Résumé partiel de Moriond 2007: Résultats expérimentaux accélérateurs

Le 23 avril 2007, Julie Malclès (CMS)

• Plus de 30 présentations pour une demi-heure

 \Rightarrow résumé incomplet et subjectif

• Présentations complètes et proceedings:

http://indico.in2p3.fr/conferenceOtherViews.py?confld=151&view=niceco mpact&showDate=all&showSession=all&detailLevel=contribution

Introduction

Beaucoup de données : début de l'âge d'or de Fermilab, SLAC, KEK ...

Fermilab:

- Tevatron: plus de 2.5fb⁻¹ délivrés
- D0 et CDF: plus de 2fb⁻¹ enregistrés,
- de nombreuses analyses avec 1fb⁻¹

SLAC:

• PEP-II/Babar: plus de 400fb⁻¹ enregistrés

KEK:

• KEKBBelle: plus de 700fb⁻¹ enregistrés

Plan

Complémentarité des tests directs et indirects du SM

• SM: mesures de précision, recherche du Higgs, tests directs

- Di-Boson: WW, WZ, ZZ, Wγ SM Vs AC
- W, Z: masse du W à CDF, W et Z au Tevatron (PDF, QCD, JES)
- Higgs: recherche et potentiel de découverte au Tevatron
- top: masse du top, "single top" au Tevatron, production
- BSM searches: W', Z', RS gravitons, squarks, gluinos...
- Secteur des saveurs: tests indirects du SM, CPV, mélange
 - K: résultats de KTeV, NA48, KLOE
 - b: triangle d'unitarité, Bs mixing
 - c: mélange Dº- Dº

Plan

Complémentarité des tests directs et indirects du SM

• SM: mesures de précision, recherche du Higgs, tests directs

- Di-Boson: WW, WZ, ZZ, Wγ SM Vs AC
- W, Z: masse du W à CDF, W et Z au Tevatron (PDF, QCD, JES)
- Higgs: recherche et potentiel de découverte au Tevatron
- top: masse du top, "single top" au Tevatron, production
- BSM searches: W', Z', RS gravitons, squarks, gluinos...
- Secteur des saveurs: tests indirects du SM, CPV, mélange
 - K: résultats de KTeV, NA48, KLOE
 - b: triangle d'unitarité, Bs mixing
 - c: mélange D⁰- D⁰

Plan

Complémentarité des tests directs et indirects du SM

• SM: mesures de précision, recherche du Higgs, tests directs

- Di-Boson: WW, WZ, ZZ, Wγ SM Vs AC
- W, Z: masse du W à CDF, W et Z au Tevatron (PDF, QCD, JES)
- Higgs: recherche et potentiel de découverte au Tevatron
- top: masse du top, "single top" au Tevatron, production
- BSM searches: W', Z', RS gravitons, squarks, gluinos...
- Secteur des saveurs: tests indirects du SM, CPV, mélange
 - K: résultats de KTeV, NA48, KLOE
 - b: triangle d'unitarité, Bs mixing
 - c: mélange D⁰- D⁰

Jan Stark for D0 and CDF

Jan Stark for D0 and CDF

Signaux établis: Wγ mis à jour avec ~1 fb⁻¹ par D0 et CDF • WW mis à jour par CDF ZW: première observation Wγ: "radiation amplitude zero" Toutes ces mesures sont en bon accord avec les prédictions du SM

Pas encore vu: Limites sur ZZ avec ~1 fb⁻¹:

CDF: $\sigma(ZZ) < 3.8 \text{ pb} (95\% \text{CL})$

DØ: $\sigma(ZZ) \le 4.3 \text{ pb} (95\% \text{ CL})$

```
SM: 1.4 \pm 0.1 \text{ pb}
```

Jan Stark for D0 and CDF

Première observation de WZ par CDF:

Cross section:

	measured	predicted	signal significance
CDF	5.0 $^{+1.8}_{-1.4}({ m stat}){\pm}0.4({ m syst})$ pb	3.7±0.3 pb	6.0 σ
DØ	4.0 $^{+1.9}_{-1.5}$ (stat+syst) pb	3.7±0.3 pb	3.3 σ

Wγ:

- section efficace => tests plus fins du SM
- distributions angulaires discriminant SM de modèles avec couplages anomaux

ud \rightarrow W⁺ γ has zero at cos $\theta_{CM} = -\frac{1}{3}$ du \rightarrow W⁻ γ has zero at cos $\theta_{CM} = +\frac{1}{3}$

Correlations lead to dip in γ*ℓ* charge-sign rapidity difference Background-subtracted data

Masse du W avec CDF (200/pb)

• Canaux $W \rightarrow Iv (I=e, \mu)$

O. Steltzer for D0 and CDF

- Masse du W extraite à partir des distributions de masse, impulsion et énergie manquante transverses
- Calibration de la réponse du détecteur et validation de ces calibrations sur des échantillons de contrôle
- Méthode des templates

1ère mesure avec Runll du Tevatron

Masse du W avec CDF (200/pb)

O. Steltzer for D0 and CDF

Masse du top au Tevatron

Trois types de canaux étudiés: II+jets, I+jets, all-had E. Barberis for D0 and CDF

t(→W[±]b) t(→W[±]b) ↓ qq ↓ qq

With increased statistics: focus is now on systematics

Handles on systematic uncertainties:

t(\rightarrow W⁺b) t(\rightarrow W⁻b) t(\rightarrow W[±]b) t(\rightarrow W[±]b) $\downarrow \rightarrow e^{+}, \mu^{+} \rightarrow e^{-}, \mu^{-}$ t(\rightarrow W[±]b) t(\rightarrow W[±]b) $\downarrow \rightarrow e^{\pm}, \mu^{\pm} \rightarrow qq$

- Jet energy scale systematic can be reduced with in situ calibration of the hadronic W mass in top decays.
- b-jets identification (b-tagging) can be used to reduce physics backgrounds as well combinatorial.
- Many systematical uncertainties expected to decrease with larger data samples.

Masse du top au Tevatron

Trois types de canaux étudiés: II+jets, I+jets, all-had: E. Barberis for D0 and CDF

Masse du top et de ses propriétés au Tevatron

E. Barberis for D0 and CDF Résultats avec 1/fb Best Tevatron Run II (preliminary, March 2007) Analyses avec 2/fb en cours All-Jets: CDF 171.1 ± 4.3 Les mesures s'étendent à des (943 pb⁻¹) modes avant considérés comme Dilepton: CDF difficiles (all-had) qui restent 164.5 ± 5.6 (1030 pb^{-1}) compétitifs en avec les autres modes Dilepton: D0 172.5 ± 8.0 (1000 pb^{-1}) New **Best measurements** Lepton+Jets: CDF 170.9 ± 2.5 Incertitude relative sur la masse (940 pb⁻¹) du top: 1.2% Lepton+Jets: D0 170.5 ± 2.7 • Incertitude attendue (visée) pour 8/fb: (900 pb⁻¹) ~ 1GeV Tevatron 171.4 ± 2.1 (Run I/Run II, July 2006) Performances excellentes du γ^2 /dof = 10.6/10 Tevatron et des expériences D0 et 150 160 170 180 200 190 CDF cruciales pour atteindre cette Top Quark Mass (GeV/c²)

précision

LEPEWWG ICHEP06

LEPEWWG Moriond07

Courtesy of Fabrice Couderc

$rac{rac}{rac}$ Higgs de basse masse (m_H < 135 GeV/c²)

Au Tevatron, seule chance $H \rightarrow bb$. Mais trop de <u>bruit de fond QCD</u> pour production inclusive \Rightarrow production associée WH, ZH (étiquetage avec leptons de haut p_r)

☞ Higgs de haute masse (m_H > 135 GeV/c²)

 $H \rightarrow WW^*$ grand taux d'embranchement, "seulement" bruits de fond électrofaibles (diboson): recherche de gg $\rightarrow H(X)$

Courtesy of Fabrice Couderc

<u>Gluon Fusion Production:</u> hautes masses, utile aussi à basses masses

Courtesy of Fabrice Couderc

K. Peters for D0 and CDF

$$WH \rightarrow lvb\overline{b}, \ l=e,\mu$$

New analysis from D0 with 1fb⁻¹

95% *CL* upper limits (pb) for m_H =115 GeV (SM expected: 0.13 pb) • CDF: 3.4 (2.2) observed (expected) • DØ: 1.3 (1.1) observed (expected) $\implies \sigma_{excl} / \sigma_{SM} \sim 8.8$ (expected, best measurement) 2 b-tag

Dijet Mass (GeV)

40 Limit / SM Tevatron Run II Preliminary 35 Ldt=0.3-1.0 fb DØ Expected CDF Expected cluded Ч Première combinaison Dzero/CDF 30 Tevatron Expected 92% des ×SM pour ICHEP 06. Mais: Tevatron Observed 25 Dzero: basses masses slt 300pb⁻¹ 20 CDF : hautes masses slt 300 pb⁻¹ 15 10 SM 100 110 120 130 50 140 160 190 200 170 180 m_H (GeV/c²) Nouvelle combinaison des analyses Dzero DØ Ppeliminary, L=1.0 fb1 I15 GeV/c²: xSM obs (exp) < 8.4 (5.9)</p> Observed Limit Expected Limit 160 Gev/c²: xSM obs (exp)< 3.7 (4.2) - CDF: H→WW 160 Gev/c²: xSM obs (exp)< 3.5 (5.0) Combi Dzero, avril 07 120 170

Courtesy of Fabrice Couderc

(GeV/c

Perspectives

W. Fisher

- plus de canaux: les leptons τ ne sont pas utilisées
- les analyses multivariables commencent seulement
- amélioration des systématiques indispensables (Z/W + jets)

<u>Ingredient</u>	Equiv Lumi <u>Gain</u>	Xsec Factor <u>MH=115 GeV</u>	Xsec Factor <u>MH=160 GeV</u>
Today with 1fb ⁻¹	-	5,9	4,2
Lumi = 2 fb^{-1}	2	4,2	3,0
b-Tag (Shape + LayerØ)	2	3,0	3,0
Multivariate Techniques	1,7	2,3	2,3
Improved mass resolution	1,5	1,8	2,3
New Channels	1.3/1.5	1,6	1,9
Reduced systematics	1,2	1,5	1,7
Two Experiments	2	1,1	1,2
	→	At 115 GeV	At 160 GeV
		need ~2.5 fb ⁻	¹ need ~3 fb ⁻¹

New result, both CDF and DØ, with 1 fb⁻¹ Courtesy of F. Couderc

Final State $\tau\tau(j)$ with

- CDF: $\tau_e \tau_\mu + \tau_e \tau_{had} + \tau_\mu \tau_{had}$

- DØ : only $\tau_{\mu} \tau_{had}^{}$ but use a NN to

discriminate signal from background

Selection

1 (2 for e_{μ}) isolated hard lepton + one hadronic tau (apply NN tau id) with opposite sign. W(j) removed with $\overrightarrow{F_{T}}$

Backgrounds

main $Z \rightarrow \tau \tau$, QCD, $Z \rightarrow ee$, $Z \rightarrow \mu \mu$, di boson

- CDF: Excès d'événements dans les données mais <2σ
- D0 et CDF: dans la région 90<m_A<200 GeV, $tan(\beta) > 40-60$ GeV exclu

K. Peters pour D0 et CDF

• Single top rate can be altered due to the presence of New Physics:

- t-channel signature: Flavor changing ----neutral currents ($t-Z/\gamma/g-c$ couplings)

 s-channel signature: Heavy W boson (later), charged Higgs H⁺, Kaluza Klein excited W_{KK}

B. Stelzer

- Evénements: 1398 (single tops attendus: 62 +/-13)
 - b-tagged lepton+jets: e ou μ ; 2 à 4 jets, 1 ou 2 b-tagged jets
 - bdfs: tt, W+jets

Decision tree:

- "machine learning technique" entrainée sur échantillons S+B
- coupures séquentielles sur 49 variables cinématiques
- choisies à chaque noeud comme optimales pour le lot donné
- output: pureté de chaque lot: variable quasi-continue de 0 (bkg-like) à 1 (sig-like)

Matrix elements:

- utilise un calcul de section efficace différentielle incluant l'info. cinématique au niveau des partons (PDF, fct de tranferts, LO Xsection)
- output: proba d'etre signal pour chaque événement de 0 à 1

B. Stelzer

First evidence for single top quark production and direct measurement of $|V_{tb}|$ (hep-ex/0612052 submitted to PRL) $\sigma(s+t) = 4.8 \pm 1.3 \text{ pb}$ $3.5\sigma \text{ significance!}$ $|V_{tb}| > 0.68 @ 95\%$ C.L.

- Challenging analysis: small signal hidden in huge complex background
- Expand to searches of new phenomena
- We now have double the data to analyze!

Résultats dans le secteur des saveurs

Mélange Bs

CDF: "Amplitude scan method":

A. Heijboer pour D0 et CDF

- determine the flavor at decay and at production
- compare time distribution of mixed and unmixed decays
- $p \sim exp(-t/\tau)(1 \pm AD \cos \Delta mt)$ • fourier scan for the mixing frequency

Mélange Bs

Mélange Dº-Dº: Belle et BaBar

- Mixing implies that the weak eigenstates are not pure flavor states
- Charm mixing values typically quoted using scaled parameters x, y
- Time-integrated mixing rate

$$|D_{1,2}\rangle = p|D^{0}\rangle \pm q|\overline{D}^{0}\rangle, |p|^{2} + |q|^{2} = 1$$

$$x = \frac{\Delta M}{\Gamma} , y = \frac{\Delta \Gamma}{2\Gamma} \qquad \begin{array}{c} \Gamma = \frac{1}{2}(\Gamma_2 + \Gamma_1) \\ \Delta M = M_2 - M_1 \\ \Delta \Gamma = \Gamma_2 - \Gamma_1 \end{array}$$

$$R_M = \frac{x^2 + y^2}{2}$$

(R_M~10⁻¹⁰)

- CKM suppression $\rightarrow |V_{ub}V^*_{cb}|^2$
- GIM suppression \rightarrow (m ${}^2_s\text{-}m{}^2_d)/m{}^2_W$
- Effets à longue distance peuvent dominer

Mélange D^o-D^o: Belle et BaBar

Etat des lieux avant Moriond:

M. Staric et K.Flood pour Belle et Babar

limites à 95% de CL sur R_M provenant des modes semileptoniques ou en 2 corps: Belle: Babar :

 $D^{0} \to K^{+} e^{-} \bar{\nu}_{e} \quad R_{M} < 1.2 \times 10^{-3}$ $D^{0} \to K^{+} \pi^{-} \qquad R_{M} < 0.4 \times 10^{-3}$

sabar :

$$D^{0} \to K^{+} \pi^{-} \pi^{0}$$

$$D^{0} \to K^{+} \pi^{-} \pi^{+} \pi^{-} R_{M} < 0.042\%$$

Différents résultats/limites à Moriond:

• Autres limites:

Belle: $D^0 \to K_s^0 \pi^+\pi^-$ Dalitz $x = 0.80 \pm 0.29 \pm 0.17 \%$ $y = 0.33 \pm 0.24 \pm 0.15 \%$

• Evidences de mélange D⁰-D⁰:

Belle: 540 fb⁻¹ $D^0 \to K^+ K^-, \ \pi^+ \pi^-$

Babar : semileptonique $D^0 \rightarrow Ke\nu$

 $-1.3 \times 10^{-3} < R_M < 1.2 \times 10^{-3}$ @ 90% C.L.

Babar : 384 fb⁻¹ $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{tag}$

Mélange D^o-D^o: Belle et BaBar

• Saveur du D^o produit:

D⁰ issus de la désintégration $D^{*+} \rightarrow D^0(\pi^+)$

Temps entre production et désintégration du D^o

Mesure de la distance entre les vertex de production (contraint par la région d'interaction) et de désintégration.

K.Flood pour Babar

Mélange Dº-Dº: BaBar

Méthode entièrement basée sur les données:

3. Fit distributions variables cinématiques déterminant les PDFs cinématiques sur les données WS+RS \rightarrow PDFs figées dans la suite

6. Fit distribution temps de désintégration (+kin. var) sur l'échantillon RS → détermine la fonction de résolution et la fige

9. Fit distribution temps de désintégration sur l'échantillon WS → Mixing 38

K.Flood pour Babar

Mélange D^o-D^o: BaBar

Right Sign ~ 1 000 000 evts

Wrong Sign ~ 4 000 evts

between DCS and CF amplitudes

K.Flood pour Babar

Mélange D^o-D^o: BaBar

Right Sign ~ 1 000 000 evts

Wrong Sign ~ 4 000 evts

Mélange D^o-D^o: BaBar

- y', x'² contours computed by change in log likelihood
 - Best-fit point is in non-physical region x'² < 0, but 1-sigma contour extends into physical region
 - correlation: -0.94
- Contours include systematic errors
 - Accounting for systematic errors, the no-mixing point is at ~4-sigma contour

Mélange D^o-D^o: BaBar

K.Flood pour Babar

- Kinematic fit done independently in five decay time bins
 - Each bin has approximately the same number of RS candidates
- R_{ws} independent of any assumptions on resolution model

Mélange D^o-D^o: Belle

M. Staric pour Belle

Principe similaire:

- On utilise un pion issu d'un D* pour savoir la saveur du D⁰
- On utilise le mode "RS" sans mixing de normalisation
- On mesure la différence de "temps de vie apparent" du D^o quand il se désintègre dans des états propres de CP:

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ via la mesure du temps propre de désintégration (vertex reconstruits)

- On peut montrer que:
- b mixing parameter:

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

in CP conservation limit:
 Et si CP n'est pas conservé:

$$y_{CP} = y = \Delta \Gamma / \Gamma$$

⁴³ ▷ CP violating parameter:

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \to KK) - \hat{\Gamma}(\bar{D}^0 \to KK)}{\hat{\Gamma}(D^0 \to KK) + \hat{\Gamma}(\bar{D}^0 \to KK)}$$

Mélange D^o-D^o: Belle

M. Staric pour Belle

Principe similaire:

- On utilise un pion issu d'un D* pour savoir la saveur du D⁰
- On utilise le mode "RS" sans mixing de normalisation
- On mesure la différence de "temps de vie apparent" du D^o quand il se désintègre dans des états propres de CP:

 $D^0 \rightarrow K^+ K^-, \pi^+ \pi^$ via la mesure du temps propre de désintégration (vertex reconstruits)

- On peut montrer que:
- ▷ mixing parameter: $y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{+}K^{-})} 1$ Mixing si ≠ 0 $in CP \text{ conservation limit:} \quad y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{+}K^{-})} 1$ Et si CP n'est pas conservé: $y_{CP} = \frac{y}{\tau(K^{+}K^{-})} 1$ CPV si ≠ 0 $CPV \text{ si } \neq 0$ $A_{\Gamma} = \frac{\hat{\Gamma}(D^{0} \rightarrow KK) \hat{\Gamma}(\bar{D}^{0} \rightarrow KK)}{\hat{\Gamma}(D^{0} \rightarrow KK) + \hat{\Gamma}(\bar{D}^{0} \rightarrow KK)}$

Mélange D^o-D^o: Belle

 $\pi\pi$

M. Staric pour Belle

Conclusion

- Beaucoup de données...
 bien décrites par le SM
- Les nouveautés de l'hiver:

Single top par D0

DØ Run II preliminary

D^o mixing par BaBar et Belle