Quantum Optics with Levitating Diamonds

Gabriel Hétet

Laboratoire
Pierre Aigrain

Outline

- Quantum optics with levitating macroscopic particles
- Coupling a single electron spin to the motion of levitating particle
- NV centers in Diamonds
- Towards quantum optical experiments with levitating diamonds

Quantum optics with macroscopic oscillators

Millions of atoms

Quantum optics with macroscopic oscillators

$$
\hat{H}=\frac{{\hat{p_{x}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

1D quantum harmonic oscillator

Quantum optics with macroscopic oscillators

Millions of atoms
Number of phonons
$\hat{H}=\frac{{\hat{p_{x}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$

1D quantum harmonic oscillator

$$
\left\{\begin{array}{l}
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right) \\
\hat{p_{x}}=-i \sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}-\hat{a}^{\dagger}\right)
\end{array} \quad\left[\hat{a}, \hat{a}^{\dagger}\right]=1\right.
$$

Introducing ladder operators satisfying bosonic commutation relations

Quantum optics with macroscopic oscillators

Millions of atoms
Energy in the centre of mass (COM) mode

$\hbar \omega$
$\hat{H}=\frac{{\hat{p_{x}}}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$
$\sqrt{\left\langle\hat{x}^{2}\right\rangle}=\sqrt{\frac{\hbar}{2 m \omega}}$

Quantum optics with macroscopic oscillators

Energy in the centre of mass (COM) mode

Ground state cooling of a mechanical oscillator A. D. O'Connell et al. Nature 464, 697-703 (2010)...

Quantum optics with macroscopic oscillators

Ground state cooling of a mechanical oscillator A. D. O'Connell et al. Nature 464, 697-703 (2010)...

Offers the prospect of creating macroscopic quantum superpositions of the form :

$$
\rightarrow|\psi\rangle=\frac{|n=0\rangle+|n=1\rangle}{\sqrt{2}}
$$

$$
\text { if } k T_{c . m .} \ll \hbar \omega
$$

Quantum optics with macroscopic oscillators

Millions of atoms
Energy in the centre of mass (COM) mode

Ground state cooling of a mechanical oscillator A. D. O'Connell et al. Nature 464, 697-703 (2010)...

Offers the prospect of creating macroscopic quantum superpositions of the form :

Quantum optics with macroscopic oscillators

Millions of atoms
Energy in the centre
of mass (COM) mode

Ground state cooling of a mechanical oscillator A. D. O'Connell et al. Nature 464, 697-703 (2010)...

Offers the prospect of creating macroscopic quantum superpositions of the form :

Ultra cold levitating macroscopic objects

Energy in the center of mass (COM) mode

Confining
Potential

Ultra cold levitating macroscopic objects

- No need to cool the particles themselves (mandatory with clamped oscillators).
- Ground state extension of the COM ~ picometer.

Ashkin A, APL (1976)
Chang D. et al. PNAS (2010)

Ultra cold levitating macroscopic objects

- No need to cool the particles themselves (mandatory with clamped oscillators).
- Ground state extension of the COM ~ picometer.

Ashkin A, APL (1976)
Chang D. et al. PNAS (2010)

State of the art method : Optical trapping The trapped object seeks high intensities (typically 300 mW of laser power with a 1 micron beam waist).

Ultra cold levitating macroscopic objects

- No need to cool the particles themselves (mandatory with clamped oscillators)
- Ground state extension of the COM ~ picometer

Ashkin A, APL (1976)
Chang D. et al. PNAS (2010)

State of the art method : Optical trapping The trapped object seeks high intensities (typically 300 mW of laser power with a 1 micron beam waist).

Problem: The laser light can hit up the particle and/or make it unstable
L. P. Neukirch, Nat. Phot. (2016)
A. Rahman, Scientific Reports (2016)

Ultra cold levitating macroscopic objects

Thermalisation :
$\mathrm{T}_{\mathrm{gaz}}=\mathrm{T}_{\text {particle }}$

Atmospheric pressure

Out of equilibrium :
The particle can warm up significantly

High vacuum

Scattering free trapping

The Paul trap

Charged trapped particle in an electrodynamical potential

- No laser light
- Large potential depth \rightarrow stays in the trap for days
- Single ion experiments showed control of the motion at the quantum level
A. Kulicke et al. APL (2014)
J. Millen, et al. PRL (2015)

How to trap a charged particle ?

Static Coulomb force :

How to trap a charged particle?

Static Coulomb force :

Restoring force in the $\mathbf{3}$ directions of space :

Confinement along the ring plane.

But no confinement along the z direction anymore :(

How to trap a charged particle ?

Other possibility:

Electric
Potential \mathbf{U}

In electrostatics, whatever the geometry, at least one direction will not be confining!

Consequence of the conservation of the electric flux on a closed surface

How to trap a charged particle ?

In electro-statics, one cannot confine a charged particle. Idea : make the electric field oscillate.

One can feel that the electric field has to oscillate more rapidly than the period $T_{s}=2 \pi / \omega_{0}$ in statics.

However, a priori, one cannot see why the force that brings the particle towards the center would compensate the force that pushes it away from it

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

How to trap a charged particle ?

$F=-k x \cos (\omega t)$ where k depends on the tension applied to the electrode.
During one cycle of oscillation with a period $\quad T=\frac{2 \pi}{\omega} \ll T_{S}=\sqrt{\frac{m}{k}}$

Little by little, the particle gets closer to the center...

The Paul trap

Stable confinement if the trapping frequency is larger than the static curvature

Linear Paul trap with Lycopodium particles

www.newtonianslabs.com

Loading Coulomb crystals with macroscopic particle

Experimental set-up

Phase contrast imaging

Injection : Approaching a diamond coated metallic tip to the trap center.

Trap frequency : $\omega_{z} / 2 \pi=1 \mathrm{kHz}$
\rightarrow Charge surface : $5000 e^{-}$

Experimental set-up

Catching the levitating diamonds with a nano-fiber...

Quantum control of the motion using a single electron

Quantum optics with levitating systems

Cooling

$$
\hat{H}=\hbar \omega_{k}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

Schrödinger cat states
$|\psi\rangle=\frac{|\mathrm{n}=0\rangle+|\mathrm{n}=1\rangle}{\sqrt{2}}$

Energy in the centre
of mass (COM) mode

\rightarrow Use a single embedded atom to cool the collective motion of billions of atoms and prepare Schrödinger cat states

Single electron coupling to the motion

Read-out and coupling to the center of mass motion

A single embedded spin moving in a magnetic field gradient
\rightarrow Single atom resolution of the motion

Frequency shift proportional to the displacement

Single electron coupling to the motion

Read-out and coupling to the rotational mode

Read-out of the angular motion

Single electron coupling to the motion

Read-out and coupling to the rotational mode

Magnetic compas

Single electron coupling to the motion

Read-out and coupling to the rotational mode

Single atom magnetic compas

Coupling to the center of mass mode

COM mode

$H_{\text {int }}=\vec{\mu} \cdot \vec{B}=\lambda_{\text {com }} S_{z}\left(a+a^{\dagger}\right)$
Coupling rate to the the COM mode :

$$
\lambda_{\text {com }}=g_{s} \mu_{B} G_{m} a_{0} \rightarrow a_{0}=\sqrt{\hbar / 2 m \omega_{\text {com }}}
$$

Energy in the centre
of mass (COM) mode

- a= Creation and annihilation operators of the center of mass mode.
- $\quad \mathbf{S z}=$ Pauli operator for the NV electronic spin

Coupling to the center of mass mode

COM mode

$H_{\text {int }}=\vec{\mu} \cdot \vec{B}=\lambda_{\text {com }} S_{z}\left(a+a^{\dagger}\right)$
Coupling rate to the the COM mode :

$$
\lambda_{\text {com }}=g_{s} \mu_{B} G_{m} a_{0} \rightarrow a_{0}=\sqrt{\hbar / 2 m \omega_{\text {com }}}
$$

Strong coupling requires magnetic field gradients Gm in the 10^{5} to $10^{7} \mathrm{~T} / \mathrm{m}$ range!

Energy in the centre
of mass (COM) mode

- a= Creation and annihilation operators of the center of mass mode.
- \quad Sz = Pauli operator for the NV electronic spin
P. Rabl et al. PRB (2009)

Coupling to the rotational mode

COM mode

$H_{\text {int }}=\vec{\mu} \cdot \vec{B}=\lambda_{\text {com }} S_{z}\left(a+a^{\dagger}\right)$
Coupling rate to the the COM mode :
$\lambda_{\text {com }}=g_{s} \mu_{B} G_{m} a_{0} \rightarrow a_{0}=\sqrt{\hbar / 2 m \omega_{\text {com }}}$
Strong coupling requires magnetic field gradients Gm in the 10^{5} to $10^{7} \mathrm{~T} / \mathrm{m}$ range !
P. Rabl et al. PRB (2009)

Rotational mode

$$
\lambda_{\phi}=g_{s} \mu_{B} B \phi_{0}
$$

where $\phi_{0}=\sqrt{\hbar /\left(2 I_{y} \omega_{\phi}\right)}$ magnetic fields in the mT range
T. Delord et al. ArXiv (2017)

Towards quantum optical experiments

Ground state cooling

Use a single « atom » to cool the motion of thousands of atoms. \rightarrow Picometer precision of a nanometer sized object.

Towards quantum optical experiments

Ground state cooling

Use a single « atom » to cool the motion of thousands of atoms.
\rightarrow Picometer precision of a nanometer sized object.
Two requirements :

- Angular stability of the diamond in the trap
- Low vacuum

Summary

Trapping

Paul trap

- No laser light
- Large potential depth
\rightarrow stays in the trap for days
- Single ion experiments showed control of the motion at the quantum level
A. Kulicke et al. APL (2014)
J. Millen, et al. PRL (2015)

Read-out

A single embedded spin moving in a magnetic field gradient
\rightarrow Single atom resolution of the motion

Frequency shift proportional to the displacement

Summary

Trapping

Paul trap

- No laser light
- Large potential depth
\rightarrow stays in the trap for days
- Single ion experiments showed control of the motion at the quantum level

Read-out

A single embedded spin moving in a magnetic field gradient
\rightarrow Single atom resolution of the motion

Frequency shift proportional to the displacement
\rightarrow NV centres in diamond
P. Rabl et al. PRB (2009)
O. Arcizet et al. Nat. Phys.(2011)

NV centers in diamond

NV centers in diamond

Cristalline defect formed by one nitrogen atom (N) and one vacancy (V) on two adjacent sites of the diamond matrix

\longrightarrow « artificial atom» in diamond
\longrightarrow photoluminescence (PL) perfectly stable at room temperature
\Rightarrow Single NV isolation Gruber et al., Science 276 (1997)
Detection via confocal microscopy

Spin properties of the NV center

- $S=1$, the fondamental level is a spin triplet

Spin properties of the NV center

- $S=1$, the fondamental level is a spin triplet

Optical
pumping in the
state $\left\|0_{e}\right\rangle$
Spin
initialisation

\Rightarrow| The PL level depends |
| :---: |
| upon spin state |
| $\left\|0_{e}\right\rangle \longrightarrow$ «bright» state |
| $\left\| \pm 1_{e}\right\rangle \rightarrow$ dark state |
| \Longrightarrow Optical read-out of |
| spin state |

Spin properties of the NV center

- $S=1$, the fondamental level is a spin triplet

$\left.\begin{array}{c}\begin{array}{c}\text { Optical } \\ \text { pumping in the } \\ \text { state }\left|0_{e}\right\rangle \\ \text { Spin } \\ \text { initialisation }\end{array} \\ \begin{array}{c}\text { The PL level depends } \\ \text { upon spin state } \\ \left|0_{e}\right\rangle \longrightarrow \text { «bright» state } \\ \left| \pm 1_{e}\right\rangle \rightarrow \text { dark state } \\ \text { Optical read-out of } \\ \text { spin state }\end{array} \\ \square \zeta\end{array}\right)$

Spin properties of the NV center

- $S=1$, the fondamental level is a spin triplet

Optical
pumping in the
state $\left|0_{e}\right\rangle$
\Rightarrow Spin
initialisation

The PL level depends upon spin state
$\left|0_{e}\right\rangle \longrightarrow$ «bright» state
$\left| \pm 1_{e}\right\rangle \rightarrow$ dark state
\Longrightarrow Optical read-out of spin state

Optical detection of spin magnetic resonance

Applications of the NV center

Room temperature read out of a single electronic spin in diamond

At the core of many applications in quantum physics

Applications of the NV center

Sensing magnetic fields with $n m$ resolution

Single nuclear spins

Ferromagnetic vorteces

Applications of the NV center

Sensing magnetic fields with $n m$ resolution

Single nuclear spins

Ferromagnetic vorteces

Applications of the NV center

Sensing magnetic fields with nm resolution

Single nuclear spins

Ferromagnetic vorteces

Quantum information

Applications of the NV center

Sensing magnetic fields with nm resolution

Single nuclear spins
$D(T)$
Nanoscale thermometer

Ferromagnetic vorteces

Quantum information

And for studying levitating quantum systems...

Experimental set-up

ESR with NVs in levitating diamonds

Resonance
No magnetic field
ESR contrast comparable to the ESR with deposited diamonds

Electron

ESR with NVs in levitating diamonds

Resonance
No magnetic field
ESR contrast comparable to the ESR with deposited diamonds

With a magnetic field
4 possible orientations

Electron Spin

ESR with NVs in levitating diamonds

Resonance
No magnetic field
ESR contrast comparable to the ESR with deposited diamonds

With a magnetic field
4 possible orientations

Angular stability !

Deterministic angle change

ESR with $\mathbf{1 0}$ microns diameters diamonds

Deterministic angle change

ESR with $\mathbf{1 0}$ microns diameters diamonds

Deterministic angle change

An asymetrical particle enables locking the rotation along the most confining trap axis

Angular stability

MEB image of microdiamonds on the tungsten tip

Highly asymmetric particles

Angular stability

Newton's law for an ellipsoidal particule :

$$
\ddot{\phi}-\sqrt{2} \omega_{\phi} \Omega \cos (\Omega t) \frac{\sin (2 \phi)}{2}=0
$$

In the small angle limit \rightarrow Matthieu equation.

Angular stability with harmonic confinement at the frequency :

$$
\begin{aligned}
& \omega_{\phi}=\omega_{z} m S_{I} / I_{y y} \longleftarrow \begin{array}{c}
\text { Inertia } \\
\text { momentum } \\
\text { Along } y
\end{array} \\
& \mathrm{~S}_{\mathrm{I}}=\frac{3}{\mathrm{~S}} \iint\left(\mathrm{z}^{2}-\mathrm{x}^{2}\right) \mathrm{dS}
\end{aligned}
$$

Angular stability

Newton's law for an ellipsoidal particule :

$$
\ddot{\phi}-\sqrt{2} \omega_{\phi} \Omega \cos (\Omega t) \frac{\sin (2 \phi)}{2}=0
$$

In the small angle limit \rightarrow Matthieu equation.

Angular stability with harmonic confinement at the frequency :

$$
\begin{aligned}
& \omega_{\phi}=\omega_{z} m S_{I} / I_{y y} \longleftarrow \begin{array}{c}
\text { Inertia } \\
\text { momentum } \\
\text { Along } y
\end{array} \\
& \mathrm{~S}_{\mathrm{I}}=\frac{3}{\mathrm{~S}} \iint\left(\mathrm{z}^{2}-\mathrm{x}^{2}\right) \mathrm{dS}
\end{aligned}
$$

Energy in the rotational mode

Towards quantum optical experiments with macroscopic oscillators

Quantum jump of a single photon!

Watching the life and death of a photon Gleize et al. Nature (2007) - S. Haroche's group

Towards quantum optical experiments

Ground state cooling

Use a single « atom » to cool the motion of thousands of atoms.
\rightarrow Picometer precision of a nanometer sized object.

Final phonon number limited by the collision rate $1 / \tau_{\text {coll }}$ with surrounding gaz particles. One needs $\lambda_{\phi} \gg 1 / \tau_{\text {coll }}$

Levitating diamonds under vacuum

Diamonds levitating under vacuum

$$
\mathrm{P}=1 \text { bar }
$$

Diamonds levitating under vacuum

$$
P=0.1 \text { mbar }
$$

Diamonds levitating under vacuum

$$
P=0.1 \mathrm{mbar}
$$

The diamond heats up !

NV thermometry

Thermalisation :
$\mathrm{T}_{\mathrm{gaz}}=\mathrm{T}_{\text {particle }}$

Out of equilibrium :
The particle can warm up significantly

NV thermometry

- Significant diamond heating at 0.1 mbar
- Depends linearly on the green laser power

NV thermometry

- Heating depends on the gaz pressure
- At 0.01 mbars, the diamond escapes from the trap...

NV thermometry

Solution : use
ultra-pur diamonds
(CVD grown)

Conclusions / Perspectives

Conclusion :

- We observe efficient driving of NV centers in a diamond levitating in a Paul trap.
- The spin properties of deposited diamond particles are retained.
- We observed angle stability of single trapped monocrystals \rightarrow Necessary step towards spin-controlled levitating macroscopic objects.
- NV spin enables reading locally the temperature of levitating objects

Perspectives :

- Increase the frequency \rightarrow UV light, electron gun to increase the charge surface
- Ground state cooling of a massive object using a single electron
- Quantum non-demolition read-out of the collective modes

Conclusion

Collaborations :

J.-F. Roch, François Treussard, Loic Rondin (LAC, Paris)
V. Jacques (L2C, Montpellier)
L. Guidoni
A. Tallaire (LSPM- Villetaneuse)
P. Maletinsky (Basel)
C. Becher(Saarbrücken)

Optics team at LPA :

Team : Baptiste Vindolet, Tom Delord, Lucien Schwab, Martina Bodini, Louis Nicolas

Laboratoire Pierre Aigrain

Aim 3: Entangle the motion of distant macroscopic objects

Aim 3: Entangle the motion of distant macroscopic objects

Methodology :
\rightarrow Entangle the spins from distant NV centres in diamonds using single photon scattering
\rightarrow Transfer spin entanglement to motional entanglement

Aim 3: Entangle the motion of distant macroscopic objects

Methodology :
\rightarrow Entangle the spins from distant NV centres in diamonds using single photon scattering
\rightarrow Transfer spin entanglement to motional entanglement

- Long lived entangled state \rightarrow quantum memory
- Quantum information
- Sensitive detection of gravitational effects

Optical spectra

NV spectra from deposited nanodiamonds on a quartz coverslip

Optical spectra

NV spectra from deposited nanodiamonds on a quartz coverslip

NV spectra from levitating nanodiamonds

No apparent change in the photophysical properties

2D trap

The electrodynamical trap

General law of electrostatics
Whatever the geometry, at least one direction will not be confining

The electrodynamical trap

Idea (W. Paul 1967), use oscillating electric field

But why should the force that pushes the particule towards the center win over the one that pushes it away ?
One could expect no net force.

One dimensional case :

$$
\mathrm{t}=0
$$

On average over one cycle, there is a restoring

$$
\mathrm{t}=\mathrm{T} / 2
$$ force due to the fast oscillating field.

Dynamical stabilisation
The micromotion induced by the fast oscillatin

Torsional quantum levels

FIG. 2: Principle of hybrid torsional cooling.

The Paul trap

- High optical access
- Tunable trap parameters after injection
- Ambient conditions

Whatever the geometry, at least one direction will not be confining \rightarrow General law of electrostatics

W. Paul (1967) proposed to use oscillating electric fields. :

Radiation pressure force :

$$
\begin{aligned}
F_{r a d} & =\int_{-\theta_{m}}^{\theta_{m}} \frac{h}{\lambda} 2 R_{n} \cos \theta \frac{P \lambda}{h c} \frac{d \theta}{2 \theta_{m}} \\
& =\frac{2 R_{n} P}{c} \operatorname{sinc}\left(\theta_{m}\right) .
\end{aligned}
$$

Displacement due to the laser

$$
\Delta x=\frac{F_{r a d}}{m \omega_{x}^{2}}
$$

$\Delta x / P \sim 350 \mathrm{~nm} / \mathrm{mW} \quad$ For a micron size particule

$$
\Delta x / P \sim 11 \mu \mathrm{~m} / \mathrm{mW} \quad \text { For a particule size of } 100 \mathrm{~nm}
$$

Coupling to the center of mass via the NV spin

Coupling to the center of mass via the NV spin

Non-adiabatic regime : $\omega_{\text {com }} \gg \gamma$

The Hamiltonian :
$H_{\mathrm{int}}=\vec{\mu} \cdot \vec{B}=\lambda_{\mathrm{com}} S_{z}\left(a+a^{\dagger}\right)$
Coupling rate to the the COM mode :
$\lambda_{\text {com }}=g_{s} \mu_{B} G_{m} a_{0} \longrightarrow a_{0}=\sqrt{\hbar / 2 m \omega_{\text {com }}}$
P. Rabl et al. PRB (2009)

How to trap a charged particle?

Static Coulomb force :

How to trap a charged particle?

Static Coulomb force :

Restoring force in the 3 directions of space :

Confinement along the ring plane.

But no confinement along the z direction anymore :(

How to trap a charged particle?

Other possibility :

In electrostatics, whatever the geometry, at least one direction will not be confining!

Consequence of the conservation of the electric flux on a closed surface

$\oiint \vec{E} \cdot \overrightarrow{d S}=0$

Solution?

In statics, one cannot confine a charged particle. Idea: make the electric field oscillate.

One can feel that the electric field has to oscillate more rapidly than the period $T_{s}=2 \pi / \omega_{0}$ in statics.

However, a priori, one cannot see why the force that brings the particle towards the center would compensate the force that pushes it away from it

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

x_{\uparrow}
\dagger

One dimensional case

$F=-k x \cos (\omega t)$ where \mathbf{k} depends on the tension applied to the electrode. During one cycle of oscillation with a period $T=\frac{2 \pi}{\omega} \ll T_{s}=\sqrt{\frac{m}{k}}$

