon+X	≥ 3 leptons	2 same-sign leptons	
(b-)iets, $H_{\rm T}$, leptons	(b-)iets, H_{T} , $M_{\ell\ell}$, M_{T}	(b-)iets $H_{\rm T}$ $M_{\rm T}$ $p_{\rm T}^{\ell}$	

Or without E_{T}^{miss} (**R**-parity violating SUSY)

and \sim the same list of the final states

Often end up with several analyses per one final state!

profit from a complementary approach and independent background prediction methods

Motivation of such an approach: SUSY of a theorist is far from "minimality"

- SUSY is a broken symmetry: masses of superpartners are not fixed by theory
- a parameter space which is impossible to fully exclude but to only constrain

Impossible to exclude. Can only constrain with:

- direct and indirect dark matter detection experiments
- study of the rates of the rare processes (e.g. heavy-flavor physics)
- precision SM production cross section measurements (e.g. tt production)

Within the MSSM only:

- MSSM: 109 parameters
- pMSSM: 19 parameters
- CMSSM: 5 parameters

 direct SUSY particle production in the pp collisions at the LHC and their detection in ATLAS or CMS experiments

SUSY framework in searches

CMSSM

We go for a simpler goal:

100% $(\rightarrow u)$ 500 ũ 100 $\widetilde{\chi}_1^0$

Work with the **simplified model spectrum (SMS)**:

2-3 particles, 1-2 decay modes at a time:

- helps to design concrete searches
- allows for a consistent interpretation through a span of searches

Concentrate on favorable SUSY parameters

 \tilde{t} cancels out the largest divergency in the Higgs boson mass - from $t\ quark$:

1-loop order: top contribution corrected by $\tilde{t} \to m_{\tilde{t}} \approx \mathcal{O}(100 \text{ GeV})$

2 2-loop order: gluino enters \tilde{t} mass $\rightarrow m_{\tilde{g}} \approx \mathcal{O}(1 \text{ TeV})$

not too heavy \tilde{b}_L : in the doublet with \tilde{t}_L

Plethora of the direct LHC searches are targeting:

- gluinos
- $\bullet~3^{\rm rd}$ generation squarks
- and gauginos!

Experimental signatures

- the largest cross-sections
- generic signature based searches typically with large $H_{\rm T}$
- can have other sparticles in the decay chain

- more advanced techniques
- signals can be similar to SM tt
- final state depends on ΔM(t
 ₁, χ
 ₁)

- $\begin{array}{c} \textbf{gauginos} \\ P_2 \\ \tilde{\chi}_2^0 \\ \vdots \\ \vdots \\ P_1 \\ W^{\pm} \end{array}$
 - accessible with large luminosities
 - typically no jet activity
 - best searched in leptonic final states

SUSY after the LHC Run I

- no smoking gun for a SUSY-like process in Run I data
- produced constraints on the sparticle masses in the SMS framework:
 - under 100% BF assumption!
 - mass reach can decrease significantly with adding realistic decay rates

100% $t\bar{t} + E_T^{miss}$

Impact of the branching fraction: stops

- competing decay channels: $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^{\pm}$
- check "natural" spectrum with compressed higgsinos: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \ll M_W$
- need to use both all-hadronic and 1*l* searches for the best sensitivity
- sensitivity drops if go more compressed and if BR(t̃ → bχ̃[±]₁) grows

$t\bar{t} \text{ or } b\bar{b}W^*W^* + E_T^{miss}$

excluded in any BF

Consequences of model assumptions: EWKinos

- assumptions on the intermediate particles move mass limits from 200 to 700 GeV! ۰
- ٠ most "natural" scenarios with light gauginos only are practically unconstrained.

The story just begins

Why look for SUSY in Run II:

- LHC8 \rightarrow LHC13 brought the last in the vicinity sizeable jump in \sqrt{s}
 - could try to find new particles just above the mass reach of LHC8
- LHC13 → HL-LHC is yet to bring another 2 orders of magnitude in cross section for the same masses (LHC13-end-of-2016 is already beyond the scope of the plot!)

LHC8 experience and lessons triggered smarter strategies at LHC13

hopefully less saturation there in the future!

SUSY searches with 2015 data (2.3/fb)

The results produced in Run 2 with 2015 data:

With missing transverse energy (R-parity conserving SUSY)

targeting strong production scenarios

All available at the CMS SUSY summary page:

http://cms-results.web.cern.ch/cms-results/public-results/preliminaryresults/SUS/index.html

... and no SUSY

Some excitements along the way

Even with Run II and new energy frontier SUSY has been discovered yet ...

• gluino and stop quark masses are almost pushed out of naturalness: 1.8 and 1.0 TeV

• we just started getting any sensitivity to gauginos

Along the way there are some excitements in strong SUSY:

Z/edge CMS and ATLAS battle

And searches which just start probing new territory:

- first Run II results on the EWK SUSY searches
- first searches for compressed EWK SUSY

Bump-like search in SUSY: edge in $2\ell OS$

- on-shell Z: an excess on the Z peak invariant mass (traditional search in $E_{\rm T}^{\rm miss}$ tails)
- off-shell Z or slepton decays: characteristic "edge" shape in same flavor leptons

Advantage for experimentalists: no signal in opposite flavor $(e\mu)$

estimate all the flavor-symmetric background in SF from OF data (tt, WW, tW etc)

All possible mass endpoints calculated in CMS IN 2006/012, L.Pape, e.g. for a 3-body: $M_{ll}^{max} = M_X - M_0$

Tensions in Run I

CMS

Testing the same two regions with Run II data@CMS

Kept a very similar strategy:

- OSSF leptons, p_T > 25/20 GeV, E^{miss}_T > 150 GeV, at least 2 jets p_T > 35 GeV
- event categorization: N_{jets} , $N_{\text{b-jets}}$, H_{T} , $E_{\text{T}}^{\text{miss}}$ for on-Z (81 < $M_{\ell\ell}$ < 101 GeV)
- main backgrounds estimated from data: Z+jets and flavor-symmetric processes (tt, WW)

Data are consistent with the expectations in both regions

Not the end of the story

To target larger luminosity developed a new strategy:

- constructed a likelihood discriminant of kinematic variables (*NLL*):
 - $E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\ell\ell}, |\Delta \phi_{\ell\ell}|, \sum m_{\ell \mathrm{b}}$
- two categories are formed based on *NLL* value: tt-like and non-tt-like
- search is done in $M_{\ell\ell}$ and NLL categories

ATLAS colleagues are on the way to implement NLL... CMS-PAS-SUS-16-021

		ttbar-like	non-ttbar-like
mll < 81 GeV	pred. FS	1374.4 ± 48.1	105.8 ± 10.9
	pred. DY	13.5 ± 4.6	7.3 ± 2.5
	pred. total	1387.9 ± 48.3	113.1 ± 11.2
	obs	1417	135
mll > 101 GeV	pred. FS	2435.8 ± 72.2	208.3 ± 15.7
	pred. DY	7.6 ± 2.6	4.1 ± 1.4
	pred. total	2443.4 ± 72.3	212.4 ± 15.7
	obs	2347	285

3.1 σ excess in high-mass non-tt-like region

The place with the most to gain yet: EWK sector

- light (O(100) GeV) gauginos are a key component of natural SUSY
- mass hierarchy is governed by 4 parameters: higgsino mass μ, bino mass M₁, wino mass M₂, tan β
- - winos are typically quasi-mass degenerate: $\Delta M \sim \mathcal{O}(100 \text{ MeV})$
 - higgsinos are a bit less compressed: $\Delta M \sim O(1 \text{ GeV})$
- higgsino and wino LSP good dark matter candidates
 - and the hardest for detection experimentally: LSP and NLSP are very compressed
 - detectable signature: very soft leptons

We almost did not look there with Run I data!

EWKino searches

Classic searches (SUS-16-024)

Mass-degenerate $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ decay via W, Z, H bosons or leptons to $\tilde{\chi}_1^0$ • search for events with multiple leptons, E_T^{miss} , no hadronic activity

Compressed searches (SUS-16-025)

Close in mass higgsinos decay via deeply off-shell W and Z bosons to a higgsino LSP

• multiple soft leptons, low $E_{\rm T}^{\rm miss} \implies$ not visible!

• need to boost the system in the transverse plane \implies use events with ISR jets

Long-lived searches (EXO-12-034)

Wino $\tilde{\chi}_1^{\pm}$ flies in the detector before a decay to $\tilde{\chi}_1^0$: $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \tilde{\chi}_1^0$

- · search for disappearing tracks in the detector
- complementary approach from EXO analyses

Cross section hierarchy

• EWK SM cross sections are orders of magnitude larger than similar SUSY processes: need to be creative in event selection

Considered final states

- categorize events by lepton multiplicity (2, 3, 4), flavor (e, μ, τ_h), charge (same-sign or not), and kinematic properties (M_{ℓℓ}, M_T, M_{T2})
- apply a b-veto to suppress $t\bar{t}$, $E_T^{miss} > 50 \text{ GeV}$ for $\geq 3\ell$ and > 60 GeV for $2\ell SS$
- main backgrounds: WZ $\rightarrow 3\ell$, non-prompt leptons (tī, DY), conversions, rare SM

nOSSF = number of OSSF pairs (ee, $\mu\mu$, $\tau\tau$) nOSOF = number of OS different flavour pairs (ee, $\mu\mu$, e μ)

23/44

Classic EWKino: WZ background

- the most important in the 3ℓ final state: use $M_{\rm T}$ variable to suppress it
- $M_{\rm T} > 120 \text{ GeV}$ regions = the largest sensitivity:
 - need to describe WZ M_T tail accurately
- three main sources of the WZ leaking to the tails:
 - natural W width (W, prompt + Z)
 - detector mismeasurements leading to imperfect E^{miss}_T
 - picking a wrong lepton to compute $M_{\rm T}$ (other prompt and mispaired)

- lepton mispairing is insensitive to imperfections in the MC simulation
- the other two sources are checked in $W\gamma$ control region in data
- final result: from MC normalized in data control region and uncertainties from Wγ control region
 24/44

Classic EWKino: non-prompt lepton background

- the most important in 3ℓ w/o OSSF pair, and in regions with τ_h :
 - processes with 2 prompt leptons (from W, Z, H decays) and 1 non-prompt lepton (from b, c decays) or a misidentified jet
- estimate with events with at least one lepton failing isolation criteria: multiply yields with a transfer factor (fake rate)
- measure FR in QCD-enriched region for e, μ , and in Z+jets events for τ_h
- main challenge:
 - kinematics of jets in measurement region is different from the application region
 - FR strongly depends on jet p_T: the softer a jet is the larger is the probability of a lepton to become isolated

• solution: parameterize FR as a function of $p_{\rm T}$ of the jet containing a lepton

Classic EWKino: conversions and rare SM

- overall minor background in 3ℓ :
 - external conversions: mostly $\gamma \rightarrow ee$
 - internal conversions: $\gamma^* \to ee$ or $\gamma^* \to \mu\mu$

- enters selection when one lepton is too soft and lost
- suppressed by a dedicated veto: $|M_{3\ell} M_Z| > 15 \text{ GeV}$
- estimated from MC normalized in control region in data:
 - $|M_{3\ell} M_Z| < 15 \text{ GeV}, E_T^{\text{miss}} < 50 \text{ GeV}$
- rare SM processes are estimated with MC simulation

Classic EWKino: yields

- data are consistent with the expectation
- slight excess in 2ℓ SS channel for events with an ISR jet and $E_{T}^{miss} > 150 \text{ GeV}$
- but no smoking gun

Classic EWKino: results

- observations are well consistent with the expectations
- results interpreted in various ewkino spectra
- most interesting ones: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to WH \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- improved sensitivity compared to Run I searches

Compressed search

- classic search loses sensitivity when ΔM(χ
 [±]₁, χ
 ⁰₁) < 30 GeV
- design a dedicated soft-opposite-sign dilepton search:
 - new trigger: $\mu\mu p_T > 3 \text{ GeV}, M_{\mu\mu} < 60 \text{ GeV}, E_T^{\text{miss}} > 50 \text{ GeV}$
 - backgrounds: tī, W+jets (non-prompt), VV and DY $\rightarrow \tau \tau \rightarrow \ell \ell \nu \nu \nu \nu$

Compressed search: selection and backgrounds

10.1 fb⁻¹ (13 TeV)

- $E_{\mathrm{T}}^{\mathrm{miss}} > 125$ GeV, $H_{\mathrm{T}} > 100$ GeV and $0.6 < E_{\mathrm{T}}^{\mathrm{miss}}/H_{\mathrm{T}} < 1.4$
 - target ISR topology und suppress QCD
- exactly two μ/e with $5 < p_T < 30 \text{ GeV}$
 - target phase-space of the search
- $4 < M_{\ell\ell} < 50 \text{ GeV}$ vetoing $9 < M_{\ell\ell} < 10.5 \text{ GeV}$
 - suppress light resonances
- b-veto and $M_{\rm T} < 70~{\rm GeV}$
 - suppress tī (in signal E^{miss}_T is aligned with leptons)
- veto $M_{\tau\tau} \in [0, 160]$ GeV (reconstruct $\tau p_{\rm T}$ from hadronic recoil)
 - suppress $DY \rightarrow \tau \tau \rightarrow \ell \ell \nu \nu \nu \nu$

Backgrounds:

- estimate tt and DY from MC after validation in control regions in data
- non-prompt leptons with the same "tight-to-loose" method

DY control region

CMS Preliminar

Compressed search: results

- If or interpretation use wino cross sections:
 - realistic higgsino cross sections are several factors lower: need more data
- for $\Delta M = 7.5$ GeV probe charginos up to 180 GeV!
- first coverage at the LHC of a region 5 GeV $< \Delta M < 30$ GeV
 - previous constraints come from LEP era

Long-lived particle searches: Run I results

- targeted at new long-lived charged (disappearing tracks) or neutral (decaying to visible daughters) particles
- helps to constrain very compressed case of gauginos: $m_{\tilde{\chi}_1^{\pm}} m_{\tilde{\chi}_1^0} \lesssim 200$ MeV:

• $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \tilde{\chi}_1^0$ leads to a disappearing track signature

Putting it all together: Run I searches in Full models

- interpreted in the general [19-parameter] pMSSM
 - R-parity conserving
 - neutralino LSP: sampled bino, wino and higgsino type
- random sampling of the parameters (with m < 4 TeV)
 - 500 million models sampled
- apply prior experimental constraints:
 - EW precision measurements
 - mass bounds from LEP, Tevatron
 - $\Omega_{\text{LSP}} < \Omega_{\text{Planck}}$
- consider carefully the remainder
 - 310,327 : models before Run-1
 - 30 billion : signal events generated
 - 44,559 : models required detector simulation
 - 600 million : signal events through GEANT
- next: present exclusion (fraction of models survived) in 2D or 1D projections
- similar reinterpretation in pMSSM is done by CMS as well

	Overall summary of 22 ATLAS Run I papers			
Inclusive	$\begin{array}{rcl} 0\ell & +2.6 {\rm jets} & + E_{\rm pirs}^{\rm pirs} \\ 0\ell & +7.10 {\rm jets} & + E_{\rm T}^{\rm mins} \\ 1\ell & + {\rm jets} & + E_{\rm T}^{\rm mins} \\ \tau(\tau/\ell) & + {\rm jets} & + E_{\rm pirs}^{\rm mins} \\ 2\ell SS \delta\ell & + {\rm jets} & + E_{\rm pirs}^{\rm mins} \\ 0/1\ell & + 3b_{\rm jets} & + E_{\rm T}^{\rm mins} \end{array}$			
3 rd generation	$\begin{array}{c} 0\ell\tilde{t} \\ 1\ell\tilde{t} \\ 2\ell s\tilde{t} \\ \overline{t} \\ \tilde{t} \\ \tilde{t} \\ \text{with a } Z \\ \text{boson} \\ 2b\text{-jets} + E_{T}^{\text{miss}} \\ \text{tb} + E_{T}^{\text{miss}}, \\ \tilde{t} \end{array}$			
Electroweak	$ \begin{array}{c} \ell h \\ 2\ell \\ 2\tau \\ 3\ell \\ 4\ell \\ disappearing track \end{array} $			
Other	long-lived particles H/A $\rightarrow \tau^+ \tau^-$			
	searches at CMS			

Sampling the models

- special care for gaugino type: bino, wino and higgsino type
- bino-like LSP tend to produce too much dark matter
- therefore such models often rejected by DM contraints
- that's why gaugino-type categorization is done

 note, light ğ are not excluded in bino scenarios: ğ very compressed with LSP and hard for detection

Landscape in pMSSM

like I SP

H-like LSF

10³

m(\u00cc) [GeV]

More detailed look: squarks and gluinos

Exclusion in general follow SMS limits, but:

- with higher g mass exclusion of squarks weakens
 - due to suppression of qq production via t-channel g exchange
 - and suppression of q̃g production cross section
- SMS assume 8-fold degeneracy in squarks: often too optimistic

More detailed look: Sleptons

• good correspondence with SMS results for light LSP (< 75 GeV)

- bino-like LSP
- not much sensitivity in compressed regime
 - need to resort to soft leptons + ISR jet in the future
- SMS are too optimistic assuming left and right sleptons degeneracy
 - SMS are more close to full model result, if split two cases
 - right sleptons have lower production cross section and are less bound by the searches

More detailed look: EWKinos

- $\tilde{\tau}$ are almost no constrained at all by Run I searches
 - τ_h are hard to trigger on: thresholds are at ~ 40GeV
 - suffer from high backgrounds
 - leptonic modes suffer from reduced total cross section
- chargino-neutralino pairs:
 - diagonal is excluded by disappeared track search in compressed scanerio
 - other points are probed by leptonic EWKino searches
 - and no mass point is fully excluded

Upgrade timeline

At 13-14 TeV:

- possible discovery with 300 fb⁻¹
- extension of discovery reach at HL-LHC
 - *L* matters for EWK processes
 - gain from improved detector
- and further study in case of discovery

14TeV

Electroweak SUSY: $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ @ 300 fb⁻¹

- projections are done with 8 TeV 3ℓ (SUS-13-006) and $\ell + b\overline{b}$ (SUS-13-007) analyses
- In the optimistic scenario the systematic uncertainty is decreased by ×2
- realistic models include $\tilde{\chi}_2^0 \rightarrow Z/H\tilde{\chi}_1^0$: the total sensitivity is in between the two

• drastic enhancement in **discovery** potential with 300 fb⁻¹ @ 14 TeV: up to $m_{\chi} \sim 400 - 600 \text{ GeV}$

Summary

• with 13/fb of 13 TeV data profited cross section jump in many directions of SUSY searches

No luck so far ... But

- learned our lessons in the Run I aftermath
- along with the search for a spectacular new physics events developed new more sophisticated searches
 - compressed corners: with leptons or with soft b-jets
 - difficult objects: hadronic τ
 - signatures in vector-boson-fusion (VBF) topology (not covered here)
- HL-LHC is a sea of opportunity for such new ideas

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS

We can ask:

• one can choose not to believe in SUSY

We can ask:

or one can choose to believe in SUSY

We can ask:

Google	supersymmetry is dead	<u>୍</u> ୟ ବ			
	All News Videos Images Shopping More - Search tools				
	About 95,400 results (0.66 seconds)				
Google	supersymmetry is alive	५			
	All News Videos Images Shopping More - Search tools				
	About 129,000 results (0.42 seconds)				
Google	standard model is wrong	୍ୟ			
	All News Videos Images Shopping More - Search tools				
	About 15,000,000 results (0.70 seconds)				

• but all agree on one thing!