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• Quantum	optics with levitating
macroscopic particles

• Coupling a	single	electron spin	to	the	
motion	of	levitating particle

• NV	centers in	Diamonds

• Towards quantum	optical experiments
with levitating diamonds

Outline



Quantum	optics with macroscopic oscillators
Millions	of	atoms
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Quantum	optics with macroscopic oscillators
Millions	of	atoms

1

ˆH =

p̂
x

2

2m
+

1

2

m!2x̂2

x̂ =

r
~

2m!
(â+ â†)

p̂
x

=

r
~

2m!
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(â+ â†)
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1D	quantum	harmonic oscillator
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[â, â†] = 1
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(â+ â†)
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Number of	phonons



Quantum	optics with macroscopic oscillators

n=0
n=1
n=2

Millions	of	atoms

Energy in	the	centre
of	mass	(COM)	mode
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â |ni =
p
n|n� 1i

ˆH = ~!(â†â+
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ẍ+ !2
cos(⌦t) x = 0



Quantum	optics with macroscopic oscillators

n=0

n=1

n=0
n=1
n=2

Millions	of	atoms

Energy in	the	centre
of	mass	(COM)	mode

Ground state	cooling of	a	mechanical oscillator
A.	D.	O’Connell et	al.	Nature 464,	697-703	 (2010)…
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Quantum	optics with macroscopic oscillators

n=0

n=1

n=0
n=1
n=2

Millions	of	atoms

Energy in	the	centre
of	mass	(COM)	mode

Offers the	prospect	of	creating
macroscopic quantum	superpositions	of	the	form :

Ground state	cooling of	a	mechanical oscillator
A.	D.	O’Connell et	al.	Nature 464,	697-703	 (2010)…
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â |ni =
p
n|n� 1i

ˆH = ~!(â†â+
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(â+ â†)
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Quantum	optics with macroscopic oscillators

n=0

n=1

n=0
n=1
n=2

Millions	of	atoms

Energy in	the	centre
of	mass	(COM)	mode

Offers the	prospect	of	creating
macroscopic quantum	superpositions	of	the	form : 2

ψ =
n=0 n=1

Motivation	:

- New	lights	on	the	classical-quantum	boundary

- Quantum	sensing and	information

Ground state	cooling of	a	mechanical oscillator
A.	D.	O’Connell et	al.	Nature 464,	697-703	 (2010)…
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Quantum	optics with macroscopic oscillators

n=0

n=1

Ground state	cooling of	a	mechanical oscillator
A.	D.	O’Connell et	al.	Nature 464,	697-703	 (2010)…
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Millions	of	atoms

Energy in	the	centre
of	mass	(COM)	mode

Offers the	prospect	of	creating
macroscopic quantum	superpositions	of	the	form : 2
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- New	lights	on	the	classical-quantum	boundary
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Ultra	cold	levitating macroscopic objects
Confining
Potential

n=0

T ~	nK

Energy in	the	center
of	mass	(COM)	mode

100	nm



Ultra	cold	levitating macroscopic objects
- No	need to	cool	the	

particles themselves
(mandatory with clamped
oscillators).

- Ground state	extension	of	
the	COM	~	picometer.

Confining
Potential

n=0

T ~	nK

Energy in	the	center
of	mass	(COM)	mode

100	nm

Ashkin A,	APL (1976)
Chang	D.	et	al.	PNAS (2010)

T=300	K



Ultra	cold	levitating macroscopic objects
- No	need to	cool	the	

particles themselves
(mandatory with clamped
oscillators).

- Ground state	extension	of	
the	COM	~	picometer.

Confining
Potential

n=0

T ~	nK

Energy in	the	center
of	mass	(COM)	mode

100	nm

Ashkin A,	APL (1976)
Chang	D.	et	al.	PNAS (2010)

Optical
tweezer

T=300	K

State	of	the	art	method :	Optical	trapping
The	trapped object seeks high
intensities (typically 300	mW	of	laser	
power	with a	1	micron	
beam waist).



Ultra	cold	levitating macroscopic objects
- No	need to	cool	the	

particles themselves
(mandatory with clamped
oscillators)

- Ground state	extension	of	
the	COM	~	picometer

Confining
Potential

n=0

T ~	nK

Energy in	the	center
of	mass	(COM)	mode

100	nm

Ashkin A,	APL (1976)
Chang	D.	et	al.	PNAS (2010)

State	of	the	art	method :	Optical	trapping
The	trapped object seeks high
intensities (typically 300	mW	of	laser	
power	with a	1	micron	
beam waist).

Optical
tweezer

Problem:		The	laser	light	can hit	up	the	particle and/or	make it unstable
L.	P.	Neukirch,	Nat.	Phot.	(2016)
A.	Rahman,	Scientific Reports	(2016)	

T=300	K



Ultra	cold	levitating macroscopic objects

Out	of	equilibrium :

The	particle
can warm	up	significantly

Atmospheric pressure

High	vacuum

Thermalisation	:

Tgaz =	Tparticle

300 K 

300 K 



Scattering free	trapping

The	Paul	trap

A.	Kulicke et	al.	APL (2014)	
J.	Millen,	et	al.	PRL (2015)	

- No	laser	light

- Large	potential depth
à stays in	the	trap for	days

- Single	ion	experiments showed
control	of	the	motion	
at the	quantum	level

Charged trapped particle
in	an	electrodynamical potential
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U=1000 V

+ +++
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How	to	trap	a	charged	particle	?

Static	Coulomb	force	:



Static	Coulomb	force	: +
U=1000 V

+ +++

++++

Restoring	force	in	the	3	directions	of	
space	:

U=1000 V

The	force along z cancels !

z

z

Confinement
along the	ring	plane.

But	no	confinement
along the	z	direction
anymore :(

How	to	trap	a	charged	particle	?



z

x

y

-1000 V

1000 V
z

Confining potential

x

U=1000 V
z

U

Other	possibility	:

In electrostatics, whatever the geometry, at least
one direction will not be confining!

Electric	
Potential	U

U

x

Non	confining
potential

0 V

Consequence	of	the	conservation	of	
the	electric	flux	on	a	closed	surface

How	to	trap	a	charged	particle	?



In	electro-statics,	one	cannot	confine	a	charged	particle.
Idea	: make	the	electric	field	oscillate.

However,	a	priori,	one	cannot	see	why	the	force	that	brings	the	particle	towards	
the	center	would	compensate	the	force	that	pushes	it	away	from	it

How	to	trap	a	charged	particle	?
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During one	cycle	of	oscillation	with a	period
where k	depends on	the	tension	applied to	the	electrode.	
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Little by little, the particle gets closer to the center…

During	one	cycle	of	oscillation	with	a	period
where k	depends on	the	tension	applied to	the	electrode.	

How	to	trap	a	charged	particle	?



The	Paul	trap

Stable	confinement	if	the	trapping frequency
is larger than the	static curvature



Electrodes

Linear Paul	trap with Lycopodium particles

www.newtonianslabs.com

Loading Coulomb	crystals with macroscopic particle



Experimental set-up

Electron spin resonance from NV centers

in diamonds levitating in an ion trap

T. Delord1,2, L. Nicolas1, L. Schwab1, and G. Hétet1
1
Laboratoire Pierre Aigrain, Ecole normale supérieure,

PSL Research University, CNRS, Université Pierre et Marie Curie,

Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité,

24 rue Lhomond, 75231 Paris Cedex 05, France.

2
Département de Physique,

´

Ecole Normale Supérieure de Lyon,

Université de Lyon, 46 Allée d’Italie, F-69364 Lyon, cedex 07,France

We report observations of the Electron Spin Resonance (ESR) of Nitrogen Vacancy (NV) centers
in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient
conditions, we demonstrate e�cient microwave driving of the electronic spin and show that the spin
properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We
also exploit the ESR signal to show angle stability of single trapped monocrystals, a necessary step
towards spin-controlled levitating macroscopic objects.

PACS numbers: 32.30.Bv, 37.10.Ty, 05.30.-d, 67.80.dj

The negatively charged Nitrogen Vacancy (NV�) cen-
ter in diamond has emerged as a very e�cient source
of single photons and a promising candidate for quan-
tum control and sensing via its electron spin. Recently,
there has been much interest in the electronic spin of the
NV� center in levitating diamonds [1, 2]. This inter-
est is partly motivated by proposals for hybrid optome-
chanics [3], and implications in ultrahigh force sensitiv-
ity [4] where the NV center’s spin response to magnetic
fields is exploited to read-out the motion of the diamond
with high spatial resolution under ambient conditions [5].
Amongst the many levitation schemes, optical traps are
the most widely used [1, 6–8]. They provide e�cient lo-
calisation for neutral and charged particles and can work
under liquid or atmospheric environnements. However
the trap light that is scattered from the object means
that excessive heating can be at work [6, 7, 9, 10] and
result in a lower optomechanical read-out. Furthermore,
optical traps may quench the fluorescence of NV centers
[7] and a↵ect the electronic spin resonance contrast.

Being able to trap diamonds hosting NV centers with-
out light scattering could thus o↵er a better control of
the spin-mechanical coupling and enlarge the range of ap-
plications of levitating diamonds. Levitation techniques
such as ion traps [11] or magneto-gravitational traps [12]
are tentalizing approaches for reaching this goal. Ion
traps could not only provide an escape route for scatter-
ing free trapping, but also enable a high localisation of
the particles together with large trap depths as demon-
strated by the impressive control over the motion that
have been developped with single ions in the past [13].
Various nano-objects have been confined in ion traps al-
ready, from coloidal nanocrystals [14], silica nanospheres
[15, 16], graphene flakes [17], micron size diamond clus-
ters [18], with reported storage times of several days,
showing their strong potential for the motional control
of macroscopic objects.

In this work, we report measurements of the electronic
spin resonance of NV centers embedded in diamonds

Paul  
trap

Microwave
antenna

DM

Screen

Spectrometer

Green laser

APD

XYZ 
piezo 

stage

NF 

FM

100 μm

~
1

5
0

 μ
m Microwave antenna

Levitating 
diamond

g

V

N

High NA
lens

FIG. 1: Sketch of the optical setup. A green laser is focused
onto a diamond levitating in the Paul trap. The diamond
position is monitored using phase contrast imaging on a dis-
tant screen and the photoluminescence from the NV centers
in the trapped diamond is collected by the same objective and
measured either on an avalanche photodiode (APD) or on a
spectrometer. As shown in the inset, a microwave antenna is
brought 150 µm away from the trap center to control the NV
centers’ electronic spins and a neodynium magnet is placed
5 cm away from the trap center to Zeeman shift to the NV
centers electronic spins. DM : Dichroic mirror, FM : flipping
mirror, NF : Notch filter centered at 532 nm.

that are levitating in an ion trap. Further, we observe
high contrast Zeeman-splitted ESR spectra, demonstrat-
ing angular stability over single levitating monocrystals
on time scales of minutes, paving the way towards single
spin opto-mechanical schemes in scattering-free traps.

Phase	contrast imaging

Laser

Vac=4000	V
At	w/2p=5	kHz

Injection	:	Approaching a	diamond
coated metallic tip	to	the	trap center.	

Trap frequency :	wz/2p=1	kHz
à Charge	surface	:	5000	e-

Laser



Experimental set-up

Catching the	levitating
diamonds with a	nano-fiber...



Quantum	control	of	the	motion	
using a	single	electron



Quantum	optics with
levitating systems

n=0

n=1

n=2

Energy in	the	centre
of	mass	(COM)	mode
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Cooling

Schrödinger	cat	states	

2
ψ =

n=0 n=1

àUse	a	single	embedded atom to	cool	the	collective	motion	of	
billions		of	atoms and	prepare Schrödinger	cat	states
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Hamiltonian for rotational optomechanics : Having
quantized the rotational mode, we now turn to the esti-
mation of the coupling strength between the NV center
spin and the rotational mode. The NV center has an in-
herent quantization axis given by the magnetic interac-
tion between two electronic spins in the ground state. We
take a NV center aligned to the Z axis, which oscillates
around the y axis as depicted in figure 1-a). In the pres-
ence of a homogeneous transverse magnetic field along
x, if the nanodiamond rotates, the projection of the spin
component along the magnetic field is changed, thus pro-
viding a means to read-out the angular motion and ap-
ply a torque to the diamond. The magnetic Hamiltonian

Ĥ
B

= ~g
s

µ
B

~B · ~̂S describes the coupling of the spin ~̂S to
the transverse magnetic field B. Here g

s

is the Landé fac-
tor and µ

B

the Bohr magneton. We take Ŝ
x

and Ŝ
z

the
spin operators along the X and Z rotating axis and as-
sume the NV center to be located at the center of mass of
the diamond. We get Ĥ

B

= ~µ
B

B
⇣
sin �̂Ŝ

z

+ cos �̂Ŝ
x

⌘
.

Considering only first order terms in �̂, the magnetic
Hamiltonian becomes

Ĥ
B

= ~g
s

µ
B

B�
0

�
â+ â†

�
Ŝ
z

+ ~g
s

µ
B

BŜ
x

. (5)

The total Hamiltonian of the system then writes :

Ĥ = ~!
�

â†â+ Ĥ
NV

+ ~�
�

�
â+ â†

�
Ŝ
z

, (6)

where Ĥ
NV

is the Hamiltonian of the NV spin without
the optomechanical coupling term and where the single
quantum of motional shift is given by �

�

= g
s

µ
B

B�
0

.
The NV hamiltonian reads

Ĥ
NV

= DŜ2

z

+ ~g
s

µ
B

BŜ
x

+ ~⌦
R

Ŝ
y

cos(!t). (7)

The first term DS2

z

describes spin-spin coupling between
the two electron in the ground states and lifts the de-
generacy between the three states of this spin 1 system.
For the NV center, D = 2.87 GHz. The transverse mag-
netic field B here mixes the ground and excited electronic
states |0i, |±1i into mixed states |gi, |di and |ei. The
third term describes the coupling between the NV elec-
tronic spin and a microwave that is linearly polarised
along the y axis, at a frequency ! and Rabi frequency
⌦

R

. Diagonalising the hamiltonian (see SI) enables the
coupling constant �̃

�

= �
�

cos ✓ sin between the phonon
modes and the electronic spin to be obtained, where the
mixing angles ✓ and  are defined as tan 2✓ = 2�B/D
and tan 2 = ⌦

R

/� respectively and � si the microwave
detuning with respect to the |gi ! |di transition.

Ground state cooling : A cooling scheme can be set
up similarly to [6] by adding an optical field to excite
the electronic states. Optical pumping polarizes the spin
state to the |0i state through non-radiative decay via a
metastable state [26]. Taking into account this dissipa-
tive process and the unitary evolution of the system, we
obtain unbalanced populations between the new eigen-
states |+i and |ei (see SI), enabling continuous cooling

through coupling to the phonon. Contrary to [6], neither
|+i nor |ei is orthogonal to |0i : the depopulation -and
cooling- therefore only occur if we ensure the probabili-
ties |h0|ei| and |h0|+i| to be su�ciently unbalanced. This
can be tuned using the magnetic field, the microwave de-
tuning and Rabi frequency. Moreover, the optical polar-
ization is not perfect: at room temperature, a fraction
of the optically excited states decays to the same spin
states, reducing the e�ciency of the cooling process.
To study how the cooling e�ciency varies with the B

field and microwave parameters, we look for the phonon
mean occupation number. The  parameter that allows
resonant conditions for a Rabi frequency of 1 GHz is plot-
ted in Figure 3 as a function of the magnetic field. This
figure also shows that for such a Rabi frequency the cool-
ing rate reaches an optimum for a magnetic field of only
70 mT, as shown by the dashed lines.
Final phonon occupation number : The final phonon

occupation number under continuous cooling is given by :

hni
0

=
A+

op

+W
gas

W
op

, (8)

[6, 27], with A+

op

= S(�!
�

) the optical heating rate. In
[29], W

gas

was evaluated for the center of mass mode
of nanospheres as a function of the pressure. Here we
suppose that this heating rate is in the same range for
the rotational modes, although further investigations are
needed to determine how correct is this assumption.
Other potential limitations, such as laser induced heat-
ing, are discussed in the SI. We consider a diamond
sphere with a 35 nm radius under a vacuum pressure
of 10�8 mbar. Under a magnetic field B

0

= 70 mT and
with a Rabi frequency of 1 GHz, the final phonon number
is found to be hni

0

= 0.51, already close to the ground
state.
A “pulsed pumping strategy” [6] would allow one to

go beyond this number but another simpler option is to
tune the B-field again. Provided W

gas

is much smaller
than W

op

, hni
0

can be decreased further at the cost of
a reduced cooling rate. Cooling to the ground state can
be obtained for lower magnetic fields, and with a lower
Rabi frequency. For a Rabi frequency of 20 MHz at a
magnetic field of 16 mT we actually find a final phonon
number hni

0

= 0.036, very close to the ground state.
Achieving such ground state cooling is an important

preliminary step towards preparing arbitrary phonon
Fock states [30]. This is possible if the strong coupling
regime is reached, i.e. when �̃

�

is greater than the deco-
herence rate of the system.
Strong coupling regime : Let us now describe the con-

ditions to be in the strong coupling regime. In figure 3,
the coupling rate �̃

�

is plotted as a function of the mag-
netic field for various particle geometries (depicted in the
SI). The b and a parameters correspond to the minimum,
resp. maximum, particle radii. Fig. 3-a) shows the cou-
pling rate for particles with a radius b = 20 nm and
and aspect ratio of a/b = 2.5. A maximum is reached

2

matrix. This defect behaves as an artificial atom trapped
in the diamond matrix and exhibits a strong photolumi-
nescence in the red which allows the detection of individ-
ual NV defects at room temperature. It is also possible
to optically initialize and read-out the electronic spin of
the NV center thanks to the presence of a metastable
level and an intersystem crossing [21]. Compared to sin-
gle atoms where the quantization axis is defined with
respect to the B-field, with NV centers, the ground state
spin-spin interaction sets a preferential direction for the
population basis, namely the NV axis, as shown in the
inset. This original feature is the cornerstone of this pro-
posal.

Rotational confinement in a Paul trap : NV cen-
ters were detected with diamonds levitating in a Paul
trap in [19, 22]. In [19], the electronic spin resonance
of nanodiamonds was further employed to experimen-
tally demonstrate their angular stability. Here, we show
that the rotation about two axes is ruled by a Math-
ieu equation so that the angle is stabilized just like the
center of mass. To show this, let us consider the follow-
ing time-dependent quadratic electric potential: V

E

(t) =
⌘V (t)

z

2
0

�
z2 � 1

2

x2 � 1

2

y2
�
, where V (t) = V

dc

+ V
ac

cos(⌦t)

is the voltage applied on the needle electrodes oscillat-
ing at a frequency ⌦/2⇡, z

0

is the distance between the
two needles and ⌘ the e�ciency parameter that accounts
for deviations from the ideal hyperbolic electrode shape
[23]. In the following we assume ⌘ = 1, taking V (t) as an
e↵ective voltage. To evaluate the rotational frequency,
we take a particle with total surface charge Q, and as-
sume that the charge centroid coincides with the center
of mass at all times. We then integrate the electric torque
applied on each surface element over the whole surface
of the particle in a rotating frame XY Z whose axes are
fixed to the particle and parallel to its principal axes of
inertia. We consider the particle to be symmetric about
its Z axis and hence use only two Euler angle �

1

, �
2

to
define the XY Z frame : �

1

for a first rotation of the
initial frame xyz about the y axis and �

2

for a second
rotation of the rotated frame x0y0z0 about the rotated x0

axis. The Euler equations for the angles are found to be

I
x

�̈
1

�V (t)
⇥

3

z

2
0

RR
(Z2 �X2)dQ

⇤
�
1

= 0

I
y

�̈
2

�V (t)
⇥

3

z

2
0

RR
(Z2 � Y 2)dQ

⇤
�
2

= 0,
(1)

where I
x,y

are the moment of inertia realtive to x, resp. y.
Eqs. (1) are Mathieu equations for the angles �

1

, �
2

and
within their stability conditions they yield a harmonic
confinement for both rotation angles of the particle, at
secular frequencies :

!
µ

=
⌦

2

r
a
µ

+
q2
µ

2
, (2)

with dimensionless parameters :

q
µ

= 3QSµ

Iµ

Vac

z

2
0

1

⌦

2 and a
µ

= �6QSµ

Iµ

Vdc

z

2
0

1

⌦

2 , (3)

where µ = X,Y , S
X

= R2

Z

� R2

Y

, S
Y

= R2

Z

� R2

X

and
R2

µ

=
RR

µ2dQ/Q. At this stage, the calculations do not
assume a homogeneous charge distribution.
The rotational confinement not only depends on the

charge to mass ratio and on the generated potential, like
for the center of mass, but also crucially on the geometry
of the particle. The factor QS

µ

/I
µ

in eq. (6), which one
might rewrite

RR
(Z2 � X2)dQ/

�RRR
Y 2dm

�
for µ = Y ,

can indeed be increased substantially using an asymmet-
ric particle. Using a prolate particle with aspect ratio
2.5 already gives a factor of 3 compared to the center
of mass mode. A more significant advantage of using
the rotational mode however comes from the possibility
to strongly couple to a single spin and perform e�cient
cooling via a weak homogeneous magnetic field.

B field (T)

ψ
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Wop  / RB
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FIG. 2: (a) Spectrum obtained for emission (! < 0) or
absorption (! > 0) of phonons under resonant conditions
!e0 � !

+

= !�. The parameters are : !� =5 MHz, B =0.07
T, ⌦R = 1 GHz, � = 800 MHz, �

op

=100 kHz, ↵ = 1. (b)
Normalized cooling rate as a function of the B-field and  /⇡.
The black line is the  parameter under resonant conditions
and with ⌦R = 1 GHz as a function of the B-field. �

op

=100
kHz, !�=5 MHz and ↵=1.

Rotational cooling : Just like for the center of mass
mode, the rotational degree of freedom can be quantized.
Fig. 1-b) shows the harmonic potential for a small angle
�. For a small rotation of the diamond about the y di-
rection, the motional Hamiltonian can be linearized and
takes the form

H
meca

=
1

2
I
y

!2

�

�̂2 +
L̂2

2I
y

, (4)

where !
�

is the rotational frequency, I
y

the moment of

inertia and L̂ the angular momentum. It can now be
written in the form of a harmonic oscillator with the two
variables L̂ and �̂ . In analogy to the canonical conjugate
observable X̂ and P̂ of the center of mass mode, one
can define annihilation and creation operators â and â†

such that �̂ = �
0

(â† + â), where �
0

=
p

~/(2I
y

!
�

), and

L̂ = I
y

ˆ̇
� = iL

0

(â† � â), where L
0

=
p

~I
y

!
�

/2 [44].
A single quantum of motion will here have an angular
extension �

0

inversely proportional to the square root of
the moment of inertia I

y

.

where

T.	Delord	et	al.	ArXiv (2017)
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Hamiltonian for rotational optomechanics : Having
quantized the rotational mode, we now turn to the esti-
mation of the coupling strength between the NV center
spin and the rotational mode. The NV center has an in-
herent quantization axis given by the magnetic interac-
tion between two electronic spins in the ground state. We
take a NV center aligned to the Z axis, which oscillates
around the y axis as depicted in figure 1-a). In the pres-
ence of a homogeneous transverse magnetic field along
x, if the nanodiamond rotates, the projection of the spin
component along the magnetic field is changed, thus pro-
viding a means to read-out the angular motion and ap-
ply a torque to the diamond. The magnetic Hamiltonian

Ĥ
B

= ~g
s

µ
B

~B · ~̂S describes the coupling of the spin ~̂S to
the transverse magnetic field B. Here g

s

is the Landé fac-
tor and µ

B

the Bohr magneton. We take Ŝ
x

and Ŝ
z

the
spin operators along the X and Z rotating axis and as-
sume the NV center to be located at the center of mass of
the diamond. We get Ĥ

B

= ~µ
B

B
⇣
sin �̂Ŝ

z

+ cos �̂Ŝ
x

⌘
.

Considering only first order terms in �̂, the magnetic
Hamiltonian becomes

Ĥ
B

= ~g
s

µ
B

B�
0

�
â+ â†

�
Ŝ
z

+ ~g
s

µ
B

BŜ
x

. (5)

The total Hamiltonian of the system then writes :

Ĥ = ~!
�

â†â+ Ĥ
NV

+ ~�
�

�
â+ â†

�
Ŝ
z

, (6)

where Ĥ
NV

is the Hamiltonian of the NV spin without
the optomechanical coupling term and where the single
quantum of motional shift is given by �

�

= g
s

µ
B

B�
0

.
The NV hamiltonian reads

Ĥ
NV

= DŜ2

z

+ ~g
s

µ
B

BŜ
x

+ ~⌦
R

Ŝ
y

cos(!t). (7)

The first term DS2

z

describes spin-spin coupling between
the two electron in the ground states and lifts the de-
generacy between the three states of this spin 1 system.
For the NV center, D = 2.87 GHz. The transverse mag-
netic field B here mixes the ground and excited electronic
states |0i, |±1i into mixed states |gi, |di and |ei. The
third term describes the coupling between the NV elec-
tronic spin and a microwave that is linearly polarised
along the y axis, at a frequency ! and Rabi frequency
⌦

R

. Diagonalising the hamiltonian (see SI) enables the
coupling constant �̃

�

= �
�

cos ✓ sin between the phonon
modes and the electronic spin to be obtained, where the
mixing angles ✓ and  are defined as tan 2✓ = 2�B/D
and tan 2 = ⌦

R

/� respectively and � si the microwave
detuning with respect to the |gi ! |di transition.

Ground state cooling : A cooling scheme can be set
up similarly to [6] by adding an optical field to excite
the electronic states. Optical pumping polarizes the spin
state to the |0i state through non-radiative decay via a
metastable state [26]. Taking into account this dissipa-
tive process and the unitary evolution of the system, we
obtain unbalanced populations between the new eigen-
states |+i and |ei (see SI), enabling continuous cooling

through coupling to the phonon. Contrary to [6], neither
|+i nor |ei is orthogonal to |0i : the depopulation -and
cooling- therefore only occur if we ensure the probabili-
ties |h0|ei| and |h0|+i| to be su�ciently unbalanced. This
can be tuned using the magnetic field, the microwave de-
tuning and Rabi frequency. Moreover, the optical polar-
ization is not perfect: at room temperature, a fraction
of the optically excited states decays to the same spin
states, reducing the e�ciency of the cooling process.
To study how the cooling e�ciency varies with the B

field and microwave parameters, we look for the phonon
mean occupation number. The  parameter that allows
resonant conditions for a Rabi frequency of 1 GHz is plot-
ted in Figure 3 as a function of the magnetic field. This
figure also shows that for such a Rabi frequency the cool-
ing rate reaches an optimum for a magnetic field of only
70 mT, as shown by the dashed lines.
Final phonon occupation number : The final phonon

occupation number under continuous cooling is given by :

hni
0

=
A+

op

+W
gas

W
op

, (8)

[6, 27], with A+

op

= S(�!
�

) the optical heating rate. In
[29], W

gas

was evaluated for the center of mass mode
of nanospheres as a function of the pressure. Here we
suppose that this heating rate is in the same range for
the rotational modes, although further investigations are
needed to determine how correct is this assumption.
Other potential limitations, such as laser induced heat-
ing, are discussed in the SI. We consider a diamond
sphere with a 35 nm radius under a vacuum pressure
of 10�8 mbar. Under a magnetic field B

0

= 70 mT and
with a Rabi frequency of 1 GHz, the final phonon number
is found to be hni

0

= 0.51, already close to the ground
state.
A “pulsed pumping strategy” [6] would allow one to

go beyond this number but another simpler option is to
tune the B-field again. Provided W

gas

is much smaller
than W

op

, hni
0

can be decreased further at the cost of
a reduced cooling rate. Cooling to the ground state can
be obtained for lower magnetic fields, and with a lower
Rabi frequency. For a Rabi frequency of 20 MHz at a
magnetic field of 16 mT we actually find a final phonon
number hni

0

= 0.036, very close to the ground state.
Achieving such ground state cooling is an important

preliminary step towards preparing arbitrary phonon
Fock states [30]. This is possible if the strong coupling
regime is reached, i.e. when �̃

�

is greater than the deco-
herence rate of the system.
Strong coupling regime : Let us now describe the con-

ditions to be in the strong coupling regime. In figure 3,
the coupling rate �̃

�

is plotted as a function of the mag-
netic field for various particle geometries (depicted in the
SI). The b and a parameters correspond to the minimum,
resp. maximum, particle radii. Fig. 3-a) shows the cou-
pling rate for particles with a radius b = 20 nm and
and aspect ratio of a/b = 2.5. A maximum is reached
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Hamiltonian for rotational optomechanics : Having
quantized the rotational mode, we now turn to the esti-
mation of the coupling strength between the NV center
spin and the rotational mode. The NV center has an in-
herent quantization axis given by the magnetic interac-
tion between two electronic spins in the ground state. We
take a NV center aligned to the Z axis, which oscillates
around the y axis as depicted in figure 1-a). In the pres-
ence of a homogeneous transverse magnetic field along
x, if the nanodiamond rotates, the projection of the spin
component along the magnetic field is changed, thus pro-
viding a means to read-out the angular motion and ap-
ply a torque to the diamond. The magnetic Hamiltonian

Ĥ
B

= ~g
s

µ
B

~B · ~̂S describes the coupling of the spin ~̂S to
the transverse magnetic field B. Here g

s

is the Landé fac-
tor and µ

B

the Bohr magneton. We take Ŝ
x

and Ŝ
z

the
spin operators along the X and Z rotating axis and as-
sume the NV center to be located at the center of mass of
the diamond. We get Ĥ

B

= ~µ
B

B
⇣
sin �̂Ŝ

z

+ cos �̂Ŝ
x

⌘
.

Considering only first order terms in �̂, the magnetic
Hamiltonian becomes

Ĥ
B

= ~g
s

µ
B

B�
0

�
â+ â†

�
Ŝ
z

+ ~g
s

µ
B

BŜ
x

. (5)

The total Hamiltonian of the system then writes :

Ĥ = ~!
�

â†â+ Ĥ
NV

+ ~�
�

�
â+ â†

�
Ŝ
z

, (6)

where Ĥ
NV

is the Hamiltonian of the NV spin without
the optomechanical coupling term and where the single
quantum of motional shift is given by �

�

= g
s

µ
B

B�
0

.
The NV hamiltonian reads

Ĥ
NV

= DŜ2

z

+ ~g
s

µ
B

BŜ
x

+ ~⌦
R

Ŝ
y

cos(!t). (7)

The first term DS2

z

describes spin-spin coupling between
the two electron in the ground states and lifts the de-
generacy between the three states of this spin 1 system.
For the NV center, D = 2.87 GHz. The transverse mag-
netic field B here mixes the ground and excited electronic
states |0i, |±1i into mixed states |gi, |di and |ei. The
third term describes the coupling between the NV elec-
tronic spin and a microwave that is linearly polarised
along the y axis, at a frequency ! and Rabi frequency
⌦

R

. Diagonalising the hamiltonian (see SI) enables the
coupling constant �̃

�

= �
�

cos ✓ sin between the phonon
modes and the electronic spin to be obtained, where the
mixing angles ✓ and  are defined as tan 2✓ = 2�B/D
and tan 2 = ⌦

R

/� respectively and � si the microwave
detuning with respect to the |gi ! |di transition.

Ground state cooling : A cooling scheme can be set
up similarly to [6] by adding an optical field to excite
the electronic states. Optical pumping polarizes the spin
state to the |0i state through non-radiative decay via a
metastable state [26]. Taking into account this dissipa-
tive process and the unitary evolution of the system, we
obtain unbalanced populations between the new eigen-
states |+i and |ei (see SI), enabling continuous cooling

through coupling to the phonon. Contrary to [6], neither
|+i nor |ei is orthogonal to |0i : the depopulation -and
cooling- therefore only occur if we ensure the probabili-
ties |h0|ei| and |h0|+i| to be su�ciently unbalanced. This
can be tuned using the magnetic field, the microwave de-
tuning and Rabi frequency. Moreover, the optical polar-
ization is not perfect: at room temperature, a fraction
of the optically excited states decays to the same spin
states, reducing the e�ciency of the cooling process.
To study how the cooling e�ciency varies with the B

field and microwave parameters, we look for the phonon
mean occupation number. The  parameter that allows
resonant conditions for a Rabi frequency of 1 GHz is plot-
ted in Figure 3 as a function of the magnetic field. This
figure also shows that for such a Rabi frequency the cool-
ing rate reaches an optimum for a magnetic field of only
70 mT, as shown by the dashed lines.
Final phonon occupation number : The final phonon

occupation number under continuous cooling is given by :

hni
0

=
A+

op

+W
gas

W
op

, (8)

[6, 27], with A+

op

= S(�!
�

) the optical heating rate. In
[29], W

gas

was evaluated for the center of mass mode
of nanospheres as a function of the pressure. Here we
suppose that this heating rate is in the same range for
the rotational modes, although further investigations are
needed to determine how correct is this assumption.
Other potential limitations, such as laser induced heat-
ing, are discussed in the SI. We consider a diamond
sphere with a 35 nm radius under a vacuum pressure
of 10�8 mbar. Under a magnetic field B

0

= 70 mT and
with a Rabi frequency of 1 GHz, the final phonon number
is found to be hni

0

= 0.51, already close to the ground
state.
A “pulsed pumping strategy” [6] would allow one to

go beyond this number but another simpler option is to
tune the B-field again. Provided W

gas

is much smaller
than W

op

, hni
0

can be decreased further at the cost of
a reduced cooling rate. Cooling to the ground state can
be obtained for lower magnetic fields, and with a lower
Rabi frequency. For a Rabi frequency of 20 MHz at a
magnetic field of 16 mT we actually find a final phonon
number hni

0

= 0.036, very close to the ground state.
Achieving such ground state cooling is an important

preliminary step towards preparing arbitrary phonon
Fock states [30]. This is possible if the strong coupling
regime is reached, i.e. when �̃

�

is greater than the deco-
herence rate of the system.
Strong coupling regime : Let us now describe the con-

ditions to be in the strong coupling regime. In figure 3,
the coupling rate �̃

�

is plotted as a function of the mag-
netic field for various particle geometries (depicted in the
SI). The b and a parameters correspond to the minimum,
resp. maximum, particle radii. Fig. 3-a) shows the cou-
pling rate for particles with a radius b = 20 nm and
and aspect ratio of a/b = 2.5. A maximum is reached
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Experimental set-up

Electron spin resonance from NV centers

in diamonds levitating in an ion trap

T. Delord1,2, L. Nicolas1, L. Schwab1, and G. Hétet1
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We report observations of the Electron Spin Resonance (ESR) of Nitrogen Vacancy (NV) centers
in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient
conditions, we demonstrate e�cient microwave driving of the electronic spin and show that the spin
properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We
also exploit the ESR signal to show angle stability of single trapped monocrystals, a necessary step
towards spin-controlled levitating macroscopic objects.

PACS numbers: 32.30.Bv, 37.10.Ty, 05.30.-d, 67.80.dj

The negatively charged Nitrogen Vacancy (NV�) cen-
ter in diamond has emerged as a very e�cient source
of single photons and a promising candidate for quan-
tum control and sensing via its electron spin. Recently,
there has been much interest in the electronic spin of the
NV� center in levitating diamonds [1, 2]. This inter-
est is partly motivated by proposals for hybrid optome-
chanics [3], and implications in ultrahigh force sensitiv-
ity [4] where the NV center’s spin response to magnetic
fields is exploited to read-out the motion of the diamond
with high spatial resolution under ambient conditions [5].
Amongst the many levitation schemes, optical traps are
the most widely used [1, 6–8]. They provide e�cient lo-
calisation for neutral and charged particles and can work
under liquid or atmospheric environnements. However
the trap light that is scattered from the object means
that excessive heating can be at work [6, 7, 9, 10] and
result in a lower optomechanical read-out. Furthermore,
optical traps may quench the fluorescence of NV centers
[7] and a↵ect the electronic spin resonance contrast.

Being able to trap diamonds hosting NV centers with-
out light scattering could thus o↵er a better control of
the spin-mechanical coupling and enlarge the range of ap-
plications of levitating diamonds. Levitation techniques
such as ion traps [11] or magneto-gravitational traps [12]
are tentalizing approaches for reaching this goal. Ion
traps could not only provide an escape route for scatter-
ing free trapping, but also enable a high localisation of
the particles together with large trap depths as demon-
strated by the impressive control over the motion that
have been developped with single ions in the past [13].
Various nano-objects have been confined in ion traps al-
ready, from coloidal nanocrystals [14], silica nanospheres
[15, 16], graphene flakes [17], micron size diamond clus-
ters [18], with reported storage times of several days,
showing their strong potential for the motional control
of macroscopic objects.

In this work, we report measurements of the electronic
spin resonance of NV centers embedded in diamonds
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FIG. 1: Sketch of the optical setup. A green laser is focused
onto a diamond levitating in the Paul trap. The diamond
position is monitored using phase contrast imaging on a dis-
tant screen and the photoluminescence from the NV centers
in the trapped diamond is collected by the same objective and
measured either on an avalanche photodiode (APD) or on a
spectrometer. As shown in the inset, a microwave antenna is
brought 150 µm away from the trap center to control the NV
centers’ electronic spins and a neodynium magnet is placed
5 cm away from the trap center to Zeeman shift to the NV
centers electronic spins. DM : Dichroic mirror, FM : flipping
mirror, NF : Notch filter centered at 532 nm.

that are levitating in an ion trap. Further, we observe
high contrast Zeeman-splitted ESR spectra, demonstrat-
ing angular stability over single levitating monocrystals
on time scales of minutes, paving the way towards single
spin opto-mechanical schemes in scattering-free traps.

Phase	contrast imaging



ESR	with NVs in	levitating diamonds
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

for the projections of the four NV on the B field
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The condition ~x

i

· ~B > 0 imposes n = 0, which implies
that ✓ = arctan 2.

We can deduce the value of the magnetic field and the
angle � by measuring the Zeeman frequency shifts of the
levels corresponding to orientations 1 and 2 with respect
to the zero-field splitting line. These are !

1

= 0.37 GHz
and !

2

= 0.25 GHz. Writing r = !

1

/!

2

, we obtain the
condition

tan� =
r � 1
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2

sin ✓(3� r)
, (6)

giving � = 36 degrees. We then obtain the magnitude of
the B field to be 80 G.

In Fig. 4. b), the particle has been rotated after chang-
ing the frequency of the trap. The extremal ESR peak
positions do not shift, meaning that, in the NV frame,
~x

4
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~

B) = ~x
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0), where �
e

= 2.8 MHz/G is the gy-
romagnetic factor of the electron andB

0 is the B field seen
by the rotated particle. The two central peaks merge,
which implies that ~x

3

· (�
e

~

B

0) = ~x

2

· (�
e

~

B

0). The first
condition implies that �

0 = � = 36 degrees while the
second implies that ✓

0 = 0. Let us note that there are

degeneracies since n⇡/2 rotations with the polar angle ✓

(n an integer number) does not change the ESR spectrum
while the diamond may have rotated.
One finds that ✓ = arctan(2)�⇡/4, i.e. about 18� with

respect to the orientation 1. We then deduce the angle �
to be 36 degrees and the magnetic field amplitude to be
80 G. The resulting NV centers’ structure with respect
to the B-field axis is depicted in Fig. b-i) [30].
When tuning the trap frequency from ⌦/2⇡ = 3.3 kHz

to ⌦/2⇡ = 2.6 kHz we observe a change in the phase
contrast image which points to a deterministic change in
the particle angle. We attribute the rotation to the pres-
ence of residual electric fields on the needles. Here, the
patch potentials on the needle generate an angle/position
dependent residual field in the vicinity of the particle,
which when integrated over the charges of the particle
will result in an angle-dependent torque. Residual elec-
tric fields due to patch potentials typically shift the cen-
ter of mass of ions when the trap voltage or frequency
is changed, because of the change in the relative weight
between the Paul trap potential and this extra electric
potential. If instead such angle-dependent torque is ap-
plied to the particle, this will shift the stable angular
position. Trace ii) displays an ESR spectrum taken with
the same particle as for trace i), but with this increased
confinement. A displacement of the frequency of the two
central lines corresponding to orientations 2 and 3 of the
|m

s

= 0i to |m
s

= 1i transitions is observed while lines
1 and 4 do not shift significantly. We can thus deduce a
relationship between the orientations (✓0,�0) in this new
stable position of the diamond, using the conservation
of the projection for orientations 1 and 4 and find that
�

0 = �. The merging of the two central peaks yields
✓

0 = 45�. We conclude that the diamonds necessarily ro-
tated around the vertical axis z0 after this change in the
trap parameters, as depicted in Fig. 4-b ii).

E. Conclusion

We observed electron spin resonances from NV centers
with single diamond monocrystals levitating in a Paul
trap. Our results furthermore show stable angular stabil-
ity of the charged diamonds over time scales of minutes,
a necessary step towards spin-controlled levitating par-
ticles. Ramsey spectroscopy or electric field noise mea-
surements [25] will then be implemented to assess the
applicability of nanodiamonds containing NV� centers
in ion traps for quantum sensing. This system can for
instance be a potentially useful tool for vectorial mag-
netometry, and enable the observation of quantum geo-
metric phases [26] and be used as high precision multi-
axis rotational sensor [26, 27]. This experiment is also
realized in a unique regime where the trap does not im-
pact the photo-physical properties of NV centers. Using
a more confining trap combined with electrospray ioni-
sation for loading, will enable selection of particles with
higher charge to mass ratios and thus pave a path towards

N

N
N

NV

With a	magnetic field
4	possible	orientations	

N

Electron	
Spin	

Resonance



ESR	with NVs in	levitating diamonds

No
rm

al
ize

d
PL

zy

x

Frequency (GHz)

i)

ii)

iii)

 N
or

m
al

iz
ed

 P
L

b)

a)

lms=0>

lms=+1> 6�t	

6�t	

t

b

B
2.87 GHz

6max

6max

<6max

<6max

B1>B2B2

B2

B1

Pd

zy

x

Frequency (GHz)

i)

ii)

iii)

 N
or

m
al

iz
ed

 P
L

b)

a)

lms=0>

lms=+1> 6�t	

6�t	

t

b

B
2.87 GHz

6max

6max

<6max

<6max

B1>B2B2

B2

B1

Pd

No	magnetic field

B=0

7

 N
o

rm
al

iz
e

d
 P

L

Frequency (GHz)

2.8 3.0 3.22.62.4

i)

ii)

a) b)

0.99

1

0.98

1

0.99

0.98

B

y’

x’

z’

θ'=45º

B

y’

x’

z’

2.8 3.0 3.22.62.4
θ=18º

1

3

14

4

2

32

3

4

i)

ii)

φ=36º

φ=φ'

1

2
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· ~B > 0 imposes n = 0, which implies
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We can deduce the value of the magnetic field and the
angle � by measuring the Zeeman frequency shifts of the
levels corresponding to orientations 1 and 2 with respect
to the zero-field splitting line. These are !

1
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and !

2

= 0.25 GHz. Writing r = !
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, we obtain the
condition

tan� =
r � 1

1

2

sin ✓(3� r)
, (6)

giving � = 36 degrees. We then obtain the magnitude of
the B field to be 80 G.

In Fig. 4. b), the particle has been rotated after chang-
ing the frequency of the trap. The extremal ESR peak
positions do not shift, meaning that, in the NV frame,
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0), where �
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= 2.8 MHz/G is the gy-
romagnetic factor of the electron andB

0 is the B field seen
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which implies that ~x
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0). The first
condition implies that �

0 = � = 36 degrees while the
second implies that ✓

0 = 0. Let us note that there are

degeneracies since n⇡/2 rotations with the polar angle ✓

(n an integer number) does not change the ESR spectrum
while the diamond may have rotated.
One finds that ✓ = arctan(2)�⇡/4, i.e. about 18� with

respect to the orientation 1. We then deduce the angle �
to be 36 degrees and the magnetic field amplitude to be
80 G. The resulting NV centers’ structure with respect
to the B-field axis is depicted in Fig. b-i) [30].
When tuning the trap frequency from ⌦/2⇡ = 3.3 kHz

to ⌦/2⇡ = 2.6 kHz we observe a change in the phase
contrast image which points to a deterministic change in
the particle angle. We attribute the rotation to the pres-
ence of residual electric fields on the needles. Here, the
patch potentials on the needle generate an angle/position
dependent residual field in the vicinity of the particle,
which when integrated over the charges of the particle
will result in an angle-dependent torque. Residual elec-
tric fields due to patch potentials typically shift the cen-
ter of mass of ions when the trap voltage or frequency
is changed, because of the change in the relative weight
between the Paul trap potential and this extra electric
potential. If instead such angle-dependent torque is ap-
plied to the particle, this will shift the stable angular
position. Trace ii) displays an ESR spectrum taken with
the same particle as for trace i), but with this increased
confinement. A displacement of the frequency of the two
central lines corresponding to orientations 2 and 3 of the
|m

s

= 0i to |m
s

= 1i transitions is observed while lines
1 and 4 do not shift significantly. We can thus deduce a
relationship between the orientations (✓0,�0) in this new
stable position of the diamond, using the conservation
of the projection for orientations 1 and 4 and find that
�

0 = �. The merging of the two central peaks yields
✓

0 = 45�. We conclude that the diamonds necessarily ro-
tated around the vertical axis z0 after this change in the
trap parameters, as depicted in Fig. 4-b ii).

E. Conclusion

We observed electron spin resonances from NV centers
with single diamond monocrystals levitating in a Paul
trap. Our results furthermore show stable angular stabil-
ity of the charged diamonds over time scales of minutes,
a necessary step towards spin-controlled levitating par-
ticles. Ramsey spectroscopy or electric field noise mea-
surements [25] will then be implemented to assess the
applicability of nanodiamonds containing NV� centers
in ion traps for quantum sensing. This system can for
instance be a potentially useful tool for vectorial mag-
netometry, and enable the observation of quantum geo-
metric phases [26] and be used as high precision multi-
axis rotational sensor [26, 27]. This experiment is also
realized in a unique regime where the trap does not im-
pact the photo-physical properties of NV centers. Using
a more confining trap combined with electrospray ioni-
sation for loading, will enable selection of particles with
higher charge to mass ratios and thus pave a path towards
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The condition ~x
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· ~B > 0 imposes n = 0, which implies
that ✓ = arctan 2.

We can deduce the value of the magnetic field and the
angle � by measuring the Zeeman frequency shifts of the
levels corresponding to orientations 1 and 2 with respect
to the zero-field splitting line. These are !

1

= 0.37 GHz
and !

2

= 0.25 GHz. Writing r = !

1

/!

2

, we obtain the
condition

tan� =
r � 1

1

2

sin ✓(3� r)
, (6)

giving � = 36 degrees. We then obtain the magnitude of
the B field to be 80 G.

In Fig. 4. b), the particle has been rotated after chang-
ing the frequency of the trap. The extremal ESR peak
positions do not shift, meaning that, in the NV frame,
~x

4

·(�
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~

B) = ~x

4
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0), where �
e

= 2.8 MHz/G is the gy-
romagnetic factor of the electron andB

0 is the B field seen
by the rotated particle. The two central peaks merge,
which implies that ~x
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· (�
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~
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0) = ~x
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· (�
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B

0). The first
condition implies that �

0 = � = 36 degrees while the
second implies that ✓

0 = 0. Let us note that there are

degeneracies since n⇡/2 rotations with the polar angle ✓

(n an integer number) does not change the ESR spectrum
while the diamond may have rotated.
One finds that ✓ = arctan(2)�⇡/4, i.e. about 18� with

respect to the orientation 1. We then deduce the angle �
to be 36 degrees and the magnetic field amplitude to be
80 G. The resulting NV centers’ structure with respect
to the B-field axis is depicted in Fig. b-i) [30].
When tuning the trap frequency from ⌦/2⇡ = 3.3 kHz

to ⌦/2⇡ = 2.6 kHz we observe a change in the phase
contrast image which points to a deterministic change in
the particle angle. We attribute the rotation to the pres-
ence of residual electric fields on the needles. Here, the
patch potentials on the needle generate an angle/position
dependent residual field in the vicinity of the particle,
which when integrated over the charges of the particle
will result in an angle-dependent torque. Residual elec-
tric fields due to patch potentials typically shift the cen-
ter of mass of ions when the trap voltage or frequency
is changed, because of the change in the relative weight
between the Paul trap potential and this extra electric
potential. If instead such angle-dependent torque is ap-
plied to the particle, this will shift the stable angular
position. Trace ii) displays an ESR spectrum taken with
the same particle as for trace i), but with this increased
confinement. A displacement of the frequency of the two
central lines corresponding to orientations 2 and 3 of the
|m

s

= 0i to |m
s

= 1i transitions is observed while lines
1 and 4 do not shift significantly. We can thus deduce a
relationship between the orientations (✓0,�0) in this new
stable position of the diamond, using the conservation
of the projection for orientations 1 and 4 and find that
�

0 = �. The merging of the two central peaks yields
✓

0 = 45�. We conclude that the diamonds necessarily ro-
tated around the vertical axis z0 after this change in the
trap parameters, as depicted in Fig. 4-b ii).

E. Conclusion

We observed electron spin resonances from NV centers
with single diamond monocrystals levitating in a Paul
trap. Our results furthermore show stable angular stabil-
ity of the charged diamonds over time scales of minutes,
a necessary step towards spin-controlled levitating par-
ticles. Ramsey spectroscopy or electric field noise mea-
surements [25] will then be implemented to assess the
applicability of nanodiamonds containing NV� centers
in ion traps for quantum sensing. This system can for
instance be a potentially useful tool for vectorial mag-
netometry, and enable the observation of quantum geo-
metric phases [26] and be used as high precision multi-
axis rotational sensor [26, 27]. This experiment is also
realized in a unique regime where the trap does not im-
pact the photo-physical properties of NV centers. Using
a more confining trap combined with electrospray ioni-
sation for loading, will enable selection of particles with
higher charge to mass ratios and thus pave a path towards
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The condition ~x
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· ~B > 0 imposes n = 0, which implies
that ✓ = arctan 2.

We can deduce the value of the magnetic field and the
angle � by measuring the Zeeman frequency shifts of the
levels corresponding to orientations 1 and 2 with respect
to the zero-field splitting line. These are !

1

= 0.37 GHz
and !

2

= 0.25 GHz. Writing r = !
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/!

2

, we obtain the
condition

tan� =
r � 1
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sin ✓(3� r)
, (6)

giving � = 36 degrees. We then obtain the magnitude of
the B field to be 80 G.

In Fig. 4. b), the particle has been rotated after chang-
ing the frequency of the trap. The extremal ESR peak
positions do not shift, meaning that, in the NV frame,
~x

4

·(�
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~

B) = ~x

4
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0), where �
e

= 2.8 MHz/G is the gy-
romagnetic factor of the electron andB

0 is the B field seen
by the rotated particle. The two central peaks merge,
which implies that ~x
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0). The first
condition implies that �

0 = � = 36 degrees while the
second implies that ✓

0 = 0. Let us note that there are

degeneracies since n⇡/2 rotations with the polar angle ✓

(n an integer number) does not change the ESR spectrum
while the diamond may have rotated.
One finds that ✓ = arctan(2)�⇡/4, i.e. about 18� with

respect to the orientation 1. We then deduce the angle �
to be 36 degrees and the magnetic field amplitude to be
80 G. The resulting NV centers’ structure with respect
to the B-field axis is depicted in Fig. b-i) [30].
When tuning the trap frequency from ⌦/2⇡ = 3.3 kHz

to ⌦/2⇡ = 2.6 kHz we observe a change in the phase
contrast image which points to a deterministic change in
the particle angle. We attribute the rotation to the pres-
ence of residual electric fields on the needles. Here, the
patch potentials on the needle generate an angle/position
dependent residual field in the vicinity of the particle,
which when integrated over the charges of the particle
will result in an angle-dependent torque. Residual elec-
tric fields due to patch potentials typically shift the cen-
ter of mass of ions when the trap voltage or frequency
is changed, because of the change in the relative weight
between the Paul trap potential and this extra electric
potential. If instead such angle-dependent torque is ap-
plied to the particle, this will shift the stable angular
position. Trace ii) displays an ESR spectrum taken with
the same particle as for trace i), but with this increased
confinement. A displacement of the frequency of the two
central lines corresponding to orientations 2 and 3 of the
|m

s

= 0i to |m
s

= 1i transitions is observed while lines
1 and 4 do not shift significantly. We can thus deduce a
relationship between the orientations (✓0,�0) in this new
stable position of the diamond, using the conservation
of the projection for orientations 1 and 4 and find that
�

0 = �. The merging of the two central peaks yields
✓

0 = 45�. We conclude that the diamonds necessarily ro-
tated around the vertical axis z0 after this change in the
trap parameters, as depicted in Fig. 4-b ii).

E. Conclusion

We observed electron spin resonances from NV centers
with single diamond monocrystals levitating in a Paul
trap. Our results furthermore show stable angular stabil-
ity of the charged diamonds over time scales of minutes,
a necessary step towards spin-controlled levitating par-
ticles. Ramsey spectroscopy or electric field noise mea-
surements [25] will then be implemented to assess the
applicability of nanodiamonds containing NV� centers
in ion traps for quantum sensing. This system can for
instance be a potentially useful tool for vectorial mag-
netometry, and enable the observation of quantum geo-
metric phases [26] and be used as high precision multi-
axis rotational sensor [26, 27]. This experiment is also
realized in a unique regime where the trap does not im-
pact the photo-physical properties of NV centers. Using
a more confining trap combined with electrospray ioni-
sation for loading, will enable selection of particles with
higher charge to mass ratios and thus pave a path towards
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· ~B > 0 imposes n = 0, which implies
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We can deduce the value of the magnetic field and the
angle � by measuring the Zeeman frequency shifts of the
levels corresponding to orientations 1 and 2 with respect
to the zero-field splitting line. These are !
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= 0.37 GHz
and !
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= 0.25 GHz. Writing r = !
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, we obtain the
condition

tan� =
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, (6)

giving � = 36 degrees. We then obtain the magnitude of
the B field to be 80 G.

In Fig. 4. b), the particle has been rotated after chang-
ing the frequency of the trap. The extremal ESR peak
positions do not shift, meaning that, in the NV frame,
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0), where �
e

= 2.8 MHz/G is the gy-
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0 is the B field seen
by the rotated particle. The two central peaks merge,
which implies that ~x
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0). The first
condition implies that �

0 = � = 36 degrees while the
second implies that ✓

0 = 0. Let us note that there are

degeneracies since n⇡/2 rotations with the polar angle ✓

(n an integer number) does not change the ESR spectrum
while the diamond may have rotated.
One finds that ✓ = arctan(2)�⇡/4, i.e. about 18� with

respect to the orientation 1. We then deduce the angle �
to be 36 degrees and the magnetic field amplitude to be
80 G. The resulting NV centers’ structure with respect
to the B-field axis is depicted in Fig. b-i) [30].
When tuning the trap frequency from ⌦/2⇡ = 3.3 kHz

to ⌦/2⇡ = 2.6 kHz we observe a change in the phase
contrast image which points to a deterministic change in
the particle angle. We attribute the rotation to the pres-
ence of residual electric fields on the needles. Here, the
patch potentials on the needle generate an angle/position
dependent residual field in the vicinity of the particle,
which when integrated over the charges of the particle
will result in an angle-dependent torque. Residual elec-
tric fields due to patch potentials typically shift the cen-
ter of mass of ions when the trap voltage or frequency
is changed, because of the change in the relative weight
between the Paul trap potential and this extra electric
potential. If instead such angle-dependent torque is ap-
plied to the particle, this will shift the stable angular
position. Trace ii) displays an ESR spectrum taken with
the same particle as for trace i), but with this increased
confinement. A displacement of the frequency of the two
central lines corresponding to orientations 2 and 3 of the
|m

s

= 0i to |m
s

= 1i transitions is observed while lines
1 and 4 do not shift significantly. We can thus deduce a
relationship between the orientations (✓0,�0) in this new
stable position of the diamond, using the conservation
of the projection for orientations 1 and 4 and find that
�

0 = �. The merging of the two central peaks yields
✓

0 = 45�. We conclude that the diamonds necessarily ro-
tated around the vertical axis z0 after this change in the
trap parameters, as depicted in Fig. 4-b ii).

E. Conclusion

We observed electron spin resonances from NV centers
with single diamond monocrystals levitating in a Paul
trap. Our results furthermore show stable angular stabil-
ity of the charged diamonds over time scales of minutes,
a necessary step towards spin-controlled levitating par-
ticles. Ramsey spectroscopy or electric field noise mea-
surements [25] will then be implemented to assess the
applicability of nanodiamonds containing NV� centers
in ion traps for quantum sensing. This system can for
instance be a potentially useful tool for vectorial mag-
netometry, and enable the observation of quantum geo-
metric phases [26] and be used as high precision multi-
axis rotational sensor [26, 27]. This experiment is also
realized in a unique regime where the trap does not im-
pact the photo-physical properties of NV centers. Using
a more confining trap combined with electrospray ioni-
sation for loading, will enable selection of particles with
higher charge to mass ratios and thus pave a path towards
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Fig. ?? a). In reality, the ESR is actually the superpo-
sition of 8 sinusoidal distributions that can be displaced
from the zero-field splitting (� = 0). Qualitatively, a sin-
gle NV center’s spin experiences a time varying magnetic
field �(t) leading to an ESR that follows a distribution
P

d

that is sinusoidal, the amplitude of which (denoted
�

max

in Fig. ?? a)) depends upon the magnetic field
strength. In the inset, for simplicity, we describe an ESR
for a transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [? ]. ESR spectra are shown in Figure ??-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.??-a) trace i). It dis-
plays 8 resonances, corresponding to the projection of
the two spin transitions |m

s

= 0i ! |m
s

= ±1i on the
4 orientations of the NV centers within the levitating di-
amond. Here, we adjusted the magnetic field angle and
strength so that the spectral lines are equally separated.
Compared to the results presented in Figure ??, observ-
ing such a splitting demonstrates that the microdiamonds
do not rotate during the course of the measurement and
that we can stably trap single monocrystals for extended
periods of time. Let us note that the contrast of each line
also varies due to di↵ering alignements of the NV axes
with respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :
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where !
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is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I
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is the
moment of inertia about the y axis,
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with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure ??.
In the experiment where micronsize particles are in-

jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in
Fig. ?? a). We consider only the positive part of the spec-
trum. Writing ~x

1

= [1, 1, 1], ~x
2

= [1, 1, 1], ~x
3

= [1, 1, 1]
and ~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations
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gle NV center’s spin experiences a time varying magnetic
field�(t) leading to an ESR that follows a distribution P

d

that is sinusoidal, the amplitude of which (denoted �
max

in Fig. 5 a)) depends upon the magnetic field strength.
In the inset, for simplicity, we describe an ESR for a
transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [1]. ESR spectra are shown in Figure 5-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.6-a) trace i). It displays
8 resonances, corresponding to the projection of the two
spin transitions |m

s

= 0i ! |m
s

= ±1i on the 4 orien-
tations of the NV centers within the levitating diamond.
Here, we adjusted the magnetic field angle and strength
so that the spectral lines are equally separated. Com-
pared to the results presented in Figure 5, observing such
a splitting demonstrates that the microdiamonds do not
rotate during the course of the measurement and that we
can stably trap single monocrystals for extended periods
of time. Let us note that the contrast of each line also
varies due to di↵ering alignements of the NV axes with
respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :

�̈�
p
2!

�

⌦ cos(⌦t)
sin(2�)

2
= 0 (4)

↵̈�
p
2!

↵

⌦ cos(⌦t)
sin(2↵)

2
= 0 (5)

!

�

= !

z

mS

I

/I

yy

(6)

where !
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is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I
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is the
moment of inertia about the y axis,
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with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure 6.

In the experiment where micronsize particles are in-
jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in Fig. 6
a). We consider only the positive part of the spectrum.
Writing ~x

1

= [1, 1, 1], ~x

2

= [1, 1, 1], ~x

3

= [1, 1, 1] and
~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations

6

gle NV center’s spin experiences a time varying magnetic
field�(t) leading to an ESR that follows a distribution P

d

that is sinusoidal, the amplitude of which (denoted �
max

in Fig. 5 a)) depends upon the magnetic field strength.
In the inset, for simplicity, we describe an ESR for a
transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [1]. ESR spectra are shown in Figure 5-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.6-a) trace i). It displays
8 resonances, corresponding to the projection of the two
spin transitions |m

s

= 0i ! |m
s

= ±1i on the 4 orien-
tations of the NV centers within the levitating diamond.
Here, we adjusted the magnetic field angle and strength
so that the spectral lines are equally separated. Com-
pared to the results presented in Figure 5, observing such
a splitting demonstrates that the microdiamonds do not
rotate during the course of the measurement and that we
can stably trap single monocrystals for extended periods
of time. Let us note that the contrast of each line also
varies due to di↵ering alignements of the NV axes with
respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :
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where !

z

is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I

yy

is the
moment of inertia about the y axis,
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=
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with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure 6.

In the experiment where micronsize particles are in-
jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in Fig. 6
a). We consider only the positive part of the spectrum.
Writing ~x

1

= [1, 1, 1], ~x

2

= [1, 1, 1], ~x

3

= [1, 1, 1] and
~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations
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Angular stability with harmonic confinement	
at	the	frequency :



Angular stability

Newton’s law for	an	ellipsoidal particule :

In	the	small angle	limitàMatthieu	equation.
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Fig. ?? a). In reality, the ESR is actually the superpo-
sition of 8 sinusoidal distributions that can be displaced
from the zero-field splitting (� = 0). Qualitatively, a sin-
gle NV center’s spin experiences a time varying magnetic
field �(t) leading to an ESR that follows a distribution
P

d

that is sinusoidal, the amplitude of which (denoted
�

max

in Fig. ?? a)) depends upon the magnetic field
strength. In the inset, for simplicity, we describe an ESR
for a transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [? ]. ESR spectra are shown in Figure ??-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.??-a) trace i). It dis-
plays 8 resonances, corresponding to the projection of
the two spin transitions |m

s

= 0i ! |m
s

= ±1i on the
4 orientations of the NV centers within the levitating di-
amond. Here, we adjusted the magnetic field angle and
strength so that the spectral lines are equally separated.
Compared to the results presented in Figure ??, observ-
ing such a splitting demonstrates that the microdiamonds
do not rotate during the course of the measurement and
that we can stably trap single monocrystals for extended
periods of time. Let us note that the contrast of each line
also varies due to di↵ering alignements of the NV axes
with respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :
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where !

z

is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I

yy

is the
moment of inertia about the y axis,
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=
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ZZ �
z2 � x2
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with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure ??.
In the experiment where micronsize particles are in-

jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in
Fig. ?? a). We consider only the positive part of the spec-
trum. Writing ~x

1

= [1, 1, 1], ~x
2

= [1, 1, 1], ~x
3

= [1, 1, 1]
and ~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations

6

gle NV center’s spin experiences a time varying magnetic
field�(t) leading to an ESR that follows a distribution P

d

that is sinusoidal, the amplitude of which (denoted �
max

in Fig. 5 a)) depends upon the magnetic field strength.
In the inset, for simplicity, we describe an ESR for a
transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [1]. ESR spectra are shown in Figure 5-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.6-a) trace i). It displays
8 resonances, corresponding to the projection of the two
spin transitions |m

s

= 0i ! |m
s

= ±1i on the 4 orien-
tations of the NV centers within the levitating diamond.
Here, we adjusted the magnetic field angle and strength
so that the spectral lines are equally separated. Com-
pared to the results presented in Figure 5, observing such
a splitting demonstrates that the microdiamonds do not
rotate during the course of the measurement and that we
can stably trap single monocrystals for extended periods
of time. Let us note that the contrast of each line also
varies due to di↵ering alignements of the NV axes with
respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :
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where !
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is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I
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is the
moment of inertia about the y axis,
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with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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FIG. 6: a) Electron spin resonance (ESR) from a levitating
diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure 6.

In the experiment where micronsize particles are in-
jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in Fig. 6
a). We consider only the positive part of the spectrum.
Writing ~x

1

= [1, 1, 1], ~x

2

= [1, 1, 1], ~x

3

= [1, 1, 1] and
~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations
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gle NV center’s spin experiences a time varying magnetic
field�(t) leading to an ESR that follows a distribution P

d

that is sinusoidal, the amplitude of which (denoted �
max

in Fig. 5 a)) depends upon the magnetic field strength.
In the inset, for simplicity, we describe an ESR for a
transition m

s

= 0 to m

s

= +1 and a single NV cen-
ter whose rotation axis is perpendicular to the magnetic
field. Besides, the e�ciency of the micro-wave driving
is time-modulated, leading to a further reshaping of the
ESR profiles [1]. ESR spectra are shown in Figure 5-
b), with traces ii) and iii) corresponding to increasing
B-fields. As anticipated, the experimental curves display
a reduced contrast and broader linewidths demonstrating
that the particle rotates in the magnetic field in accor-
dance with the observed motion of the particle in trans-
mission imaging. From the extremal frequency points of
the graphs, we estimate the B-field to be 10 G for trace ii)
and 30 G for trace iii). These values are derived from the
projection maxima over the NV axis that goes through
a maximal alignement with the magnetic field during its
rotation.

We now move to an experiment where microdiamonds
with mean sizes 9.6 microns are injected in the trap. The
corresponding ESR is shown Fig.6-a) trace i). It displays
8 resonances, corresponding to the projection of the two
spin transitions |m

s

= 0i ! |m
s

= ±1i on the 4 orien-
tations of the NV centers within the levitating diamond.
Here, we adjusted the magnetic field angle and strength
so that the spectral lines are equally separated. Com-
pared to the results presented in Figure 5, observing such
a splitting demonstrates that the microdiamonds do not
rotate during the course of the measurement and that we
can stably trap single monocrystals for extended periods
of time. Let us note that the contrast of each line also
varies due to di↵ering alignements of the NV axes with
respect to the microwave polarisation.

The stability of the particle orientation can be under-
stood by considering the relationship between its angular
momentum and the torque applied by the electric field of
the Paul trap. Let us consider the rotation around the y

axis of an ellipsoidal particle in the trap. It can be shown
that the angle ↵ between the axis of the ellipsoid and the
z axis is given by the following equation :

�̈�
p
2!

�

⌦ cos(⌦t)
sin(2�)

2
= 0 (4)

↵̈�
p
2!

↵

⌦ cos(⌦t)
sin(2↵)

2
= 0 (5)

!

�

= !

z

mS

I

/I

yy

(6)

where !

z

is the axial angular frequency of the har-
monic pseudo-potential for the center of mass, I

yy

is the
moment of inertia about the y axis,

S
I

=
3

S

ZZ �
z2 � x2

�
dS

with x and y defined in the reference frame of the el-
lipsoid and S is the surface of the ellipsoid. This relation
is deduced from integrating the torque applied by the
electric field on the surface charges and factorizing the ↵
dependency. In the limit of small rotations around ↵ = 0
or ↵ = ⇡

2

, this equation is similar to the one that governs
the dynamics of the center of mass of the particle in the
trap. It thus leads to a harmonic pseudo-potential for the
angle ↵, here with angular frequency !

↵

. It thus leads to
a harmonic pseudo-potential for the angle for the rota-
tion about the x and y axis. Moreover since neither the
levitating particle nor the trap set up are actually rota-
tionally symmetric about the z axis, we can also expect
a confinement for the rotation about the z axis.
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diamond monocristal in a Paul trap. Traces i) and ii) corre-
spond to two di↵erent confinement frequencies. b) NV centers
orientations with respect to the applied magnetic field as de-
duced from the ESR spectra.

Using the ESR spectra, one can deduce the angle of
the diamond monocristal orientation with respect to the
magnetic field and the value of the magnetic field. We
write (✓,�) the azymutal and polar angles respectively
for the coordinates of the NV orientation labelled 1 in
the sketch b)-i) in Figure 6.

In the experiment where micronsize particles are in-
jected in the trap, four equidistant ESR peaks are ob-
tained for both positive and negative frequencies in Fig. 6
a). We consider only the positive part of the spectrum.
Writing ~x

1

= [1, 1, 1], ~x

2

= [1, 1, 1], ~x

3

= [1, 1, 1] and
~x

4

= [1, 1, 1] for the directions of the NV axes and
~

B = B(cos ✓ sin�, sin ✓ sin�, cos�), with � =]0,⇡/4[, the
equidistance between the peaks lead to the condition
tan ✓ = 2 + n⇡. This also gives the following equations
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Quantum	jump	of	a	single	photon	!

If the atomic frequency is detuned from the cavity mode by d/2p
with jdj$ V0, emission and absorption of photons by the probe
atoms are suppressed owing to the adiabatic variation of V(z) when
the atom crosses the gaussian cavity mode (see Methods). The atom–
field coupling results in shifts of the atomic and cavity frequencies9.
The atomic shift depends on the field intensity and thus provides
QND information on the photon number n. Following a proposal
made in refs 14 and 15, our aim is to read this information by an
interferometric method and to monitor the jumps of n between 0 and
1 under the effect of thermal fluctuations and relaxation in the cavity.

Before entering C, the atoms are prepared in a superposition of e
and g by a classical resonant field in the auxiliary cavity R1 (see Fig. 1).
During the atom–cavity interaction, this superposition accumulates
a phase W(n,d). The atomic coherence at the exit of C is probed by
subjecting the atoms to a second classical resonant field in R2, before
detecting them in the state-selective counter D. The combination of
R1, R2 and D is a Ramsey interferometer. The probability of detecting
the atom in g is a sine function of the relative phase of the fields in R1

and R2. This phase is adjusted so that the atom is ideally found in g if
C is empty (n 5 0). The detuning d/2p is set at 67 kHz, corresponding
to W(1,d) 2 W(0,d) 5 p. As a result, the atom is found in e if n 5 1. As
long as the probability of finding more than one photon remains
negligible, e thus codes for the one-photon state, j1æ, and g for the
vacuum, j0æ. The probability of finding two photons in a thermal
field at T 5 0.8 K is only 0.3%, and may be neglected in a first
approximation.

We first monitor the field fluctuations in C. Figure 2a (top trace)
shows a 2.5 s sequence of 2,241 detection events, recording the birth,
life and death of a single photon. At first, atoms are predominantly
detected in g, showing that C is in j0æ. A sudden change from g to e
in the detection sequence at t 5 1.054 s reveals a jump of the field
intensity, that is, the creation of a thermal photon, which disappears

at t9 5 1.530 s. This photon has survived 0.476 s (3.7 cavity lifetimes),
corresponding to a propagation of about 143,000 km between the
cavity mirrors.

The inset in Fig. 2a zooms into the detection sequence between
times t1 5 0.87 s and t2 5 1.20 s, and displays more clearly the indi-
vidual detection events. Imperfections reduce the contrast of the
Ramsey fringes to 78%. There is a pgj1 5 13% probability of detecting
an atom in g if n 5 1, and a pej0 5 9% probability of finding it in e
if n 5 0. Such misleading detection events, not correlated to real
photon number jumps, are conspicuous in Fig. 2a and in its inset.
To reduce their influence on the inferred n value, we apply a simple
error correction scheme. For each atom, n is determined by a major-
ity vote involving this atom and the previous seven atoms (see
Methods). The probabilities for erroneous n 5 0 (n 5 1) photon
number assignments are reduced below 1.4 3 1023 (2.5 3 1024)
respectively per detected atom. The average duration of this mea-
surement is 7.8 3 1023 s, that is, Tc/17. The bottom trace in Fig. 2a
shows the evolution of the reconstructed photon number. Another
field trajectory is presented in Fig. 2b. It displays two single-photon
events separated by a 2.069 s time interval during which C remains in
vacuum. By probing the field non-destructively in real time, we real-
ize a kind of ‘Maxwell demon’, sorting out the time intervals during
which the thermal fluctuations are vanishing.

Analysing 560 trajectories, we find an average photon number
n0 5 0.063 6 0.005, slightly larger than nt 5 0.049 6 0.004, the thermo-
dynamic value at the cavity mirror temperature, 0.80 6 0.02 K.
Attributing the excess photon noise entirely to a residual heating of
the field by the atomic beam yields an upper bound to the emission
rate per atom of 1024. This demonstrates the efficient suppression of
atomic emission due to the adiabatic variation of the atom–field
coupling. This suppression is a key feature that makes possible many
repetitions of the QND measurement. Methods based on resonant
phase shifts have much larger emission rates, in the 1021 range per
atom3. Non-resonant methods in which the detector is permanently
coupled to the cavity12 have error rates of the order of V0

2/d 2, and
would require much larger d/V0 ratios to be compatible with the
observation of field quantum jumps.

In a second experiment, we monitor the decay of a single-photon
Fock state prepared at the beginning of each sequence. We initialize
the field in j0æ by first absorbing thermal photons with ,10 atoms
prepared in g and tuned to resonance with the cavity mode (residual
photon number ,0.003 6 0.003). We then send into the cavity a
single atom in e, also resonant with C. Its interaction time is adjusted
so that it undergoes half a Rabi oscillation, exits in g and leaves C in
j1æ. The QND probe atoms are then sent across C. Figure 3a shows a
typical single photon trajectory (signal inferred by the majority vote)
and Fig. 3b–d presents the averages of 5, 15 and 904 such trajectories.
The staircase-like feature of single events is progressively smoothed
out into an exponential decay, typical of the evolution of a quantum
average.

We have neglected so far the probability of finding two photons in
C. This is justified, to a good approximation, by the low n0 value. A
precise statistical analysis reveals, however, the small probability of
two-photon events, which vanishes only at 0 K. When C is in j1æ, it
decays towards j0æ with the rate (1 1 n0)/Tc. This rate combines
spontaneous (1/Tc) and thermally stimulated (n0/Tc) photon
annihilation. Thermal fluctuations can also drive C into the two-
photon state j2æ at the rate 2n0/Tc (the factor of 2 is the square of
the photon creation operator matrix element between j1æ and j2æ).
The total escape rate from j1æ is thus (1 1 3n0)/Tc, a fraction 2n0/
(1 1 3n0) < 0.10 of the quantum jumps out of j1æ being actually
jumps towards j2æ.

In this experiment, the detection does not distinguish between j2æ
and j0æ. The incremental phase shift W(2,d) 2 W(1,d) is 0.88p for
d/2p5 67 kHz . The probability of detecting an atom in g when C
is in j2æ is ideally [1 2 cos(0.88p)]/2 5 0.96, indistinguishable from 1
within the experimental errors. Since the probability for n . 2 is
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Figure 2 | Birth, life and death of a photon. a, QND detection of a single
photon. Red and blue bars show the raw signal, a sequence of atoms detected
in e or g, respectively (upper trace). The inset zooms into the region where
the statistics of the detection events suddenly change, revealing the quantum
jump from | 0æ to | 1æ. The photon number inferred by a majority vote over
eight consecutive atoms is shown in the lower trace, revealing the birth, life
and death of an exceptionally long lived photon. b, Similar signals showing
two successive single photons, separated by a long time interval with cavity
in vacuum.
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Ground	state	cooling
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spin	cooling of	the	center	of	mass

GHz

Use	a	single	« atom »	to	cool	the	motion	of	thousands of	atoms.	
à Picometer precision of	a	nanometer sized object.

RSB

Final	phonon	number limited by	the	collision	rate	1/tcoll
with surrounding gaz	particles. One	needs	lf >>	1/tcoll
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Hamiltonian for rotational optomechanics : Having
quantized the rotational mode, we now turn to the esti-
mation of the coupling strength between the NV center
spin and the rotational mode. The NV center has an in-
herent quantization axis given by the magnetic interac-
tion between two electronic spins in the ground state. We
take a NV center aligned to the Z axis, which oscillates
around the y axis as depicted in figure 1-a). In the pres-
ence of a homogeneous transverse magnetic field along
x, if the nanodiamond rotates, the projection of the spin
component along the magnetic field is changed, thus pro-
viding a means to read-out the angular motion and ap-
ply a torque to the diamond. The magnetic Hamiltonian

Ĥ
B

= ~g
s

µ
B

~B · ~̂S describes the coupling of the spin ~̂S to
the transverse magnetic field B. Here g

s

is the Landé fac-
tor and µ

B

the Bohr magneton. We take Ŝ
x

and Ŝ
z

the
spin operators along the X and Z rotating axis and as-
sume the NV center to be located at the center of mass of
the diamond. We get Ĥ

B

= ~µ
B

B
⇣
sin �̂Ŝ

z

+ cos �̂Ŝ
x

⌘
.

Considering only first order terms in �̂, the magnetic
Hamiltonian becomes

Ĥ
B

= ~g
s

µ
B

B�
0

�
â+ â†

�
Ŝ
z

+ ~g
s

µ
B

BŜ
x

. (5)

The total Hamiltonian of the system then writes :

Ĥ = ~!
�

â†â+ Ĥ
NV

+ ~�
�

�
â+ â†

�
Ŝ
z

, (6)

where Ĥ
NV

is the Hamiltonian of the NV spin without
the optomechanical coupling term and where the single
quantum of motional shift is given by �

�

= g
s

µ
B

B�
0

.
The NV hamiltonian reads

Ĥ
NV

= DŜ2

z

+ ~g
s

µ
B

BŜ
x

+ ~⌦
R

Ŝ
y

cos(!t). (7)

The first term DS2

z

describes spin-spin coupling between
the two electron in the ground states and lifts the de-
generacy between the three states of this spin 1 system.
For the NV center, D = 2.87 GHz. The transverse mag-
netic field B here mixes the ground and excited electronic
states |0i, |±1i into mixed states |gi, |di and |ei. The
third term describes the coupling between the NV elec-
tronic spin and a microwave that is linearly polarised
along the y axis, at a frequency ! and Rabi frequency
⌦

R

. Diagonalising the hamiltonian (see SI) enables the
coupling constant �̃

�

= �
�

cos ✓ sin between the phonon
modes and the electronic spin to be obtained, where the
mixing angles ✓ and  are defined as tan 2✓ = 2�B/D
and tan 2 = ⌦

R

/� respectively and � si the microwave
detuning with respect to the |gi ! |di transition.

Ground state cooling : A cooling scheme can be set
up similarly to [6] by adding an optical field to excite
the electronic states. Optical pumping polarizes the spin
state to the |0i state through non-radiative decay via a
metastable state [26]. Taking into account this dissipa-
tive process and the unitary evolution of the system, we
obtain unbalanced populations between the new eigen-
states |+i and |ei (see SI), enabling continuous cooling

through coupling to the phonon. Contrary to [6], neither
|+i nor |ei is orthogonal to |0i : the depopulation -and
cooling- therefore only occur if we ensure the probabili-
ties |h0|ei| and |h0|+i| to be su�ciently unbalanced. This
can be tuned using the magnetic field, the microwave de-
tuning and Rabi frequency. Moreover, the optical polar-
ization is not perfect: at room temperature, a fraction
of the optically excited states decays to the same spin
states, reducing the e�ciency of the cooling process.
To study how the cooling e�ciency varies with the B

field and microwave parameters, we look for the phonon
mean occupation number. The  parameter that allows
resonant conditions for a Rabi frequency of 1 GHz is plot-
ted in Figure 3 as a function of the magnetic field. This
figure also shows that for such a Rabi frequency the cool-
ing rate reaches an optimum for a magnetic field of only
70 mT, as shown by the dashed lines.
Final phonon occupation number : The final phonon

occupation number under continuous cooling is given by :

hni
0

=
A+

op

+W
gas

W
op

, (8)

[6, 27], with A+

op

= S(�!
�

) the optical heating rate. In
[29], W

gas

was evaluated for the center of mass mode
of nanospheres as a function of the pressure. Here we
suppose that this heating rate is in the same range for
the rotational modes, although further investigations are
needed to determine how correct is this assumption.
Other potential limitations, such as laser induced heat-
ing, are discussed in the SI. We consider a diamond
sphere with a 35 nm radius under a vacuum pressure
of 10�8 mbar. Under a magnetic field B

0

= 70 mT and
with a Rabi frequency of 1 GHz, the final phonon number
is found to be hni

0

= 0.51, already close to the ground
state.
A “pulsed pumping strategy” [6] would allow one to

go beyond this number but another simpler option is to
tune the B-field again. Provided W

gas

is much smaller
than W

op

, hni
0

can be decreased further at the cost of
a reduced cooling rate. Cooling to the ground state can
be obtained for lower magnetic fields, and with a lower
Rabi frequency. For a Rabi frequency of 20 MHz at a
magnetic field of 16 mT we actually find a final phonon
number hni

0

= 0.036, very close to the ground state.
Achieving such ground state cooling is an important

preliminary step towards preparing arbitrary phonon
Fock states [30]. This is possible if the strong coupling
regime is reached, i.e. when �̃

�

is greater than the deco-
herence rate of the system.
Strong coupling regime : Let us now describe the con-

ditions to be in the strong coupling regime. In figure 3,
the coupling rate �̃

�

is plotted as a function of the mag-
netic field for various particle geometries (depicted in the
SI). The b and a parameters correspond to the minimum,
resp. maximum, particle radii. Fig. 3-a) shows the cou-
pling rate for particles with a radius b = 20 nm and
and aspect ratio of a/b = 2.5. A maximum is reached
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Diamonds levitating under vacuum

2

to excite the NV centers’ electronic spins. Further details
about the diamonds used, the loading protocol and the
imaging system can be found in [16].

Here, the voltage needs to be lowered to 600 V to avoid
plasmas that would otherwise appear at around 10 mbars
in the chamber. This means that careful preselection of
particles with a high charge to mass ratio need to be per-
formed at atmospheric pressures beforehand. To do so,
we operate the trap at 4000 V, inject diamonds with a
10 µm diameter, and systematically measure the onset
of instability. In Paul traps, stability is fulfilled if the
trapping frequency is larger than than the secular fre-
quency [19]. Measuring the trapping frequency at which
instability takes places provides a means to estimate the
charge to mass ratio. When this frequency is below 1
kHz at 4000 V, we estimated that the trapping time was
too short at 600 V and at low pressures so another parti-
cle is loaded. This mandatory preselection highlights an-
other benefit of the ring trap where the trap anharmonic-
ities [20] do not eject the particle close to the instability
threshold. The whole procedure typically requires 3 to 4
loading steps before a high enough charge to mass ratio
is attained.

Once a particle is trapped, the voltage and frequency
are lowered in air, following an iso-q curve, q being the
stability parameter of the trap at 1 bar [19]. Once 600 V
is reached, the turbomolecular pump is turned on. As
observed both in transmission and by looking at the
back-scattered green light, when the pressure reaches 500
mbars already, the center of the trap shifts. The back-
reflected scattered beam size thus reduces significantly
(by about a factor of 5 at 10 mbars of vacuum pres-
sure) due to a displacement of the particle with respect
to the objective focal point. This takes place because
the secular frequency depends on the damping rate, i.e.
on the vacuum level [21, 22]. In the presence of resid-
ual electric fields or gravity, changing the confinement
via the damping rate displaces the particle. The dia-
mond back scattered image also appeared elongated in
a direction perpendicular to the optical axis, consistant
with a large micromotion amplitude. When the damp-
ing rate decreases the particle indeed explores a larger
volume away from the center of the trap so that micro-
motion increases. When the vacuum reaches 10�2 mbars,
the voltage can be increased back to 4000 V without any
arching in the chamber. In principle, the optimum volt-
age for high confinement and no arching, could be cho-
sen by following the Paschen law [23]. For the present
measurements however, we kept the particle at a voltage
of 600 V because changing the trap parameters below 1
mbars often imparts kicks to the diamond that are large
enough to make it leave the trap.

The photoluminescence (PL) of the NV centers is col-
lected using the confocal microscope described in Fig-
ure 1-a). The PL signal is then filtered using a Notch
filter centered at 532 nm and can be directed either onto
an avalanche photodiode or a spectrometer. With a mW
of laser excitation, we can collect around 105 counts per

second on the avalanche photodiode at atmospheric pres-
sure. As the pressure decreases however, the PL de-
creases due to the aforementioned damping-induced mi-
cromotion and position shift, and possibly to the high
diamond temperature at low pressures as we will see.
Fig. 1-b) shows a time trace of the photoluminescence
taken at pressure levels starting from 1.8 10�2 and reach-
ing 10�2 mbars. The PL rate is about 8 kcounts/s at
2⇥10�2 mbars and here drops at 47 minutes. The reason
for the observed change in the PL over long time scales
can be attributed to instabilities in the trap frequency,
which displaces the particle from the focal spot. A more
rapid drop of the PL is seen at 42 minutes, when the pres-
sure reaches 10�2 mbars, and then the particle leaves the
trap abruptly at 47 minutes, as confirmed by monitoring
the retro-reflected beam. This experiment was repeated
more than 20 times, and after reaching 10�2 millibars, all
particles leave the trap after a couple of minutes. Before
being lost, they shake in a random fashion, the rate of
which was found to depend upon the laser power. This
sudden escape of the diamond from the trap therefore
seems to be related to radiation pressure from the green
laser to the diamond [16] or to a high temperature of the
gaz surrounding the particle when the diamond heats up.
We will indeed show with the ESR that the diamond tem-
perature increases significantly at pressure levels below
the mbar due to the green laser.

1

0.98

0.985

0.99

0.995

2.86 2.872.85

N
o

rm
a

liz
e

d
 p

h
o

to
lu

m
in

e
s
c
e

n
c
e

Frequency (GHz)

2.84

1.005

a)

ZFS at

298 K

ΔD(T)=12 MHz

m
s
=0

m
s
=+/-1

m
s
=0

m
s
=+/-1

1E

1A
1

3E

3A
2

532 nm PL

τ=200 ns

τ=10 ns

b)

D(T)

FIG. 2: a) Level scheme of the NV� center.
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K. b) Electronic spin resonance spectrum taken at 1 mbar
of vacuum pressure and 450 µW of green laser power. A
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conditions is observed. The solid line is a double-Gaussian
fit.

We now probe the NV� centers’ electronic spin transi-
tions in the trapped diamond. The level structure of the
NV� spin is depicted in Figure 2-a). The NV� has two
unpaired electrons so the ground state is a spin triplet.
The degeneracy between the |m

s

= 0i and |m
s

= ±1i
manifolds, defined with respect to the NV center axis,
is lifted by D = 2.87 GHz due to spin-spin interaction,

P=	1	bar

D=2.87GHz
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to excite the NV centers’ electronic spins. Further details
about the diamonds used, the loading protocol and the
imaging system can be found in [16].

Here, the voltage needs to be lowered to 600 V to avoid
plasmas that would otherwise appear at around 10 mbars
in the chamber. This means that careful preselection of
particles with a high charge to mass ratio need to be per-
formed at atmospheric pressures beforehand. To do so,
we operate the trap at 4000 V, inject diamonds with a
10 µm diameter, and systematically measure the onset
of instability. In Paul traps, stability is fulfilled if the
trapping frequency is larger than than the secular fre-
quency [19]. Measuring the trapping frequency at which
instability takes places provides a means to estimate the
charge to mass ratio. When this frequency is below 1
kHz at 4000 V, we estimated that the trapping time was
too short at 600 V and at low pressures so another parti-
cle is loaded. This mandatory preselection highlights an-
other benefit of the ring trap where the trap anharmonic-
ities [20] do not eject the particle close to the instability
threshold. The whole procedure typically requires 3 to 4
loading steps before a high enough charge to mass ratio
is attained.

Once a particle is trapped, the voltage and frequency
are lowered in air, following an iso-q curve, q being the
stability parameter of the trap at 1 bar [19]. Once 600 V
is reached, the turbomolecular pump is turned on. As
observed both in transmission and by looking at the
back-scattered green light, when the pressure reaches 500
mbars already, the center of the trap shifts. The back-
reflected scattered beam size thus reduces significantly
(by about a factor of 5 at 10 mbars of vacuum pres-
sure) due to a displacement of the particle with respect
to the objective focal point. This takes place because
the secular frequency depends on the damping rate, i.e.
on the vacuum level [21, 22]. In the presence of resid-
ual electric fields or gravity, changing the confinement
via the damping rate displaces the particle. The dia-
mond back scattered image also appeared elongated in
a direction perpendicular to the optical axis, consistant
with a large micromotion amplitude. When the damp-
ing rate decreases the particle indeed explores a larger
volume away from the center of the trap so that micro-
motion increases. When the vacuum reaches 10�2 mbars,
the voltage can be increased back to 4000 V without any
arching in the chamber. In principle, the optimum volt-
age for high confinement and no arching, could be cho-
sen by following the Paschen law [23]. For the present
measurements however, we kept the particle at a voltage
of 600 V because changing the trap parameters below 1
mbars often imparts kicks to the diamond that are large
enough to make it leave the trap.

The photoluminescence (PL) of the NV centers is col-
lected using the confocal microscope described in Fig-
ure 1-a). The PL signal is then filtered using a Notch
filter centered at 532 nm and can be directed either onto
an avalanche photodiode or a spectrometer. With a mW
of laser excitation, we can collect around 105 counts per

second on the avalanche photodiode at atmospheric pres-
sure. As the pressure decreases however, the PL de-
creases due to the aforementioned damping-induced mi-
cromotion and position shift, and possibly to the high
diamond temperature at low pressures as we will see.
Fig. 1-b) shows a time trace of the photoluminescence
taken at pressure levels starting from 1.8 10�2 and reach-
ing 10�2 mbars. The PL rate is about 8 kcounts/s at
2⇥10�2 mbars and here drops at 47 minutes. The reason
for the observed change in the PL over long time scales
can be attributed to instabilities in the trap frequency,
which displaces the particle from the focal spot. A more
rapid drop of the PL is seen at 42 minutes, when the pres-
sure reaches 10�2 mbars, and then the particle leaves the
trap abruptly at 47 minutes, as confirmed by monitoring
the retro-reflected beam. This experiment was repeated
more than 20 times, and after reaching 10�2 millibars, all
particles leave the trap after a couple of minutes. Before
being lost, they shake in a random fashion, the rate of
which was found to depend upon the laser power. This
sudden escape of the diamond from the trap therefore
seems to be related to radiation pressure from the green
laser to the diamond [16] or to a high temperature of the
gaz surrounding the particle when the diamond heats up.
We will indeed show with the ESR that the diamond tem-
perature increases significantly at pressure levels below
the mbar due to the green laser.
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FIG. 2: a) Level scheme of the NV� center.
PL=Photoluminescence. The two on/o↵ light bulbs denote
the bright/dark electronic states. D(T ) is the temperature
dependent zero-field splitting (ZFS). D = 2.87 GHz at 298
K. b) Electronic spin resonance spectrum taken at 1 mbar
of vacuum pressure and 450 µW of green laser power. A
frequency shift �D(T ) = 12 MHz from the ZFS at ambient
conditions is observed. The solid line is a double-Gaussian
fit.

We now probe the NV� centers’ electronic spin transi-
tions in the trapped diamond. The level structure of the
NV� spin is depicted in Figure 2-a). The NV� has two
unpaired electrons so the ground state is a spin triplet.
The degeneracy between the |m

s

= 0i and |m
s

= ±1i
manifolds, defined with respect to the NV center axis,
is lifted by D = 2.87 GHz due to spin-spin interaction,

P=	0.1	mbar
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to excite the NV centers’ electronic spins. Further details
about the diamonds used, the loading protocol and the
imaging system can be found in [16].

Here, the voltage needs to be lowered to 600 V to avoid
plasmas that would otherwise appear at around 10 mbars
in the chamber. This means that careful preselection of
particles with a high charge to mass ratio need to be per-
formed at atmospheric pressures beforehand. To do so,
we operate the trap at 4000 V, inject diamonds with a
10 µm diameter, and systematically measure the onset
of instability. In Paul traps, stability is fulfilled if the
trapping frequency is larger than than the secular fre-
quency [19]. Measuring the trapping frequency at which
instability takes places provides a means to estimate the
charge to mass ratio. When this frequency is below 1
kHz at 4000 V, we estimated that the trapping time was
too short at 600 V and at low pressures so another parti-
cle is loaded. This mandatory preselection highlights an-
other benefit of the ring trap where the trap anharmonic-
ities [20] do not eject the particle close to the instability
threshold. The whole procedure typically requires 3 to 4
loading steps before a high enough charge to mass ratio
is attained.

Once a particle is trapped, the voltage and frequency
are lowered in air, following an iso-q curve, q being the
stability parameter of the trap at 1 bar [19]. Once 600 V
is reached, the turbomolecular pump is turned on. As
observed both in transmission and by looking at the
back-scattered green light, when the pressure reaches 500
mbars already, the center of the trap shifts. The back-
reflected scattered beam size thus reduces significantly
(by about a factor of 5 at 10 mbars of vacuum pres-
sure) due to a displacement of the particle with respect
to the objective focal point. This takes place because
the secular frequency depends on the damping rate, i.e.
on the vacuum level [21, 22]. In the presence of resid-
ual electric fields or gravity, changing the confinement
via the damping rate displaces the particle. The dia-
mond back scattered image also appeared elongated in
a direction perpendicular to the optical axis, consistant
with a large micromotion amplitude. When the damp-
ing rate decreases the particle indeed explores a larger
volume away from the center of the trap so that micro-
motion increases. When the vacuum reaches 10�2 mbars,
the voltage can be increased back to 4000 V without any
arching in the chamber. In principle, the optimum volt-
age for high confinement and no arching, could be cho-
sen by following the Paschen law [23]. For the present
measurements however, we kept the particle at a voltage
of 600 V because changing the trap parameters below 1
mbars often imparts kicks to the diamond that are large
enough to make it leave the trap.

The photoluminescence (PL) of the NV centers is col-
lected using the confocal microscope described in Fig-
ure 1-a). The PL signal is then filtered using a Notch
filter centered at 532 nm and can be directed either onto
an avalanche photodiode or a spectrometer. With a mW
of laser excitation, we can collect around 105 counts per

second on the avalanche photodiode at atmospheric pres-
sure. As the pressure decreases however, the PL de-
creases due to the aforementioned damping-induced mi-
cromotion and position shift, and possibly to the high
diamond temperature at low pressures as we will see.
Fig. 1-b) shows a time trace of the photoluminescence
taken at pressure levels starting from 1.8 10�2 and reach-
ing 10�2 mbars. The PL rate is about 8 kcounts/s at
2⇥10�2 mbars and here drops at 47 minutes. The reason
for the observed change in the PL over long time scales
can be attributed to instabilities in the trap frequency,
which displaces the particle from the focal spot. A more
rapid drop of the PL is seen at 42 minutes, when the pres-
sure reaches 10�2 mbars, and then the particle leaves the
trap abruptly at 47 minutes, as confirmed by monitoring
the retro-reflected beam. This experiment was repeated
more than 20 times, and after reaching 10�2 millibars, all
particles leave the trap after a couple of minutes. Before
being lost, they shake in a random fashion, the rate of
which was found to depend upon the laser power. This
sudden escape of the diamond from the trap therefore
seems to be related to radiation pressure from the green
laser to the diamond [16] or to a high temperature of the
gaz surrounding the particle when the diamond heats up.
We will indeed show with the ESR that the diamond tem-
perature increases significantly at pressure levels below
the mbar due to the green laser.
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FIG. 2: a) Level scheme of the NV� center.
PL=Photoluminescence. The two on/o↵ light bulbs denote
the bright/dark electronic states. D(T ) is the temperature
dependent zero-field splitting (ZFS). D = 2.87 GHz at 298
K. b) Electronic spin resonance spectrum taken at 1 mbar
of vacuum pressure and 450 µW of green laser power. A
frequency shift �D(T ) = 12 MHz from the ZFS at ambient
conditions is observed. The solid line is a double-Gaussian
fit.

We now probe the NV� centers’ electronic spin transi-
tions in the trapped diamond. The level structure of the
NV� spin is depicted in Figure 2-a). The NV� has two
unpaired electrons so the ground state is a spin triplet.
The degeneracy between the |m

s

= 0i and |m
s

= ±1i
manifolds, defined with respect to the NV center axis,
is lifted by D = 2.87 GHz due to spin-spin interaction,

P=	0.1	mbar

The	diamond heats up	!
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can warm	up	significantly
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a value that is highly temperature dependent [24]. As-
suming a similar environnement for all NV centers, the
Hamiltonian of the NV center in the 3A2 ground state
manifold reads

H = DS2
z

+ E(S2
x

� S2
y

) +
X

i

~µ
i

· ~B, (1)

where D is the energy splitting between the |m
s

= 0i and
|m

s

= ±1i states in the absence of magnetic field and E
is the splitting between the |m

s

= ±1i due to the broken
axial symmetry of the NV centre.

P
i

~µ
i

· ~B is the cou-
pling between the spins i with magnetic moment ~µ

i

with
the magnetic field ~B. As depicted in Fig 2. a), due to an
intersystem-crossing in the excited state, scanning the
frequency of a microwave tone around 2.87 GHz under
green excitation results in a drop of the photolumines-
cence [25]. For small magnetic fields, this Hamiltonian
results in a double peak resonance spectrum, D being the
centre of the double peaks, which is about 2.87 GHz at
room temperature.
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FIG. 3: Electron spin resonance contrast of NV� center (a)
and temperature of a levitating diamond (b) as a function of
laser power at 1 mbar of vacuum pressure. The solid line is a
linear fit with origin at 298 K.

To manipulate the electronic spin, we use the ring trap
itself as the antenna. A Bias Tee (see Fig. 1.a)) is used to
mix the low frequency high voltage signal used for trap-
ping and the signal from the microwave generator. Un-
der ambient conditions, the ESR contrast was measured
to be 3.5%. Figure 2-b) shows a typical ESR spectrum
taken at 1 mbar of vacuum pressure and 450 µW of green
laser power. For this data, an ESR contrast of 1.7% is
observed with a zero-field-splitting (ZFS) of 2.8558 GHz,
corresponding to a shift of 12 MHz from the room tem-
perature splitting.

Fig. 3-a) shows measurements of the ESR contrast for
the same particle as a function of laser power, at 1 mbar
of vacuum pressure. The ESR contrast starts at 2.5 % at
50µW and shrinks down to 1% at 700 µW . The drop in
the contrast can be attributed to an increased tempera-
ture of the diamond. Indeed, as the pressure is reduced,
there is no damping due to exchange of heat with the
residual gaz molecules any longer so the temperature of
the diamond can rise significantly. This happens when
the mean free path of gas molecules is larger than the size
of the diamond, i.e for a Knudsen number above unity.
Here, the decrease in the ESR contrast with temperature
is due to nonradiative processes that quench the NV cen-
ter’s fluorescence spin readout. It was indeed shown that
multi-phonon processes reduce the lifetime of the opti-
cally excited |m

s

= 0i state, thereby limiting the ESR
contrast [26]. Our results di↵er from the results obtained
in [9] where an increase in the contrast as a function of
pressure was observed in an optical trap. It was argued
that heating removes low-quality NV� centres near the
surface [9]. Here, the diamonds are two orders of magni-
tude larger, which may explain the opposite dependence
of the contrast with temperature.
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FIG. 4: Electron spin resonance contrast of NV� center (a)
and temperature of a levitating diamond (b) as a function of
vacuum pressure at 40µW of green laser pump power.

Accompanying this change in the contrast, a pro-
nounced shift of the ZFS is observed in the ESR shown
in Fig. 2-b). Since the lattice extension changes with
temperature, the factor D depends on temperature. This
shift in the ZFS therefore confirms the interpretation that
the ESR contrast drops due to temperature [9, 24, 26].
D was accurately described by a third-order polynomial

- Significant diamond heating at	0.1	mbar

- Depends linearly on	the	green	laser	power
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a value that is highly temperature dependent [24]. As-
suming a similar environnement for all NV centers, the
Hamiltonian of the NV center in the 3A2 ground state
manifold reads

H = DS2
z
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) +
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where D is the energy splitting between the |m
s

= 0i and
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= ±1i states in the absence of magnetic field and E
is the splitting between the |m
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= ±1i due to the broken
axial symmetry of the NV centre.
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· ~B is the cou-
pling between the spins i with magnetic moment ~µ

i

with
the magnetic field ~B. As depicted in Fig 2. a), due to an
intersystem-crossing in the excited state, scanning the
frequency of a microwave tone around 2.87 GHz under
green excitation results in a drop of the photolumines-
cence [25]. For small magnetic fields, this Hamiltonian
results in a double peak resonance spectrum, D being the
centre of the double peaks, which is about 2.87 GHz at
room temperature.
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To manipulate the electronic spin, we use the ring trap
itself as the antenna. A Bias Tee (see Fig. 1.a)) is used to
mix the low frequency high voltage signal used for trap-
ping and the signal from the microwave generator. Un-
der ambient conditions, the ESR contrast was measured
to be 3.5%. Figure 2-b) shows a typical ESR spectrum
taken at 1 mbar of vacuum pressure and 450 µW of green
laser power. For this data, an ESR contrast of 1.7% is
observed with a zero-field-splitting (ZFS) of 2.8558 GHz,
corresponding to a shift of 12 MHz from the room tem-
perature splitting.

Fig. 3-a) shows measurements of the ESR contrast for
the same particle as a function of laser power, at 1 mbar
of vacuum pressure. The ESR contrast starts at 2.5 % at
50µW and shrinks down to 1% at 700 µW . The drop in
the contrast can be attributed to an increased tempera-
ture of the diamond. Indeed, as the pressure is reduced,
there is no damping due to exchange of heat with the
residual gaz molecules any longer so the temperature of
the diamond can rise significantly. This happens when
the mean free path of gas molecules is larger than the size
of the diamond, i.e for a Knudsen number above unity.
Here, the decrease in the ESR contrast with temperature
is due to nonradiative processes that quench the NV cen-
ter’s fluorescence spin readout. It was indeed shown that
multi-phonon processes reduce the lifetime of the opti-
cally excited |m

s

= 0i state, thereby limiting the ESR
contrast [26]. Our results di↵er from the results obtained
in [9] where an increase in the contrast as a function of
pressure was observed in an optical trap. It was argued
that heating removes low-quality NV� centres near the
surface [9]. Here, the diamonds are two orders of magni-
tude larger, which may explain the opposite dependence
of the contrast with temperature.
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FIG. 4: Electron spin resonance contrast of NV� center (a)
and temperature of a levitating diamond (b) as a function of
vacuum pressure at 40µW of green laser pump power.

Accompanying this change in the contrast, a pro-
nounced shift of the ZFS is observed in the ESR shown
in Fig. 2-b). Since the lattice extension changes with
temperature, the factor D depends on temperature. This
shift in the ZFS therefore confirms the interpretation that
the ESR contrast drops due to temperature [9, 24, 26].
D was accurately described by a third-order polynomial

NV	thermometry

- Heating depends on	the	gaz	pressure

- At	0.01	mbars,	the	diamond escapes	from the	trap…
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Solution	:	use	
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(CVD	grown)
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a value that is highly temperature dependent [24]. As-
suming a similar environnement for all NV centers, the
Hamiltonian of the NV center in the 3A2 ground state
manifold reads

H = DS2
z

+ E(S2
x

� S2
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) +
X
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~µ
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· ~B, (1)

where D is the energy splitting between the |m
s

= 0i and
|m

s

= ±1i states in the absence of magnetic field and E
is the splitting between the |m

s

= ±1i due to the broken
axial symmetry of the NV centre.

P
i

~µ
i

· ~B is the cou-
pling between the spins i with magnetic moment ~µ

i

with
the magnetic field ~B. As depicted in Fig 2. a), due to an
intersystem-crossing in the excited state, scanning the
frequency of a microwave tone around 2.87 GHz under
green excitation results in a drop of the photolumines-
cence [25]. For small magnetic fields, this Hamiltonian
results in a double peak resonance spectrum, D being the
centre of the double peaks, which is about 2.87 GHz at
room temperature.

200 400 600

1

1.5

2

2.5

3

3.5

E
S

R
 c

o
n

tr
a

st
 (

%
)

Laser power (μW)

0 200 400 600

320

360

400

440

480

Te
m

p
e

ra
tu

re
 (

K
)

Laser power (μW)

b)

a)

300

FIG. 3: Electron spin resonance contrast of NV� center (a)
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To manipulate the electronic spin, we use the ring trap
itself as the antenna. A Bias Tee (see Fig. 1.a)) is used to
mix the low frequency high voltage signal used for trap-
ping and the signal from the microwave generator. Un-
der ambient conditions, the ESR contrast was measured
to be 3.5%. Figure 2-b) shows a typical ESR spectrum
taken at 1 mbar of vacuum pressure and 450 µW of green
laser power. For this data, an ESR contrast of 1.7% is
observed with a zero-field-splitting (ZFS) of 2.8558 GHz,
corresponding to a shift of 12 MHz from the room tem-
perature splitting.

Fig. 3-a) shows measurements of the ESR contrast for
the same particle as a function of laser power, at 1 mbar
of vacuum pressure. The ESR contrast starts at 2.5 % at
50µW and shrinks down to 1% at 700 µW . The drop in
the contrast can be attributed to an increased tempera-
ture of the diamond. Indeed, as the pressure is reduced,
there is no damping due to exchange of heat with the
residual gaz molecules any longer so the temperature of
the diamond can rise significantly. This happens when
the mean free path of gas molecules is larger than the size
of the diamond, i.e for a Knudsen number above unity.
Here, the decrease in the ESR contrast with temperature
is due to nonradiative processes that quench the NV cen-
ter’s fluorescence spin readout. It was indeed shown that
multi-phonon processes reduce the lifetime of the opti-
cally excited |m

s

= 0i state, thereby limiting the ESR
contrast [26]. Our results di↵er from the results obtained
in [9] where an increase in the contrast as a function of
pressure was observed in an optical trap. It was argued
that heating removes low-quality NV� centres near the
surface [9]. Here, the diamonds are two orders of magni-
tude larger, which may explain the opposite dependence
of the contrast with temperature.
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FIG. 4: Electron spin resonance contrast of NV� center (a)
and temperature of a levitating diamond (b) as a function of
vacuum pressure at 40µW of green laser pump power.

Accompanying this change in the contrast, a pro-
nounced shift of the ZFS is observed in the ESR shown
in Fig. 2-b). Since the lattice extension changes with
temperature, the factor D depends on temperature. This
shift in the ZFS therefore confirms the interpretation that
the ESR contrast drops due to temperature [9, 24, 26].
D was accurately described by a third-order polynomial



Conclusions	/	Perspectives	

Perspectives	:		

- Increase the	frequencyà UV	light,	electron gun	to	increase the	charge	surface

- Ground	state	cooling of	a	massive	object using a	single	electron

- Quantum	non-demolition read-out	of	the	collective	modes

Conclusion	:	

- We observe	efficient	driving of	NV	centers in	a	diamond levitating in	a	Paul	trap.

- The	spin	properties of	deposited diamond particles are	retained.	

- We observed angle	stability of	single	trapped monocrystals
à Necessary step towards spin-controlled levitating macroscopic objects.	

- NV	spin	enables reading locally the	temperature of	levitating objects



Collaborations	:	

J.-F.	Roch,	François	Treussard,	
Loic Rondin	(LAC,	Paris)
V.	Jacques	(L2C,	Montpellier)
L.	Guidoni
A.	Tallaire (LSPM- Villetaneuse)
P.	Maletinsky (Basel)
C.	Becher(Saarbrücken)

Team	:	Baptiste	Vindolet,	Tom	Delord,	Lucien	Schwab,	
Martina	Bodini,		Louis	Nicolas

Conclusion

Laboratoire	
Pierre	Aigrain

Optics team	at	LPA	:



Aim 3:	Entangle the	motion	of	distant	
macroscopic objects

A B

~	a	few	meters



Aim 3:	Entangle the	motion	of	distant	
macroscopic objects

Methodology :

àEntangle the	spins	
from distant	NV	centres
in	diamonds using single
photon	scattering

A B

àTransfer	spin	
entanglement to	
motional
entanglement n=1

n=0

Pi	pulse	
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~	a	few	meters



Aim 3:	Entangle the	motion	of	distant	
macroscopic objects

Methodology :

àEntangle the	spins	
from distant	NV	centres
in	diamonds using single
photon	scattering

- Long	lived entangled
state	à quantum		
memory

- Quantum	information

- Sensitive	detection of	
gravitational effects

A B

Implications	:

~	a	few	meters

àTransfer	spin	
entanglement to	
motional
entanglement n=1

n=0

Pi	pulse	
BSB

BA
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a)

b)

FIG. 4: Spectra obtained using two di↵erent excitation pow-
ers for 10 µm sized diamonds deposited on a glass coverslip
(trace (a)) and trapped in the Paul trap (trace (b)). The
count rates have been corrected for background light and
normalized by the acquisition time and the excitation laser
power.

NV� has two unpaired electrons so the ground state is
a spin triplet. The degeneracy between the m

s

= 0 and
m

s

= ±1 manifolds, defined with respect to the NV cen-
ter axis, is lifted by 2.87 GHz due to spin-spin interaction.
One of the important properties of the NV center is the
photoluminescence rate dependency with respect to the
electronic spin state. This is the result of a spin depen-
dent non-radiative decay via the levels 1

A

1

and 1

E. As
depicted in Fig. 2-a), when the spin is in the m

s

= ±1
state, decay to these levels takes place. As a consequence,
the PL rate drops. Under continuous microwave and op-
tical excitation, scanning the frequency of a microwave
tone around 2.87 GHz typically results in a change of
the photoluminescence on the order of 10% with a half-
width at half maximum in the range of tens of MHz [23].
Under a magnetic field, the degeneracy between the two
m

s

= ±1 states is lifted due to the Zeeman e↵ect. For
a single NV spin, two narrow lines will thus appear in
the ESR spectrum, the frequency of which will depend
upon the projection of the applied B-field onto the NV
axis. This property means that NV centers can be used
as sensitive room temperature magnetic field probes on
microns lengths scales making NV centers very attrac-
tive for applications in magnetometry (see Ref. [24] for
a review) and hybrid opto-mechanical schemes [3]. The
NV centers can actually be found in the four equiproba-
ble [111], [111], [1, 1, 1], [111] orientations within the di-
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FIG. 5: a) Schematics showing the influence of the laser on the
particle motion in the Paul trap and on the ESR spectrum.
Under a magnetic field, a rotating single NV center’s spin
experiences a time varying frequency shift �(t) leading to
a broader ESR following the sinusoidal distribution labelled
Pd. b) Electron spin resonance (ESR) from levitating and
rotating diamonds in a Paul trap. Trace i) was taken without
externally applied magnetic field and traces ii) and iii) with
magnetic fields in the range of 10 G and 30 G respectively.

amond lattice. In a monocrystal containing several NVs
we thus expect to observe four Zeeman-splitted ESR lines
for the two electronic transitions, because of the di↵erent
magnetic field projections along the four NV axes.
To observe the Electron Spin Resonance (ESR) using

levitating diamond particles, a 28 µm current carrying
copper wire that lies 150 microns away from the trap
center is used, as depicted in Figure 1. We then noticed
that the trapping parameters depend upon the distance
between the antenna and the center of the trap. Simula-
tions show that the sti↵ness of the trap increases when
the distance decreases. As the antenna is brought close
to the trap, the q factor of the Mathieu equation thus
increases and so the frequency and AC voltage are often
adjusted to keep the q factor well within the stability re-
gion. However, in the presence of the antenna, trapping
is still critical and the particle is lost more often when
sudden local changes in the pressure or nearby charges
densities occurs. This points towards a decrease of the
potential depth due to the increasing asymmetry of the
trap. This issue, also confirmed by numerical simula-

Optical	spectra

NV	spectra from deposited
nanodiamonds on	
a quartz	coverslip
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FIG. 4: Spectra obtained using two di↵erent excitation pow-
ers for 10 µm sized diamonds deposited on a glass coverslip
(trace (a)) and trapped in the Paul trap (trace (b)). The
count rates have been corrected for background light and
normalized by the acquisition time and the excitation laser
power.

NV� has two unpaired electrons so the ground state is
a spin triplet. The degeneracy between the m
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= 0 and
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s

= ±1 manifolds, defined with respect to the NV cen-
ter axis, is lifted by 2.87 GHz due to spin-spin interaction.
One of the important properties of the NV center is the
photoluminescence rate dependency with respect to the
electronic spin state. This is the result of a spin depen-
dent non-radiative decay via the levels 1

A

1

and 1

E. As
depicted in Fig. 2-a), when the spin is in the m

s

= ±1
state, decay to these levels takes place. As a consequence,
the PL rate drops. Under continuous microwave and op-
tical excitation, scanning the frequency of a microwave
tone around 2.87 GHz typically results in a change of
the photoluminescence on the order of 10% with a half-
width at half maximum in the range of tens of MHz [23].
Under a magnetic field, the degeneracy between the two
m

s

= ±1 states is lifted due to the Zeeman e↵ect. For
a single NV spin, two narrow lines will thus appear in
the ESR spectrum, the frequency of which will depend
upon the projection of the applied B-field onto the NV
axis. This property means that NV centers can be used
as sensitive room temperature magnetic field probes on
microns lengths scales making NV centers very attrac-
tive for applications in magnetometry (see Ref. [24] for
a review) and hybrid opto-mechanical schemes [3]. The
NV centers can actually be found in the four equiproba-
ble [111], [111], [1, 1, 1], [111] orientations within the di-
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FIG. 5: a) Schematics showing the influence of the laser on the
particle motion in the Paul trap and on the ESR spectrum.
Under a magnetic field, a rotating single NV center’s spin
experiences a time varying frequency shift �(t) leading to
a broader ESR following the sinusoidal distribution labelled
Pd. b) Electron spin resonance (ESR) from levitating and
rotating diamonds in a Paul trap. Trace i) was taken without
externally applied magnetic field and traces ii) and iii) with
magnetic fields in the range of 10 G and 30 G respectively.

amond lattice. In a monocrystal containing several NVs
we thus expect to observe four Zeeman-splitted ESR lines
for the two electronic transitions, because of the di↵erent
magnetic field projections along the four NV axes.
To observe the Electron Spin Resonance (ESR) using

levitating diamond particles, a 28 µm current carrying
copper wire that lies 150 microns away from the trap
center is used, as depicted in Figure 1. We then noticed
that the trapping parameters depend upon the distance
between the antenna and the center of the trap. Simula-
tions show that the sti↵ness of the trap increases when
the distance decreases. As the antenna is brought close
to the trap, the q factor of the Mathieu equation thus
increases and so the frequency and AC voltage are often
adjusted to keep the q factor well within the stability re-
gion. However, in the presence of the antenna, trapping
is still critical and the particle is lost more often when
sudden local changes in the pressure or nearby charges
densities occurs. This points towards a decrease of the
potential depth due to the increasing asymmetry of the
trap. This issue, also confirmed by numerical simula-

Optical	spectra

NV	spectra from deposited
nanodiamonds on	
a quartz	coverslip

NV	spectra from levitating
nanodiamonds

No	apparent	change	in	the	
photophysical properties
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b-2) Paul traps for nanoparticles.  

At the core of this project lies a Paul trap with high optical access, tight confinement and efficient microwave 
excitation. It will also be beneficial to have the trap under vacuum to avoid background gaz collisions and for 
the efficiency of the electron gun that will be used to increase the charge to mass ratio of the diamonds. 
These ingredients are essential for reaching the sideband resolved regime and also for precise localisation of 
the nano-particle. 

The Paul trap itself 
To reach these goals, we will use the micron size trap depicted in Figure (3). This trap is adapted from [27] 
and consists in a room-temperature surface-electrode ion trap with 10 µm thick gold electrodes separated by 
gaps of 4.5 µm, deposited onto an insulating substrate. An oscillating potential (100 MHz) applied to the RF 
electrodes (in red) provides pseudopotential confinement in the radial directions at a distance of 30 µm from 
the electrode surface (all other electrodes are held at RF ground). Along the other trap axis, ions are confined 
with static potentials applied to the 6 control electrodes (in grey on the picture). Importantly, 3 microwave 
electrodes supporting currents of order 100 mA to 1 A will produce an oscillating magnetic field above the 
surface to implement the quantum electronic spin control. A static magnetic field  parallel to the trap surface 
will provide the internal state quantization axis. 
This micron-size geometry is ideal for this project since it combines very high trapping frequencies together 
with high optical acess and efficient microwave driving.   

In a first realisation of diamond trapping (the first year), 
we will use a more standard trap consisting of 10 µm 
distant needles with 1 µm radius of curvature and a 
helicoidal resonator to provide 10 Watts of power at 
100 MHz. This will enable my group to probe the 
properties of NV centers oscillating in an ion trap soon 
in the project before the above higher technology trap is 
being made and characterized (about one year of work). 
We will here bring an external microwave electrode 
within 50 µm from the charged particle. This option has 
already been successfully tested recently in my group 
[47].  

The mass of the diamonds will range between 105 to 109 atomic mass units, so it may seem very difficult to 
use even the state of the art single ion traps to trap such a macroscopic oscillator. On the other hand, we 
would like as large diamonds as possible since T2

* and T1 can be orders of magnitude greater under pulsed 
excitation with diamonds sizes above 100 nm [28]. This last point is critical since retaining the photophysical 
properties of bulk samples will enable single shot read-out of the motion. 

The key point here is that the number of surface charges can be increased to (at least partially) compensate 
for the corresponding large mass. Using 300 nm size diamonds will for instance enable reaching q/m factors 
of 105 C/kg (standard when using electrospray ionisation) and high fidelity single shot read-out. Both traps 
will then ensure that the trapping frequency Ω will be in the range of a few tens of MHz, enough to reach the 
sideband resolved regime where the ESR linewidth is smaller than the oscillation frequency.  

Injection  

The injection of particules in the trap can be done in various ways.  

Electrospray ionisation  

The technique that we intend to apply is electrospray ionisation (ESI). ESI is a technique used in mass 
spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an 
aerosol. Charged droplets will be accelerated towards the center of the ion trap and evaporate, leaving 
charged diamonds in the trap. With this method the charge to mass ratio that can typically be reached is 
between 10 to 106 C/kg. When compared to the standard q/m with single atoms, which is of order 105 C/kg, 
the q/m of nanoparticules is, on average, lower. When using ESI, an increase of the trap power may be 
required in order to reach the type of confinement offered by single ion traps.  

Nebulizer and electron gun  

120 μm

30 μm

MWMWMW RF RF

Figure 3 : 2D trap for high confinement  
and optical access 

2D	trap

DC	pads
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analysed using a green laser beam with a power ranging
from 100 µW to 3.6 mW for phase contrast imaging (see
Fig. 1) and for the photoluminescence measurements.

To monitor the particle motion, we use the simplest
form of phase contrast imaging : we measure the inter-
ference between the input laser field and the scattered
field from the diamond. For our diamond sizes, the re-
sulting image is the shadow of the diamond plus some
interfering rings due to the sharp features on the side
of the diamond, see figure 2. Phase contrast imaging
provides an e�cient way to detect the micromotion and
the eventual rotation of the particle on itself by measur-
ing the diamond shadow position when the settings of
the trap are changed. We could for instance deduce the
trapping frequencies. To measure them, we perform a
slow ramp of the trap frequency downwards from 4 kHz
to a few kHz. At resonance, when ⌦ is close to one of
the macromotional frequencies !, the adiabatic condi-
tion (i.e. ⌦ � !) is no longer fullfilled and the motion
of the particle becomes unstable, thus providing a mean
to measure !. This instability can be caracterised using
the q parameter of the Mathieu equation [11] : the mo-
tion first becomes unstable for the most confining axis, at
q � q

max

= 0.908. Here the first observed resonance cor-
responds to the frequency !

z

. It is typically measured to
be about 1 kHz for diamonds that have a 10 µm diameter.
Under usual working conditions (!

z

⌧ ⌦) this yield to
a trapping frequency of several hundreds Hz. Using the
stability criterion and the diamond density, we can then
extract the total charge on the surface [22]. The stability
parameter q

max

relates to |Q
tot

|/m via the formula

|Q
tot

|
m

=
q

max

4⇠
⌦2

, (2)

where ⇠ is the curvature of the static electric potential.
3D simulations of the electric potential of our trap gives
us ⇠ = 2⇥ 106 V/m

2 and so the total number of elemen-
tary excess charges |Q

tot

| on the surface of the diamond
is about 5000. We also measured the sign of the total
charge by adding a constant voltage to the needles. Due
to residual static electric fields, the particles are slightly
o↵ centered. Adding an extra DC voltage displaces parti-
cles away from or closer to the center of the trap depend-
ing on the relative sign between the voltage and surface
charges. Applying a positive voltage on more than 20
di↵erent particles systematically displaced them towards
the trap center, letting us conclude that the total surface
charge is negative.

B. E↵ect of the radiation pressure

An important observation that was made is a pro-
nounced rotation of the particles around the laser op-
tical axis. This motion takes place for diamonds that are
below around 2 µm in diameter on time scales of millisec-
onds at power levels above hundreds of µW. For larger
particles (> 2 µm in diameter) and power levels below

300 µW, the particles appear to be stable on time scales
of minutes. Several measurements point to a radiation
pressure induced perturbation of the diamond position
due to the exciting laser.
In order to obtain an order of magnitude of the laser

induced force, we will consider only a radiation pressure
force induced along the optical axis for simplicity. To es-
timate the magnitude of the radiation pressure, we also
consider the simplest case of a spherically shaped dia-
mond particle at the focal point of a beam with a total
power P that uniformly fills the input lens. We denote
✓

m

the angle subtended by the lens. Here, we assume the
particle size to be larger than the wavelength �=532 nm,
so that the ray optics approximation applies.
In our approximate case study, all rays are perpendic-

ular to the surface of the particle so the mean momen-
tum transfer per photon is 2R

n

h

�

where R

n

⇠ 0.2 is the
Fresnel reflection coe�cient for a normal wave and h the
Planck constant. Since the mean photon rate is P�

hc

, the
total momentum transfer per unit time along the optical
axis i.e. the radiation pressure force is :

F

rad

=

Z
✓m

�✓m

h

�

2R
n

cos ✓
P�

hc

d✓

2✓
m

=
2R

n

P

c

sinc(✓
m

). (3)

We compare this force to the force induced by the trap
by considering the displacement �x of the particle from
the center of the trap. At equilibrium, we have

�x =
F

rad

m!

2

x

.

For a 10 µm diamond with a confinement frequency
!

x

/2⇡ ⇠ 1 kHz and a beam power P = 1 mW, we get

�x/P ⇠ 350 nm/mW

For smaller diamonds (⇠ 2.8 µm), experiments were
done with a slightly higher confinement frequency
(!

x

/2⇡ ⇠ 1.5 kHz) but the mass being smaller we ob-
tain

�x/P ⇠ 11 µm/mW

In the plane orthogonal to the optical axis x, since the
trapped particles are not spherical, we actually expect
the forces due to reflected photons not to cancel out. The
resultant force is thus highly dependent on the shape and
orientation of the particle.
Those numbers are in good agreement with visual ob-

servations of the apparent motion of the particle in the
trap : for large particles, the particle is slightly displaced
when the beam power is increased to a few mW while for
smaller particles, a displacement from the trap center is
observed with beam powers on the order of a few hun-
dreds of 100 µW. Other qualitative observations point
towards such a radiation pressure e↵ect. We were for

Radiation	pressure	force	:
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analysed using a green laser beam with a power ranging
from 100 µW to 3.6 mW for phase contrast imaging (see
Fig. 1) and for the photoluminescence measurements.

To monitor the particle motion, we use the simplest
form of phase contrast imaging : we measure the inter-
ference between the input laser field and the scattered
field from the diamond. For our diamond sizes, the re-
sulting image is the shadow of the diamond plus some
interfering rings due to the sharp features on the side
of the diamond, see figure 2. Phase contrast imaging
provides an e�cient way to detect the micromotion and
the eventual rotation of the particle on itself by measur-
ing the diamond shadow position when the settings of
the trap are changed. We could for instance deduce the
trapping frequencies. To measure them, we perform a
slow ramp of the trap frequency downwards from 4 kHz
to a few kHz. At resonance, when ⌦ is close to one of
the macromotional frequencies !, the adiabatic condi-
tion (i.e. ⌦ � !) is no longer fullfilled and the motion
of the particle becomes unstable, thus providing a mean
to measure !. This instability can be caracterised using
the q parameter of the Mathieu equation [11] : the mo-
tion first becomes unstable for the most confining axis, at
q � q

max

= 0.908. Here the first observed resonance cor-
responds to the frequency !

z

. It is typically measured to
be about 1 kHz for diamonds that have a 10 µm diameter.
Under usual working conditions (!

z

⌧ ⌦) this yield to
a trapping frequency of several hundreds Hz. Using the
stability criterion and the diamond density, we can then
extract the total charge on the surface [22]. The stability
parameter q

max

relates to |Q
tot

|/m via the formula

|Q
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=
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max
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, (2)

where ⇠ is the curvature of the static electric potential.
3D simulations of the electric potential of our trap gives
us ⇠ = 2⇥ 106 V/m

2 and so the total number of elemen-
tary excess charges |Q

tot

| on the surface of the diamond
is about 5000. We also measured the sign of the total
charge by adding a constant voltage to the needles. Due
to residual static electric fields, the particles are slightly
o↵ centered. Adding an extra DC voltage displaces parti-
cles away from or closer to the center of the trap depend-
ing on the relative sign between the voltage and surface
charges. Applying a positive voltage on more than 20
di↵erent particles systematically displaced them towards
the trap center, letting us conclude that the total surface
charge is negative.

B. E↵ect of the radiation pressure

An important observation that was made is a pro-
nounced rotation of the particles around the laser op-
tical axis. This motion takes place for diamonds that are
below around 2 µm in diameter on time scales of millisec-
onds at power levels above hundreds of µW. For larger
particles (> 2 µm in diameter) and power levels below

300 µW, the particles appear to be stable on time scales
of minutes. Several measurements point to a radiation
pressure induced perturbation of the diamond position
due to the exciting laser.
In order to obtain an order of magnitude of the laser

induced force, we will consider only a radiation pressure
force induced along the optical axis for simplicity. To es-
timate the magnitude of the radiation pressure, we also
consider the simplest case of a spherically shaped dia-
mond particle at the focal point of a beam with a total
power P that uniformly fills the input lens. We denote
✓

m

the angle subtended by the lens. Here, we assume the
particle size to be larger than the wavelength �=532 nm,
so that the ray optics approximation applies.
In our approximate case study, all rays are perpendic-

ular to the surface of the particle so the mean momen-
tum transfer per photon is 2R

n

h
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where R
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⇠ 0.2 is the
Fresnel reflection coe�cient for a normal wave and h the
Planck constant. Since the mean photon rate is P�

hc

, the
total momentum transfer per unit time along the optical
axis i.e. the radiation pressure force is :
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We compare this force to the force induced by the trap
by considering the displacement �x of the particle from
the center of the trap. At equilibrium, we have
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F
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For a 10 µm diamond with a confinement frequency
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/2⇡ ⇠ 1 kHz and a beam power P = 1 mW, we get

�x/P ⇠ 350 nm/mW

For smaller diamonds (⇠ 2.8 µm), experiments were
done with a slightly higher confinement frequency
(!

x

/2⇡ ⇠ 1.5 kHz) but the mass being smaller we ob-
tain

�x/P ⇠ 11 µm/mW

In the plane orthogonal to the optical axis x, since the
trapped particles are not spherical, we actually expect
the forces due to reflected photons not to cancel out. The
resultant force is thus highly dependent on the shape and
orientation of the particle.
Those numbers are in good agreement with visual ob-

servations of the apparent motion of the particle in the
trap : for large particles, the particle is slightly displaced
when the beam power is increased to a few mW while for
smaller particles, a displacement from the trap center is
observed with beam powers on the order of a few hun-
dreds of 100 µW. Other qualitative observations point
towards such a radiation pressure e↵ect. We were for
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analysed using a green laser beam with a power ranging
from 100 µW to 3.6 mW for phase contrast imaging (see
Fig. 1) and for the photoluminescence measurements.

To monitor the particle motion, we use the simplest
form of phase contrast imaging : we measure the inter-
ference between the input laser field and the scattered
field from the diamond. For our diamond sizes, the re-
sulting image is the shadow of the diamond plus some
interfering rings due to the sharp features on the side
of the diamond, see figure 2. Phase contrast imaging
provides an e�cient way to detect the micromotion and
the eventual rotation of the particle on itself by measur-
ing the diamond shadow position when the settings of
the trap are changed. We could for instance deduce the
trapping frequencies. To measure them, we perform a
slow ramp of the trap frequency downwards from 4 kHz
to a few kHz. At resonance, when ⌦ is close to one of
the macromotional frequencies !, the adiabatic condi-
tion (i.e. ⌦ � !) is no longer fullfilled and the motion
of the particle becomes unstable, thus providing a mean
to measure !. This instability can be caracterised using
the q parameter of the Mathieu equation [11] : the mo-
tion first becomes unstable for the most confining axis, at
q � q

max

= 0.908. Here the first observed resonance cor-
responds to the frequency !
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. It is typically measured to
be about 1 kHz for diamonds that have a 10 µm diameter.
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⌧ ⌦) this yield to
a trapping frequency of several hundreds Hz. Using the
stability criterion and the diamond density, we can then
extract the total charge on the surface [22]. The stability
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where ⇠ is the curvature of the static electric potential.
3D simulations of the electric potential of our trap gives
us ⇠ = 2⇥ 106 V/m

2 and so the total number of elemen-
tary excess charges |Q

tot

| on the surface of the diamond
is about 5000. We also measured the sign of the total
charge by adding a constant voltage to the needles. Due
to residual static electric fields, the particles are slightly
o↵ centered. Adding an extra DC voltage displaces parti-
cles away from or closer to the center of the trap depend-
ing on the relative sign between the voltage and surface
charges. Applying a positive voltage on more than 20
di↵erent particles systematically displaced them towards
the trap center, letting us conclude that the total surface
charge is negative.

B. E↵ect of the radiation pressure

An important observation that was made is a pro-
nounced rotation of the particles around the laser op-
tical axis. This motion takes place for diamonds that are
below around 2 µm in diameter on time scales of millisec-
onds at power levels above hundreds of µW. For larger
particles (> 2 µm in diameter) and power levels below

300 µW, the particles appear to be stable on time scales
of minutes. Several measurements point to a radiation
pressure induced perturbation of the diamond position
due to the exciting laser.
In order to obtain an order of magnitude of the laser

induced force, we will consider only a radiation pressure
force induced along the optical axis for simplicity. To es-
timate the magnitude of the radiation pressure, we also
consider the simplest case of a spherically shaped dia-
mond particle at the focal point of a beam with a total
power P that uniformly fills the input lens. We denote
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the angle subtended by the lens. Here, we assume the
particle size to be larger than the wavelength �=532 nm,
so that the ray optics approximation applies.
In our approximate case study, all rays are perpendic-

ular to the surface of the particle so the mean momen-
tum transfer per photon is 2R
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We compare this force to the force induced by the trap
by considering the displacement �x of the particle from
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/2⇡ ⇠ 1.5 kHz) but the mass being smaller we ob-
tain
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In the plane orthogonal to the optical axis x, since the
trapped particles are not spherical, we actually expect
the forces due to reflected photons not to cancel out. The
resultant force is thus highly dependent on the shape and
orientation of the particle.
Those numbers are in good agreement with visual ob-

servations of the apparent motion of the particle in the
trap : for large particles, the particle is slightly displaced
when the beam power is increased to a few mW while for
smaller particles, a displacement from the trap center is
observed with beam powers on the order of a few hun-
dreds of 100 µW. Other qualitative observations point
towards such a radiation pressure e↵ect. We were for
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analysed using a green laser beam with a power ranging
from 100 µW to 3.6 mW for phase contrast imaging (see
Fig. 1) and for the photoluminescence measurements.

To monitor the particle motion, we use the simplest
form of phase contrast imaging : we measure the inter-
ference between the input laser field and the scattered
field from the diamond. For our diamond sizes, the re-
sulting image is the shadow of the diamond plus some
interfering rings due to the sharp features on the side
of the diamond, see figure 2. Phase contrast imaging
provides an e�cient way to detect the micromotion and
the eventual rotation of the particle on itself by measur-
ing the diamond shadow position when the settings of
the trap are changed. We could for instance deduce the
trapping frequencies. To measure them, we perform a
slow ramp of the trap frequency downwards from 4 kHz
to a few kHz. At resonance, when ⌦ is close to one of
the macromotional frequencies !, the adiabatic condi-
tion (i.e. ⌦ � !) is no longer fullfilled and the motion
of the particle becomes unstable, thus providing a mean
to measure !. This instability can be caracterised using
the q parameter of the Mathieu equation [11] : the mo-
tion first becomes unstable for the most confining axis, at
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= 0.908. Here the first observed resonance cor-
responds to the frequency !

z
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where ⇠ is the curvature of the static electric potential.
3D simulations of the electric potential of our trap gives
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is about 5000. We also measured the sign of the total
charge by adding a constant voltage to the needles. Due
to residual static electric fields, the particles are slightly
o↵ centered. Adding an extra DC voltage displaces parti-
cles away from or closer to the center of the trap depend-
ing on the relative sign between the voltage and surface
charges. Applying a positive voltage on more than 20
di↵erent particles systematically displaced them towards
the trap center, letting us conclude that the total surface
charge is negative.

B. E↵ect of the radiation pressure

An important observation that was made is a pro-
nounced rotation of the particles around the laser op-
tical axis. This motion takes place for diamonds that are
below around 2 µm in diameter on time scales of millisec-
onds at power levels above hundreds of µW. For larger
particles (> 2 µm in diameter) and power levels below

300 µW, the particles appear to be stable on time scales
of minutes. Several measurements point to a radiation
pressure induced perturbation of the diamond position
due to the exciting laser.
In order to obtain an order of magnitude of the laser

induced force, we will consider only a radiation pressure
force induced along the optical axis for simplicity. To es-
timate the magnitude of the radiation pressure, we also
consider the simplest case of a spherically shaped dia-
mond particle at the focal point of a beam with a total
power P that uniformly fills the input lens. We denote
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the angle subtended by the lens. Here, we assume the
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). (3)

We compare this force to the force induced by the trap
by considering the displacement �x of the particle from
the center of the trap. At equilibrium, we have

�x =
F

rad

m!

2

x

.

For a 10 µm diamond with a confinement frequency
!

x

/2⇡ ⇠ 1 kHz and a beam power P = 1 mW, we get

�x/P ⇠ 350 nm/mW

For smaller diamonds (⇠ 2.8 µm), experiments were
done with a slightly higher confinement frequency
(!

x

/2⇡ ⇠ 1.5 kHz) but the mass being smaller we ob-
tain

�x/P ⇠ 11 µm/mW

In the plane orthogonal to the optical axis x, since the
trapped particles are not spherical, we actually expect
the forces due to reflected photons not to cancel out. The
resultant force is thus highly dependent on the shape and
orientation of the particle.
Those numbers are in good agreement with visual ob-

servations of the apparent motion of the particle in the
trap : for large particles, the particle is slightly displaced
when the beam power is increased to a few mW while for
smaller particles, a displacement from the trap center is
observed with beam powers on the order of a few hun-
dreds of 100 µW. Other qualitative observations point
towards such a radiation pressure e↵ect. We were for

For	a	micron	size	particule

For	a	particule	size	of	100	nm

Displacement due	to	the	laser



2004-2007  
PhD at ENS Cachan 

Supervised by J. F. Roch 
 

Jacques, Science (2007) 
Jacques, PRL (2008) 

Quantum optics  

2007-2009  
Post-doc at Stuttgart Uni. 
Supervised by J. Wrachtrup 

Quantum information  
Neumann, Science (2008) 
 Jacques, PRL (2009) 

50 papers, h=20, citations > 1700 

Since 2009 - CNRS position 

Spin physics (PI) 
Dréau, PRL (2013)  
Dréau, PRL (2014) 

Rondin, Nat. Commun. (2013) 
Tetienne, Science (2014) 
 

Single spin magnetometry (PI)!

Junior Grant 2010 – 700 k€ 

Scientific background 
Physics and applications of Nitrogen-Vacancy defects in diamond 

∝ B

|↑⟩

|↓⟩
PL

 [
a.

u.
]

2.972.87
 MW frequency [GHz]

S
ig

na
l 

B = 0  

Frequency [GHz] 

∝ B

NV defect =  artificial atom 
‘’trapped’’ in the diamond matrix 

Single e-spin detection at room T 

B

zz=0 Frequency shift	proportional to	
the	displacement

Coupling to	the	center	of	mass	via	the	NV	spin
Non-adiabatic regime :	wcom >>	g

0

0.2

0.4

0.6

0.8

1

1.2

Microwave detuning 

Sc
at

te
re

d 
lig

ht
 in

te
ns

ity

0 1-1

RSB

BSB

wcom

g

Heating

Cooling

wcom



2004-2007  
PhD at ENS Cachan 

Supervised by J. F. Roch 
 

Jacques, Science (2007) 
Jacques, PRL (2008) 

Quantum optics  

2007-2009  
Post-doc at Stuttgart Uni. 
Supervised by J. Wrachtrup 

Quantum information  
Neumann, Science (2008) 
 Jacques, PRL (2009) 

50 papers, h=20, citations > 1700 

Since 2009 - CNRS position 

Spin physics (PI) 
Dréau, PRL (2013)  
Dréau, PRL (2014) 

Rondin, Nat. Commun. (2013) 
Tetienne, Science (2014) 
 

Single spin magnetometry (PI)!

Junior Grant 2010 – 700 k€ 

Scientific background 
Physics and applications of Nitrogen-Vacancy defects in diamond 

∝ B

|↑⟩

|↓⟩
PL

 [
a.

u.
]

2.972.87
 MW frequency [GHz]

S
ig

na
l 

B = 0  

Frequency [GHz] 

∝ B

NV defect =  artificial atom 
‘’trapped’’ in the diamond matrix 

Single e-spin detection at room T 

B

zz=0 Frequency shift	proportional to	
the	displacement

Coupling to	the	center	of	mass	via	the	NV	spin

Coupling rate	to	the	the	COM	mode	:	

P.	Rabl et	al.	PRB (2009)

Energy in	
the	center
of	mass	
(COM)	
mode wcom

a0

Non-adiabatic regime :	wcom >>	g

0

0.2

0.4

0.6

0.8

1

1.2

Microwave detuning 

Sc
at

te
re

d 
lig

ht
 in

te
ns

ity

0 1-1

RSB

BSB

The	Hamiltonian :		

wcom

g

H
int

= ~µ · ~B = �
com

S
z

(a+ a†)

Heating

Cooling

wcom





Static Coulomb force : +
U=1000 V
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How to trap a charged particle ?



Static Coulomb force : +
U=1000 V

+ +++

++++

Restoring force in the 3 
directions of space :

U=1000 V

The force along z cancels !

z

z

How to trap a charged particle ?

Confinement
along the ring plane.

But no confinement
along the z direction
anymore :(



z

x

y
-1000 V

1000 V
z

Confining potential

x
U=1000 V z

U

Other possibility :

In electrostatics, whatever the geometry, at least
one direction will not be confining!

Electric 
Potential U

U

x

Non confining 
potentiel 

0 V

Consequence of the conservation of 
the electric flux on a closed surface

How to trap a charged particle ?



In statics, one cannot confine a charged particle.
Idea : make the electric field oscillate.

However, a priori, one cannot see why the force that brings the particle 
towards the center would compensate the force that pushes it away from it

Solution	?



One dimensional case

U U

x x

t=0 t=T/2

U U

x x

t=T t=3T/2
x

t

U

x

t=2T

+

During one cycle of oscillation with a period
where k depends on the tension applied to the electrode. 
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Little by little, the particle gets closer to the center…

One dimensional case

During one cycle of oscillation with a period
where k depends on the tension applied to the electrode. 


