Development of a Low Energy Positron Source and an Efficient Positron-Positronium Converter for Positively Charged Antihydrogen Production

MURANAKA Tomoko

1st December 2008 Seminar SPP Bat: 141 IRFU/CEA-Saclay

e⁺ source at CEA-Saclay IRFU

Ps production at CERN ETHZ / IRAMIS/ AIST

OUTLINE

• Introduction

- Motivation: gravitational measurement on antimatter system
- Positive anti-hydrogen ion production

• Positron production @ Saclay

- Electron linear accelerator (LINAC)
- Electron positron convertor
- Positron trap

• Ortho-positronium production @ CERN

- Positron ortho-positronium converter
- oPs formation in a glass tube
- Summary & Outlook

MOTIVATION : gravity measurement on antimatter

- Do we really understand gravity?
- The gravitational acceleration $\Delta g/g = 10^{-10}$

- The gravitational interaction of antimatter has not been conclusively observed!
- Violation of the equivalence principle?

MOTIVATION : gravity measurement on antimatter

- Do we really understand gravity?
- The gravitational acceleration $\Delta g/g = 10^{-10}$ on matter system
- The gravitational interaction of antimatter has not been conclusively observed!
- Violation of the equivalence principle?

EXPERIMENTS

No direct measurement exists

- Indirect measurement:
 - Supernova 1987A (164,000 light years away)
 - Neutrino / anti-neutrino were detected simultaneously??
 - Identification of neutrino/anti-neutrino...??
 - Statistical accuracy... cannot be improved!
- Direct measurement (idea):
 - electron / positron
 - m/q is too small -> electromagnetic effects is much larger
 - Other antiparticles
 - Annihilation, high initial energy...

EXPERIMENTS

No direct measurement exists

- Indirect measurement:
 - Supernova 1987A (164,000 light years away)
 - Neutrino / anti-neutrino were detected simultaneously??
 - Identification of neutrino/anti-neutrino...??
 - Statistical accuracy... cannot be improved!
- Direct measurement (idea):
 - electron / positron
 - m/q is too small -> electromagnetic effects is much larger
 - Other antiparticles
 - Annihilation, high initial energy...

Heavier + colder antimatter

- Neutral H
 - ✓ Electromagnetic shielding
 - ? Temperature (dispersion v_h and v_v)

- Neutral H
 - ✓ Electromagnetic shielding
 - ? Temperature (dispersion v_h and v_v)

• Measurement principle: Free fall

- ✓ Electromagnetic shielding
- ? Temperature (dispersion v_h and v_v)

- Measurement principle: Free fall
 - Proposed configuration (AEGIS, CERN)
 - $v_h \sim 500 \; m/s$
 - L ~ 1 m
 - h ~ 20 μm

- Electromagnetic shielding
- ? Temperature (dispersion v_h and v_v)

- Measurement principle: Free fall
 - Proposed configuration (AEGIS, CERN)
 - v_h ~ 500 $m/\,s$
 - L ~ 1 m
 - h ~ 20 μm
 - Desirable range
 - $v_h \sim 0.5 \text{ m/s}$
 - L ~ 0.1 m
 - h ~ 20 cm

- Electromagnetic shielding
- ? Temperature (dispersion v_h and v_v)

- Measurement principle: Free fall
 - Proposed configuration (AEGIS, CERN)
 - v_h ~ 500 $m/\,s$
 - L ~ 1 m
 - h ~ 20 μm
 - Desirable range (our project)
 - $v_h \sim 0.5 \text{ m/s}$
 - L ~ 0.1 m
 - h ~ 20 cm

- Electromagnetic shielding
- ? Temperature (dispersion v_h and v_v)

- Measurement principle: Free fall
 - Proposed configuration (AEGIS, CERN)
 - v_h ~ 500 $m/\,s$
 - L ~ 1 m
 - h ~ 20 μm
 - Desirable range (our project)
 - $v_h \sim 0.5 \text{ m/s}$
 - L ~ 0.1 m
 - h ~ 20 cm

- Neutral H
 - ✓ Electromagnetic shielding
 - ? Temperature (dispersion v_h and v_v)
- Measurement principle: Free fall
 - Proposed configuration (AEGIS, CERN)
 - v_h ~ 500 $m/\,s$
 - L ~ 1 m
 - h ~ 20 μm
 - Desirable range (our project)
 - $v_h \sim 0.5 \text{ m/s}$
 - L ~ 0.1 m
 - h ~ 20 cm

USING ANTIHYDROGEN ION!

J.Walz & T. Hänsch, General Relativity and Gravitation, **36** (2004) 561.

$\overline{\mathrm{H}}{}^{\scriptscriptstyle +}$ ion in trap	$\Delta g/g$
5.10^{5}	0.001
1.10^{4}	0.006
1·10 ³	0.02

- Produce charged H⁺ (pe⁺e⁺)
- Decelerate
- Trap and cooling to few µK
- Remove one of e⁺ by a short laser pulse (trigger)
- Detect annihilation signal (detectors on both sides) (end signal)
- Observable: Time of Flight (TOF) of ultra-cold ion H
- No recoils in the direction of gravity (photon absorption, e⁺ detachment)

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

 $Ps \iff (e^-e^+) + \bar{p} \implies \bar{H} + e^-$

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \iff (e^-e^+) + \bar{p} \implies \bar{H} + e^-$

 $\overline{H} + Ps \longrightarrow \overline{H}^+ + e^-$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

\overline{H}^+ **PRODUCTION**

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \longleftrightarrow (e^{-}e^{+}) + \bar{p} \longrightarrow \bar{H} + e^{-}$

 $\overline{H} + Ps \longrightarrow \overline{H}^+ + e^-$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{\mathrm{H}} \iff (\overline{\mathrm{p}}\mathrm{e}^{+}) \iff \overline{\mathrm{p}} + \mathrm{e}^{+}$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \iff (e^-e^+) + \bar{p} \implies \bar{H} + e^-$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \iff (e^{-}e^{+}) + \bar{p} \implies \bar{H} + e^{-}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \longleftrightarrow (e^{-}e^{+}) + \bar{p} \longrightarrow \bar{H} + e^{-}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{\mathrm{H}} \iff (\overline{\mathrm{p}}\mathrm{e}^{+}) \iff \overline{\mathrm{p}} + \mathrm{e}^{+}$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \longleftrightarrow (e^{-}e^{+}) + \bar{p} \longrightarrow \bar{H} + e^{-}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \iff (e^{-}e^{+}) + \bar{p} \implies \bar{H} + e^{-}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

- $\overline{H} \iff (\overline{p}e^+) \iff \overline{p} + e^+$
- $\overline{\mathrm{H}}^{+} \longleftrightarrow (\overline{\mathrm{p}}\mathrm{e}^{+}\mathrm{e}^{+}) \Longleftrightarrow \overline{\mathrm{p}} + \mathrm{e}^{+} + \mathrm{e}^{+}$
- $Ps \iff (e^{-}e^{+}) + \bar{p} \implies \bar{H} + e^{-}$

H. Poth Appl. Phys. A 43, 287-293 (1987)

J W Humberston et al 1987 J. Phys. B: At. Mol. Phys. 20 L25-L29

STEPS FOR GRAVITY EXPERIMENT ON $\overline{\mathrm{H}}^{+}$

P.Pérez and A. Rosowsky, Nucl. Inst. Meth. A 545 (2005) 20-30.

e⁺ PRODUCTION (Saclay)

- Requirements:
 - High Intensity
 - Low energy
 - Transportable

to be installed in CERN AD ASACUSA beam line: ~10⁸ s⁻¹ ~meV ~room size

- Radioactive source: practically the intensity of emitted e⁺ cannot be enough high
- Existing accelerator: too big!
- (relatively) low energy electron source + convertor

PROJECT at Saclay

Schematic drawing of e⁺ production setup

Schematic drawing of e⁺ production setup

ELECTRON SOURCE: LINAC

- E (e⁻) ~ 6 MeV (< neutron activation threshold)
- v = 200 Hz
- I = 0.2 mA
- bunch length 2 4 μ s
- Magnetron 1.9 MW peak
- Total electric power 35 kVA
- RF frequency 3 GHz
- Acceleration length 21 cm
- Beam diameter 1 mm , 6 mm at target
- Overall dimensions 1 m x 1 m x 0.8 m

ELECTRON SOURCE: LINAC

- E (e⁻) ~ 6 MeV (< neutro
- v = 200 Hz
- I = 0.2 mA
- bunch length 2 4 μ s
- Magnetron 1.9 MW peal Right dick on image to show dose profile in x and y direction. Marker on graphs is also moveable. Width of selection can be
- Total electric power 35 k Response: 218 at (945,381) pixels
- RF frequency 3 GHz
- Acceleration length 21 cm
- Beam diameter 1 mm , 6 mm at target
- Overall dimensions 1 m x 1 m x 0.8 m

ELECTRON SOURCE: LINAC

Stepping motor + e^{-}/e^{+} convertor e^{-} beam profilerW foil: 6 x 6 cm²

e⁺ convertor foil: 6 x 6 cm² 200 μm-th 5 deg. to beam ax.

Stepping motor + e^{-}/e^{+} convertor e^{-} beam profilerW foil: 6 x 6 cm²

e⁺ convertor foil: 6 x 6 cm² 200 μm-th 5 deg. to beam ax.

Stepping motor + e⁻ beam profiler W foil: 6 x

e⁻/e⁺ conv

Stepping motor + e⁻ beam profiler

e⁻/e⁺ convo W foil: 6 x 200

e⁺ DETECTOR

- e⁺ position observation for optimization
- 37 Al plates, 4 x 4 cm², 5 mm-th, covering 700 cm2
- Mounted on the upper-side flange CF 300
- e⁺ extraction by grid 5mm holes, 100V
- Acquisition: USB connected NI ADC + Labview

e⁺ DETECTOR

- e⁺ position observation for optimization
- 37 Al plates, 4 x 4 cm², 5 mm-th, covering 700 cm2
- Mounted on the upper-side flange CF 300
- e⁺ extraction by grid 5mm holes, 100V
- Acquisition: USB connected NI ADC + Labview

NEXT STEP

- e⁺ detection -> in 2 weeks!
- Performance study, optimization -> in 2 months
 - Stability, intensity, size of e⁻/e⁺ beam
 - New e⁺ detector (energy of e⁺, precise position)
- Moderator -> spring 2009
 - Try with W, Ne solid

oPs FORMATION STUDY (CERN)

- Only oPs can be used (τ_{oPs}=142 ns τ_{pPs}=125 ps) free path of pPs being too short
- High e⁺ oPs conversion efficiency
- No annihilation or oPs quenching
- Effective density near the converter surface
 E(oPs) = 3 eV ~ 10 cm flight in 142 ns
 30 meV ~ 1 cm flight in 142 ns

➡ Thermal oPs needed

• Good configuration to collide with \bar{p}

EXPERIMENTAL SETUP

400 Mbq ²²Na source of positron &Tungsten moderator chamber

Secondary electron tagging system

TOF lead collimator + gamma detector

Positronium formation region

Magnetic coils for positron transportation (quasi-uniform longitudinal field of 70 Gauss)

 e^+ flux

oPs ANNIHILATION DECECTOR

- PALS (Positron Annihilation Lifetime Spectrometry)
 - Fraction of reemitted oPs to injected e⁺
 - 2 x 4 BGO scintillator
- TOF (Time Of Flight)
 - Velocity distribution of reemitted oPs in vacuum
 - Lead collimator + 5 BGO

oPs ANNIHILATION DECECTOR

- PALS (Positron Annihilation Lifetime Spectrometry)
 - Fraction of reemitted oPs to injected e⁺
 - 2 x 4 BGO scintillator
- TOF (Time Of Flight)
 - Velocity distribution of reemitted oPs in vacuum
 - Lead collimator + 5 BGO

oPs ANNIHILATION DECECTOR

- PALS (Positron Annihilation Lifetime Spectrometry)
 - Fraction of reemitted oPs to injected e⁺
 - 2 x 4 BGO scintillator
- TOF (Time Of Flight)
 - Velocity distribution of reemitted oPs in vacuum
 - Lead collimator + 5 BGO

TRIGGER

- Secondary electrons emitted by hitting the target surface
- \rightarrow Time t₀ for the Ps formation in the target
- → Detected with a micro-channel-plate (MCP).

POROUS MATERIALS AS A CONVETOR

 oPs slowing down during collisions with the pore walls and molecules on the internal surfaces

• Advantages:

oPs

- Existing and well developed technology of layer deposition
- Reproducible emission, ~ 10⁻⁸ mbar vacuum sufficient
- Problems:
 - No proof for complete thermalization
 - Conversion efficiency seems to be limited ~ 35 % (?)
 - Difficult to measure conversion efficiency (oPs ann. in layer)

- Deposition by spin coating (300-500 nm thickness)
- Heating in air at 130 °C to fix
- Removal of porogen by heating in air at 400 °C
- Pure SiO₂ structure (amorphous walls)
- Previous experiments:
 - 2 x 2 cm² plate-type convertor with several materials
 - ~ 35% of conversion efficiency, ~ 100 meV
 - Cannot collide with p
 !

- Deposition by spin coating (300-500 nm thickness)
- Heating in air at 130 °C to fix
- Removal of porogen by heating in air at 400 °C

oPs

- Pure SiO₂ structure (amorphous walls)
- Previous experiments:
 - 2 x 2 cm² plate-type convertor with several materials
 - ~ 35% of conversion efficiency, ~ 100 meV
 - Cannot collide with p
 !
- New configuration (from summer 08): tube-type convertor
 - Secondary electron trigger? -> C foil (15nm-th)
 - Conversion efficiency?

- Deposition by spin coating (300-500 nm thickness)
- Heating in air at 130 °C to fix
- Removal of porogen by heating in air at 400 °C
- Pure SiO₂ structure (amorphous wa
- Previous experiments:
 - 2 x 2 cm² plate-type convertor with several 1
 - ~ 35% of conversion efficiency, ~ 100 meV
 - Cannot collide with p
 !
- New configuration (from summer 08): tube-typ
 - Secondary electron trigger? -> C foil (15nm-tn)
 - Conversion efficiency?

- HV on C foil and tube 1 4 keV to extract e⁺
- Diameter 1cm
- Length ~ 5cm
- Scattering after C foil

- HV on C foil and tube 1 4 keV to extract e⁺
- Diameter 1cm
- Length ~ 5cm
- Scattering after C

C foil: 1kV, Tube 1kV

intensities [%]	lifetimes [ns]
12.52(0.39)	11.30(0.23)
81.19(0.37)	3.696(0.039)
6.295(0.052)	115.3(1.2)

C foil: 4kV, Tube 4kV		
intensities [%]	lifetimes [ns]	
4.96(0.33)	17.834(0.096)	
80.49(0.30)	3.8(1.0)	
14.55(0.13)	144.78(0.21)	

SUMMARY / OUTLOOK

- e⁺ source is almost installed at Saclay
 - First e⁻ will be in this week
 - First e⁺ will be detected in 2 weeks
 - Optimization
 - Moderator installation for low-energy beam
 - Penning trap installation for high intensity
- oPs is formed in tube type samples
 - Configuration study
 - Fix the best condition, combination of extraction HV
 - Improve the preparation method
- Collaboration for \bar{p} beam