CEA

mercredi 26 novembre 2007

Latest news from the Pierre Auger Observatory

Nicolas G. Busca - APC - Paris 7

Highly energetic particles that constantly fall on the Earth

(over 1000 cosmic rays went through my body since I started talking)

- discovered in ~1910s
- mixture of nuclei at low energies
- composition is not known at higher energies
- sources are still not identified

Credit: S. Swordy

Greisen, Zatzepin & Kus'min (1966) - Interaction with the CMB background

 $\begin{array}{l} p+\gamma_{CMB} \twoheadrightarrow p+\pi^{0} \\ p+\gamma_{CMB} \twoheadrightarrow n+\pi^{+} \\ \\ \mathrm{E_{th}} \sim 5 \times 10^{19} \, \mathrm{eV} \end{array}$

Greisen, Zatzepin & Kus'min (1966) - Interaction with the CMB background

Interaction with the CMB background

$$p + \gamma_{CMB} \rightarrow p + \pi^{0}$$
$$p + \gamma_{CMB} \rightarrow n + \pi^{+}$$
$$E_{th} \sim 5 \times 10^{19} \text{ eV}$$

Interaction with the CMB background

$$p + \gamma_{CMB} \rightarrow p + \pi^{0}$$
$$p + \gamma_{CMB} \rightarrow n + \pi^{+}$$
$$E_{th} \sim 5 \times 10^{19} \text{ eV}$$

GZK cutoff is NOT a sharp cutoff!!

Expected sky at 10¹⁹ eV

Expected sky at 10²⁰ eV

We observe the entire universe, still isotropic!! Sources can be discriminated

Southern Site: 3000 km² (10 fois Paris)

A surface detector (SD):

- 1600 water Cherenkov detector
- ~100 % duty cycle

large collecting area
(3000 km²)

A fluorescence detector (FD)

•4 Eyes

 ~10% duty cycle (only moonless clear nights)

Observatorio Pierre Auger Av. San Martín Norte 304 Malargüe, (5613) Mendoza Argentina

Hajo Drescher, Frankfurt U.

Hajo Drescher, Frankfurt U.

 $S = C_{em}\rho_{em} + C_{\mu}\rho_{muons} \quad 21$

Detection: a local station

A tank is a *stand alone self calibrating* unit (can't wire 3000 km²)

Unit of signal = VEM

= signal of a *vertical* muon

The FD

4 buildings with 6 telescopes each

Sketch of a fluorescence telescope: 10 Br. spherical mirror Diaphragm camera UV filter

- The camera:
- 440 pmt (1.5deg each)
- 100 ns FADC

Event Reconstruction: FD

SDP Id 931431 Run 452 Event 5431 Eye Id: 1

TimeFit Id 931431 Run 452 Event 5431 Eye Id: 1

Energy Calibration

Constant Intensity Cut

Energy Calibration

Publicity

1% of Auger events are public and available on : http://apcpaox.in2p3.fr/ED/index.php

Results: spectrum

Results: spectrum

Spectrum interpretation

Results: Composition

Method:

Results: Composition

Results: Neutrino Limits

Results: Neutrino Limits

Results: Photon Limits

Possible sources of UHECRs

Hillas diagram :

Possible sources of UHECRs

Hillas diagram :

Results: Anisotropies

Nov. 2007

The analysis:

Two stages:

 before May 26th 2006 - exploration prescription
after May 26th 2006 - confirmation Compared the data with the Veron-Cetty & Veron 12th catalogue of AGN:

- Correlation: angle(AGN,data)<θ_{cut}
- AGNs: up to D<D_{max}
- Data: E>E_{min}

 $P_{iso} = \sum_{i=ncorr}^{N} p^{i} (1-p)^{N-i} \qquad \text{p = probability of falling within } \theta_{cut} \text{ from an AGN}$

 P_{iso} is minimized with respect to θ_{cut} , D_{max} and E_{min} Results: $\theta_{cut} = 3.1^{\circ}$, $D_{max} = 75$ Mpc, $E_{min} = 56$ EeV Correlation: 12/15 (expected from isotropy: 3.2/15)

Anisotropies : Prescription

(Decided on may 26th 2006)

For each event after 26 May 2006:

• check if it correlates with an AGN for <u>fixed</u> parameters $\theta_{cut} = 3.1^{\circ}$, $D_{max} = 75$ Mpc, $E_{min} = 56$ EeV (« running prescription »)

 if the number of correlations is above a predefined threshold, the prescription is said to pass

Anisotropies : Prescription

(Decided on may 26th 2006)

For each event after 26 May 2006:

• check if it correlates with an AGN for <u>fixed</u> parameters $\theta_{cut} = 3.1^{\circ}$, $D_{max} = 75$ Mpc, $E_{min} = 56$ EeV (« running prescription »)

 if the number of correlations is above a predefined threshold, the prescription is said to pass

The prescription had a 1% chance of passing for an isotropic flux

Anisotropies : Confirmation

On August 31st 2007, the prescription passed (8/13) (isotropic probability 8/13 ~ 2x10⁻³)

The signal was confirmed on an independent data set

44

45

Anisotropies : astrophysical objects

What do these results mean?

• UHECRs don't come from an isotropic distribution

• UHECRs come from the direction of an AGN (extragalactic origin)

This does not mean that:

- AGNs accelerate UHECRs
- · We've found the sources of UHECRs

The Future

Near:

months: ~ three papers describing anisotropies in more technical detail

Middle-term:

1 year and a half: Auger will double the statistics

The Future

Long Term

Years:

· Larger scale detectors, Auger North (7xA.S.), EUSO, etc.

UHECRs astronomy

HESS (Gamma)

AUGER?

200

Right Ascension (hours)

12'30'

12'31