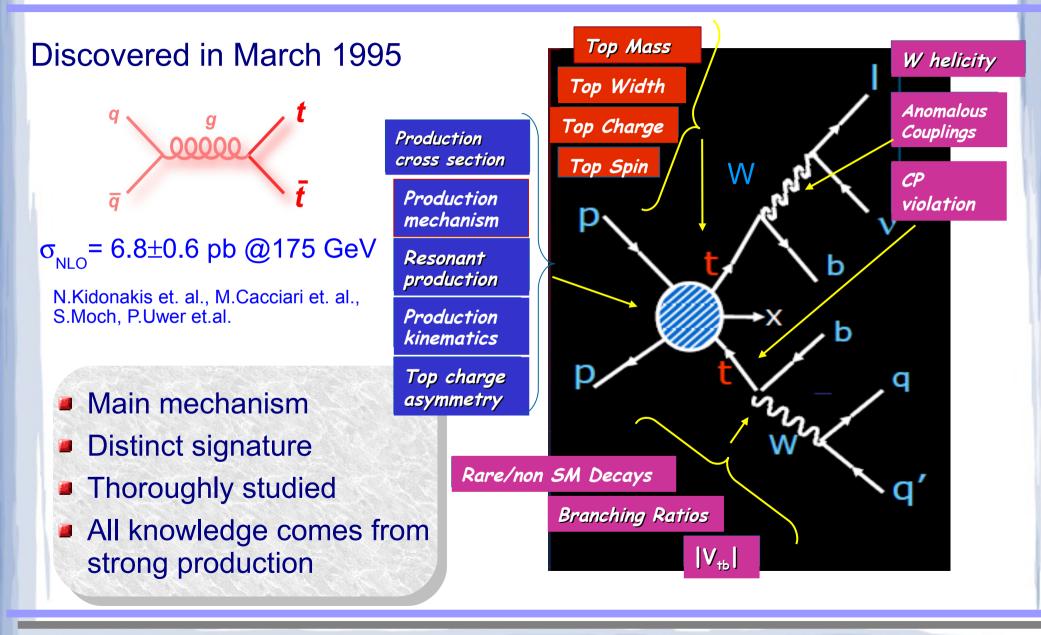


GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

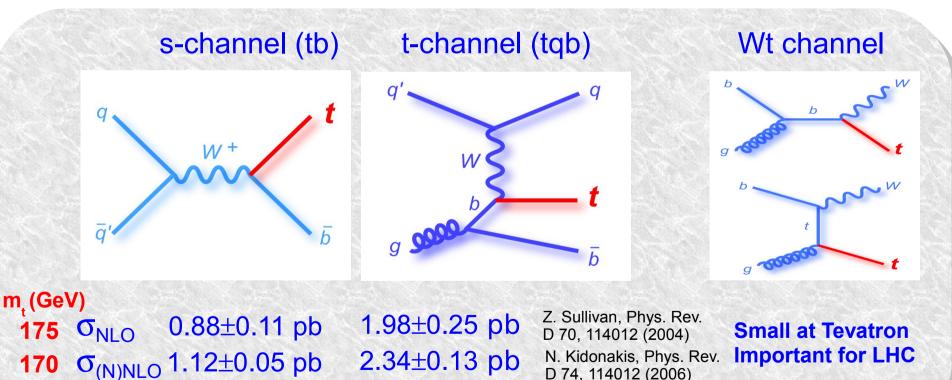
Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Observation of the single top production at the Tevatron


Elizaveta Shabalina University of Goettingen, Germany

Outline


- Motivation
- Signal and background
- Event selection
 - Systematic uncertainties
- Statistical analysis
 - Cross section extraction
 - Significance calculation
- Multivariate Methods
- Combination
- IV_{tb} measurement
- Summary and outlook

The Top quark

Electroweak production

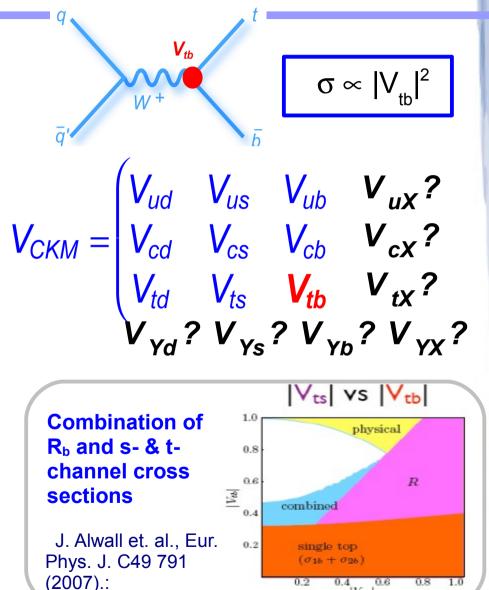
- Predicted 10 years before top quark discovery S.Willenbrock, D. Dicus, Phys. Rev. D34, 155 (1986); S Cortese and R Petronzio, PLB 253, 494 (1991)
- Observed 14 years after top quark discovery...

In observation analysis CDF (D0) assumes mt=175 (170) GeV

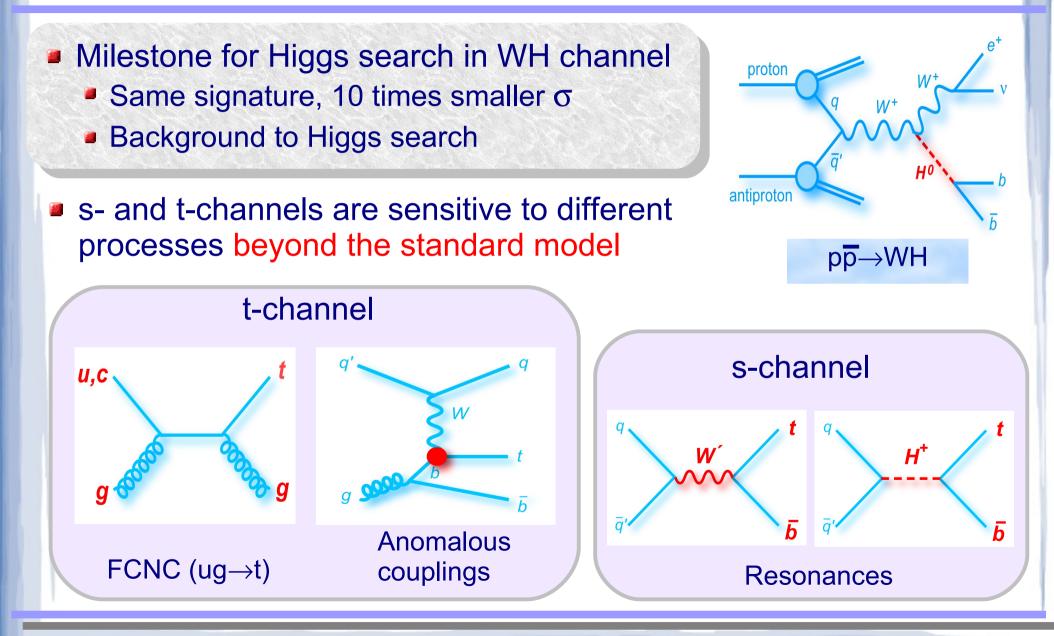
What will we learn?

Access to W-t-b vertex

- Probe V-A structure
- Top quark spin


Direct measurement of $|V_{tb}|^2$

- Test unitarity of CKM matrix
- Is it 3×3 matrix?
- Is 4th generation possible?


Small mixing with 4th family is favored Quite large mixing is still not excluded **Constraints**:

tree-level 3×3 CKM elements FCNC processes (K-, D-, $B_d\text{-},\,B_s\text{-mixing},\,b\to s)$

Assumption: unitary 4×4 CKM matrix A. Lenz et al. in arXiv 0902.4883 [hep-ph]

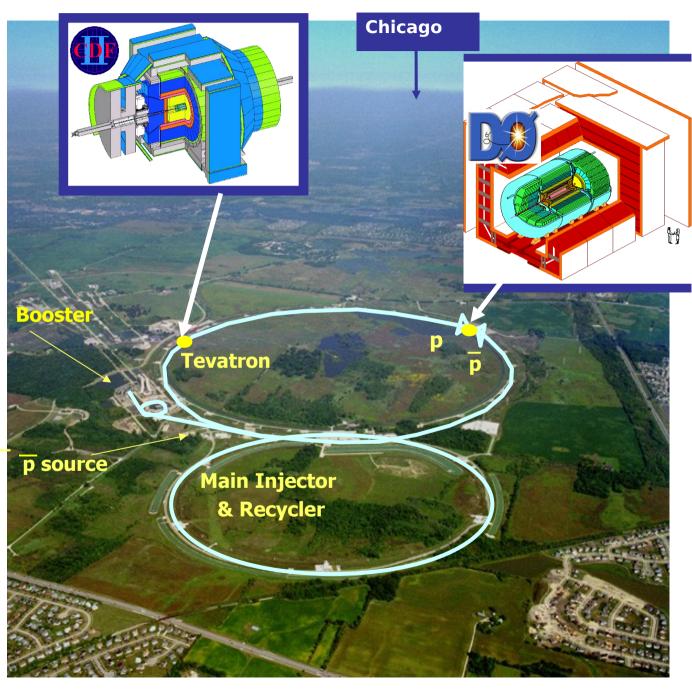
SM and beyond

Long way to discovery

· Search:	PRD 63, 031101 (2000)
· Search:	PLB 517, 282 (2001)
· Search:	PLB 622, 265 (2005)
• W':	PLB 641, 423 (2006)
· Search:	PRD 75, 092007 (2007)
· Evidence:	PRL 98, 181802 (2007)
· FCNC:	PRL 99, 191802 (2007)
• W':	PRL 100, 211802 (2007)
· Evidence:	PRD 78, 012005 (2008)
· Wtb:	PRL 101, 221801 (2008)
· Wtb:	PRL 102, 092002 (2009)
· H+:	(PRL) arXiv:0807.0859
· Observation:	(PRL) arXiv:0903.0850

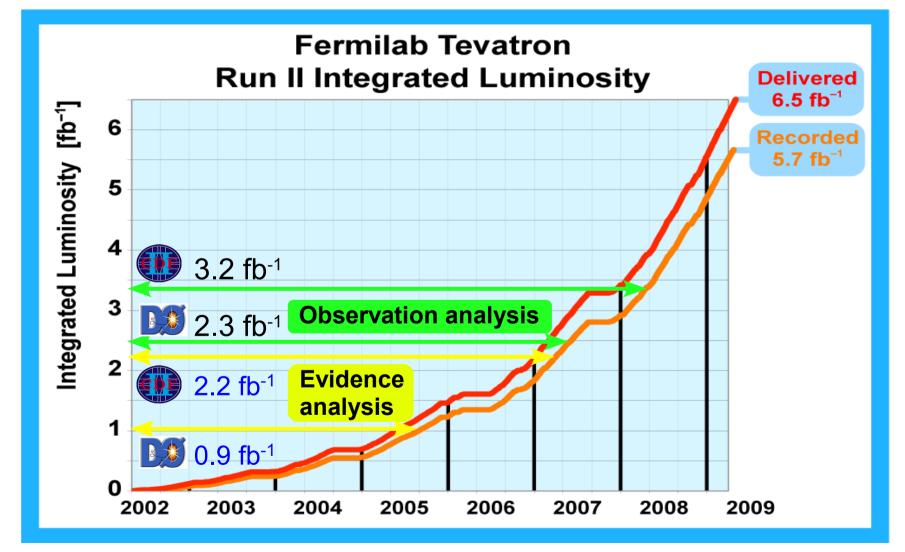
		epi		
	· Search:	PRD	65, 091102 (2002)	
Run I	• W'	PRL 90, 081802 (2003)		
Tturi I	· Search:	PRD	69, 052003 (2004)	
	· Search:	PRD	71, 012005 (2005)	
Run II	· Evidence:	PRL 101, 252001 (2008)		
	· FCNC:	(PRL) arXiv:0812.3400		
	• W':	(PRL) arXiv:0902.3276		
	· Observation:	(PRI	L) arXiv:0903.0885 📎	
Single Top	o		CKM Matrix Element V	

Single Top	Signal Significance		CKM Matrix Element V _{th}	
Cross Section	Expected	Observed		
December 2	PRL 98, 181802 (2007)			
4.7 ± 1.3 pb	2.3 σ	3.6 σ	$ig V_{tb}f_1^Lig = 1.31^{+0.25}_{-0.21}$ $ig V_{tb}ig > 0.68$ at 95% CL	
September 2	PRL 101, 252001 (2008)			
2.2 ± 0.7 pb	4.9 σ	3.7 σ	$\left V_{tb} f_1^L \right = 0.88 {}^{+0.13}_{-0.12}$ $\left V_{tb} \right > 0.66$ at 95% CL	


Elizaveta Shabalina (Uni Goettingen)

The Tevatron

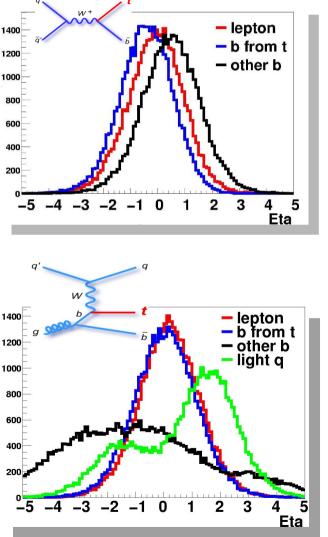
- The highest energy particle accelerator in the world
- Proton-antiproton collider with √s = 1.96 TeV

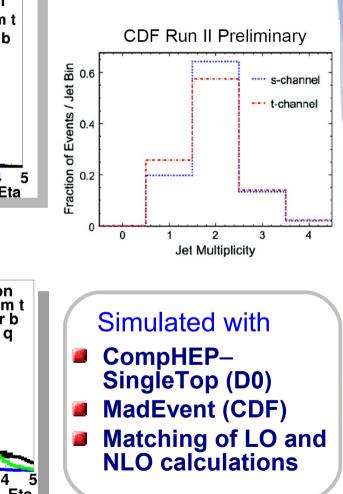

Run I 1992-1995 Top quark discovered!

Run II 2001-11(?) Single top quark discovered!

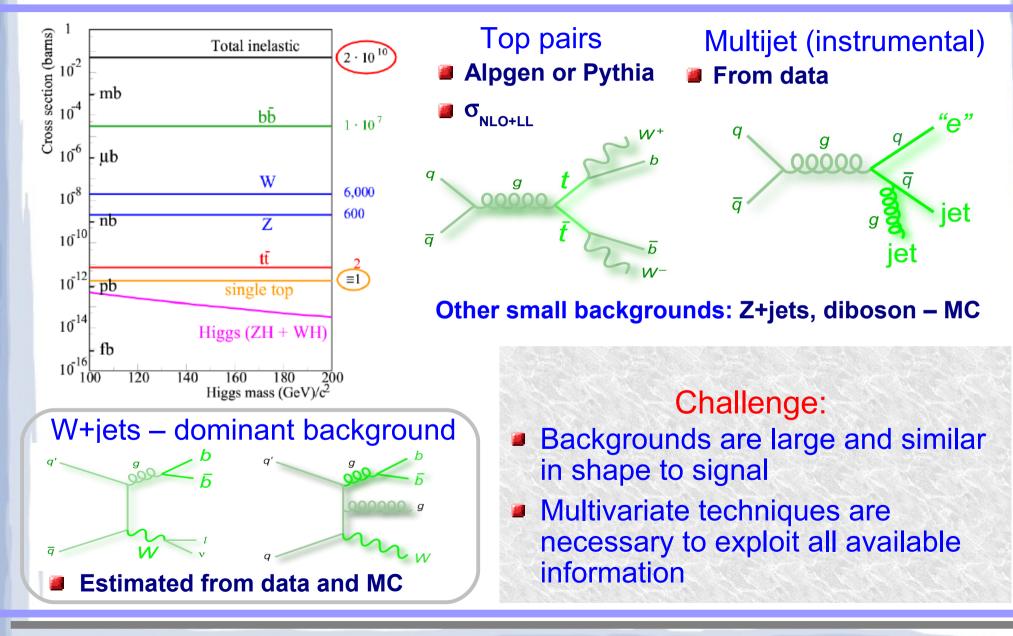
Climbing to the top...

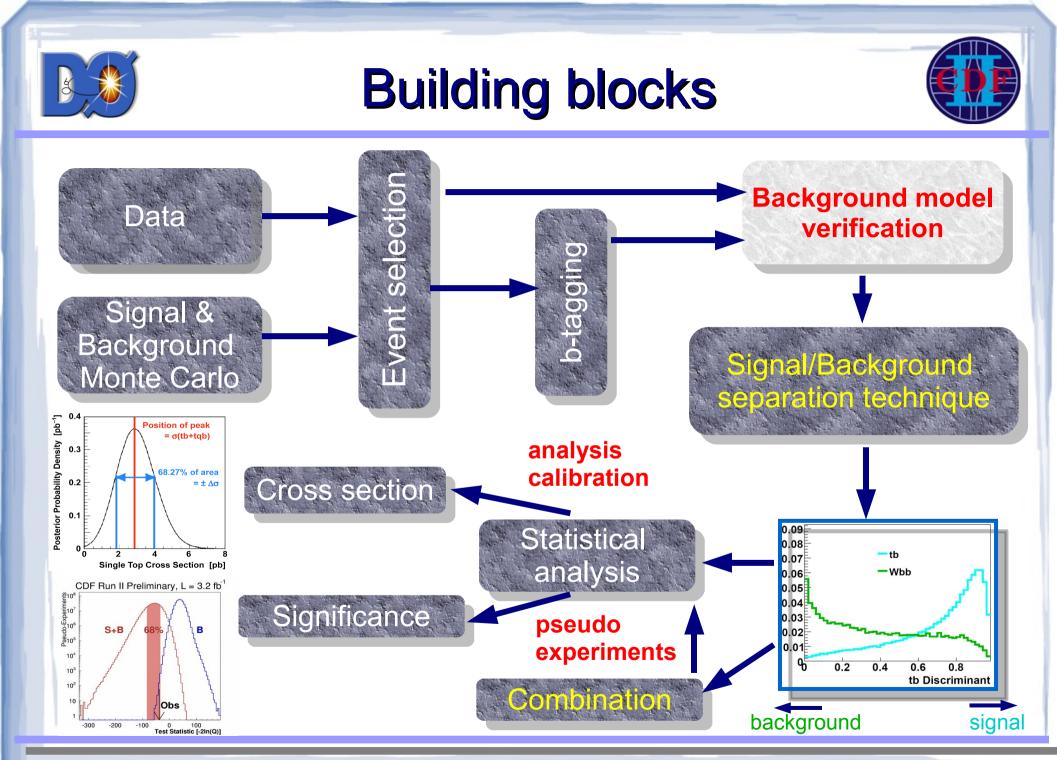
Outstanding performance of the Tevatron!



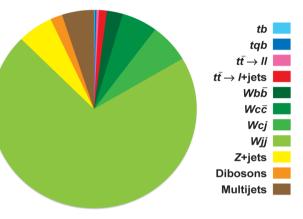

s-channel 2 b-jets Top quark decay products and the b tend to be all central

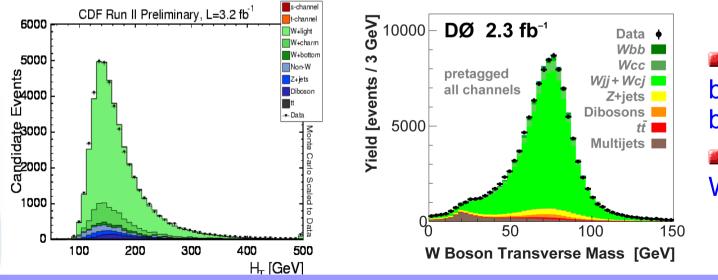
t-channel


2 *b*-jets and one light One of *b*'s tends to be very close to the beam pipe


- No striking signatures as for tt
- Signal and background distributions look similar

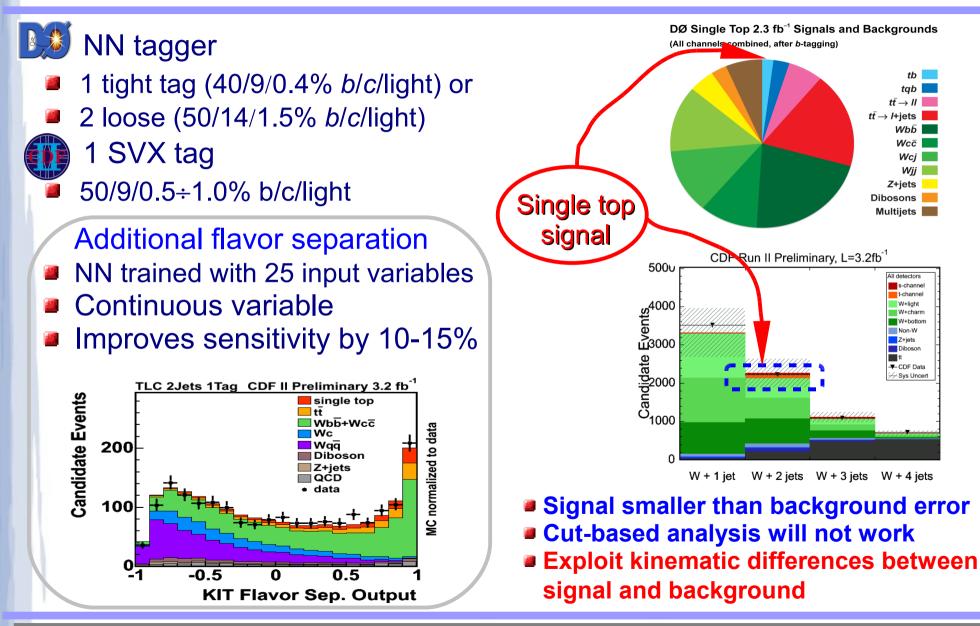
Backgrounds

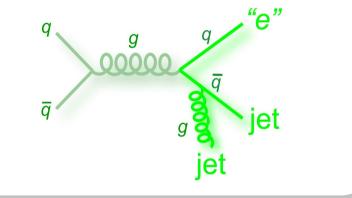



Selection I (I+jets)

Starting S:B = $1:10^9$

- Single lepton (e, μ) & MET+ jets triggers
- One high p_{T} lepton
- MET and 2-4 (D0), 2-3 (CDF) high p_{T} jets
- Cuts to suppress multijet background
 Veto to suppress Z+jets and tt dilepton
 S:B ~ 1: 260



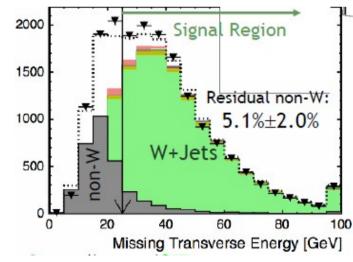

 Verify background model before *b*-jet tagging
 Dominated by W+ light jets

Selection II: *b*-tagging (I+jets)

Multijet background

Jet misidentified as electronMuon in jet appeared isolated

Iterative template fits to data on three

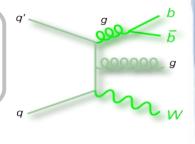

sensitive variables: $p_{\tau}(I)$, MET, $M_{\tau}(W)$

 $N_{\text{pretag}}^{\text{data}} - N_{\text{bkgd}}^{\text{MC}} = S_{W+ \text{ jets}} N_{W+ \text{ iets}}^{\text{MC}} + S_{\text{multijet}} N_{\text{multijet}}^{\text{data}}$

Method:

Strategy:

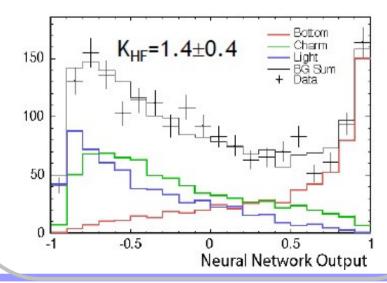
- Reduce as much as possible using topological cuts (~5%)
- Determine before *b*-tagging Modeling:
- Anti-Electrons (cuts reverted)
- Jet-Electrons (jets with high EM fraction)
- Anti-Muons (cuts reverted)



Fit to MET distribution in data

Large systematic uncertainties assigned (30÷50%)

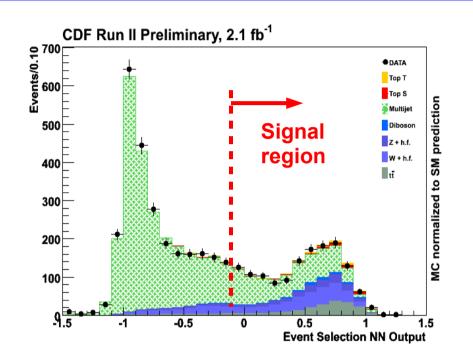
W+jets background


Shapes simulated by Alpgen+Pythia MC
 Normalized to data before tagging

W+HF normalized to theory (MCFM)

- 1.47 (Wbb, Wcc), 1.38 (Wcj)
- Additional empirical correction
 - derived from two-jet data and simulation: includes 0-tag events
 - 0.95 ± 0.13 (Wbb, Wcc)
- Uncertainties considered
 - Data statistics ± 9%
 - ± 40% single top cross section → ±7% in SF
 - \pm 10% on Wcj theory SF \rightarrow \pm 8% in SF
 - \pm 10% Wbb/Wcc ratio \rightarrow \pm 5% in SF

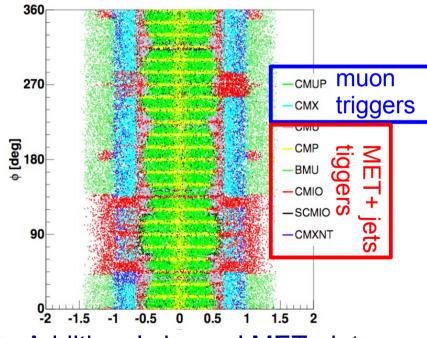
- HF fractions (Wbb:Wcc:Wc) from Alpgen+Pythia MC
- HF contribution is boosted by factor from fit to flavor separator output in tagged W+1 jets events



Selection II – MET+ jets

New channel

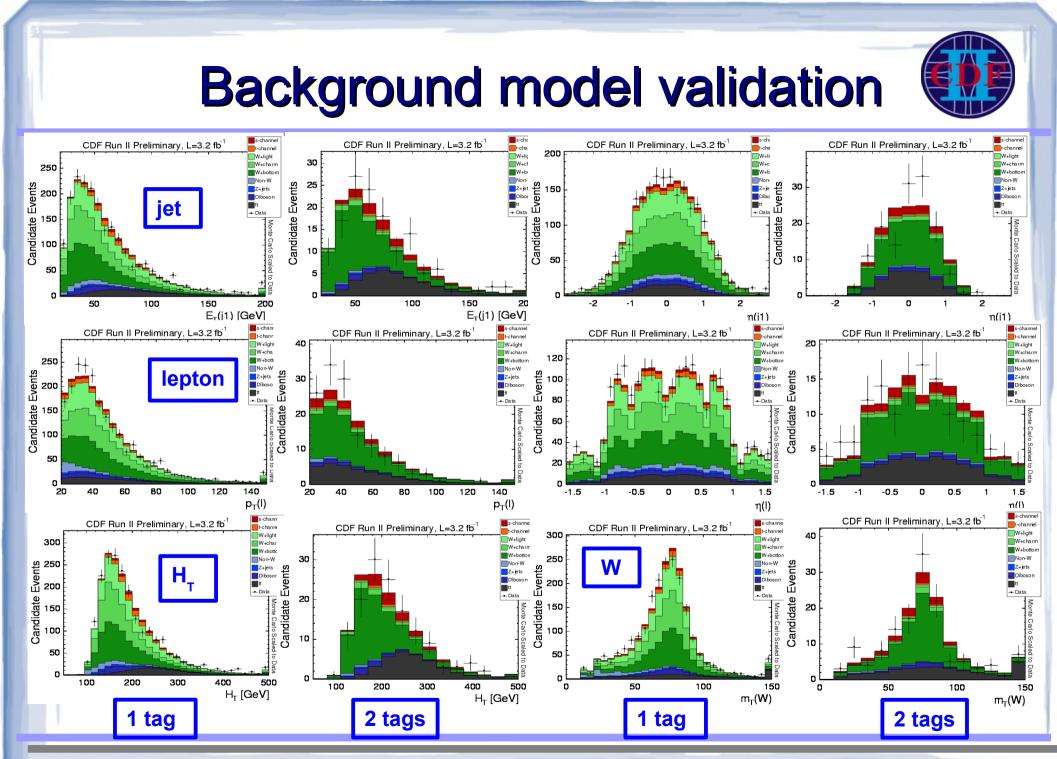
- Recover non-fiducial leptons and hadronic τ decay
 - Orthogonal to lepton+jets
- MET+ jets trigger
 - Huge instrumental background from QCD multijets
- MET>50 GeV and veto leptons
- E_T>35 (25) GeV 1st (2nd) jet
- At least 1 b-tag
- NN to suppress multijet bckg Signal region: ANN>–0.1 Control region: ANN<–0.1

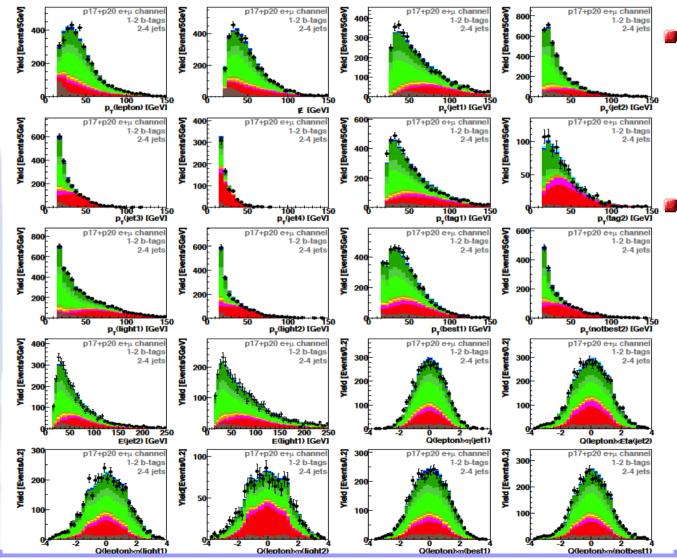

Quantity	Pre-selection	After QCDNN cut	Difference
Signal (S)	75	68	-9 %
QCD Background	2960	675	-77%
Total Background (B)	3840	1350	-65 %
S/√S+B	1.2	1.8	+50%
S/B	I/50	1/20	+150%

Improvements

- 3.2 fb⁻¹ (2.2–2.7 fb⁻¹ in summer)
- Extended muon coverage
 30% gain in muon acceptance
 10-14% gain in sensitivity

- Additional channel MET+ jets
 33% increase of acceptance
- Separate s- and t-channel searches


- 2.6 times more data (2.3 fb⁻¹)
- 18% larger acceptance
 - Logical OR of many triggers
 - Looser cuts on 2nd jet and muon p_T
 - Increased $|\eta|$ for 1st jet (2.5 \rightarrow 3.4)
 - Looser b-tagging requirements for 2 b-tag events
- Additional cuts to reduce background
- Improved (more detailed) background modeling
 - Data-based corrections to Alpgen model of W+jets
- Improved treatment of multijet background


			٩				
	Event Yields in 2.3 fb ⁻¹ of DØ Data e,µ, 2,3,4-jets, 1,2-tags combined				Process	$\ell + E_T + jets$	$E_T + jets$
			200 events	s-channel signal	77.3 ± 11.2	29.6 ± 3.7	
				t-channel signal	$113.8~\pm~16.9$	34.5 ± 6.1	
	tb + tqb	223 ± 30	for m	_t =170	W + HF	1551.0 ± 472.3	304.4 ± 115.5
	W+jets	2,647 ± 241			$t\bar{t}$	686.1 ± 99.4	184.5 ± 30.2
	Z+jets, dibosons	340 ± 61			Z+jets	52.1 ± 8.0	128.6 ± 53.7
	<i>tī</i> pairs	1,142 ± 168			Diboson	118.4 ± 12.2	42.1 ± 6.7
	Multijets	300 ± 52			QCD+mistags	777.9 ± 103.7	
	Total prediction	4,652 ± 352			Total prediction	3376.5 ± 504.9	1404 ± 172
	Data	4,519	1		Observed	3315	1411
1 <i>b</i> -	2 jets tag	3 jets	4 jets	34	 Most powe Keep char analysis to) to 1:34 dep r of jets and erful - 2 jets/ nels separa take advan :B and differ	tags 1 tag tely in the tage of
2 b-	tags 1:10	1:15		1:34	backgroun	d compositi	on

Elizaveta Shabalina (Uni Goettingen)

Background model validation

SINGLE OBJECT KINEMATICS

- Check thousands of distributions to verify background model before and after tagging
- Several classes of variables used in discriminants
 - Single object kinematics
 - Event kinematics
 - Jet reconstruction
 - Top quark reconstruction
 - Angular correlations

Elizaveta Shabalina (Uni Goettingen)

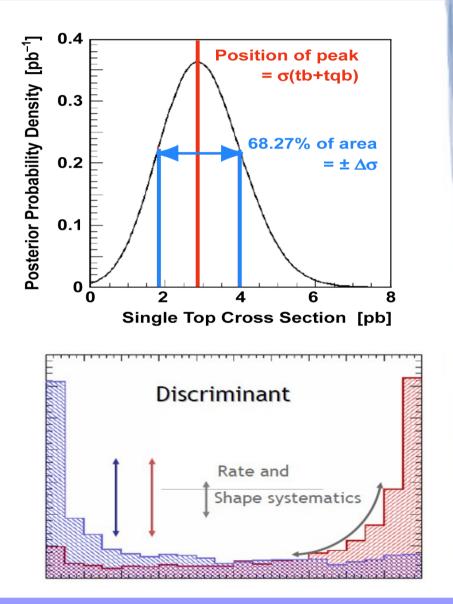
Systematics

- Statistically limited measurement
- But systematics is important
- Affects normalization and shapes

Systematic Uncertainties

Ranked from Largest to Smallest Effect on Single Top Cross Section

DØ 2.3 fb⁻¹

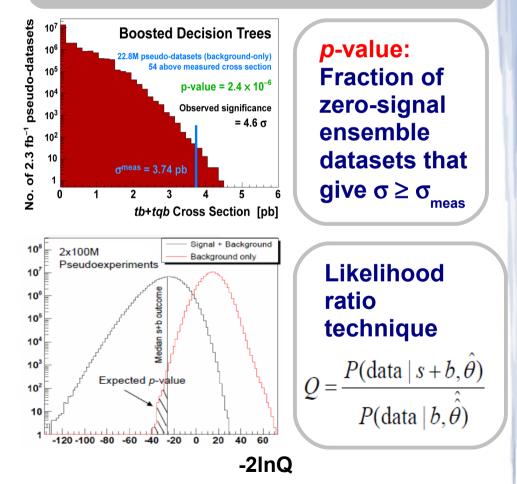

Larger terms					
<i>b</i> -ID tag-rate functions (includes shape variations)	(2.1–7.0)% (1-tag) (9.0–11.4)% (2-tags)				
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkgd)				
W+jets heavy-flavor correction	13.7%				
Integrated luminosity	6.1%				
Jet energy resolution	4.0%				
Initial- and final-state radiation	(0.6–12.6)%				
<i>b</i> -jet fragmentation	2.0%				
t pairs theory cross section	12.7%				
Lepton identification	2.5%				
Wbb/Wcc correction ratio 5%					
Primary vertex selection 1.4%					

- Estimated for each background and signal source in each analysis channel
- Background uncertainty dominates

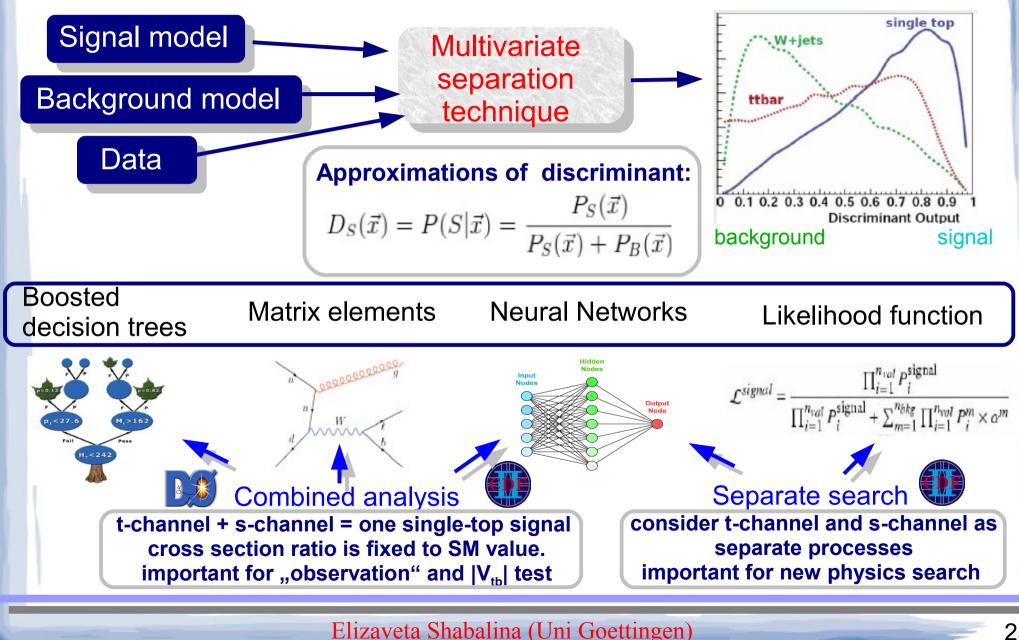
Systematic Uncertainty	Rate	Shape
Jet Energy Scale	010%	~
Initial + Final State Radiation	015%	~
Parton Distribution Functions	23%	~
Monte Carlo Generator	15%	
Event Detection Efficiency	09%	
Luminosity	6%	
Neural Net B-tagger		✓
Mistag Model		✓
Q ² scale in ALPGEN MC		✓
Input variable mismodeling		✓
Wbb+Wcc normalization	30%	
Wc normalization	30%	
Mistag normalization	1729%	
ttbar normalization & m _{top}	23%	✓

Cross section

- Discriminant outputs (from each analysis channel separately) are used to measure cross section
- Build Bayesian probability density with flat nonnegative prior for the cross section
- Peak of posterior distribution gives the cross section, 68% interval gives the uncertainty
- Shape and normalization systematic uncertainties are treated through nuisance parameters with Gaussian distribution
 - Correlations are properly taken into account

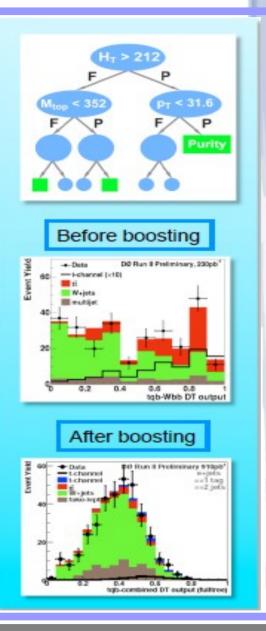


Statistical analysis


Build ensembles of pseudo-data

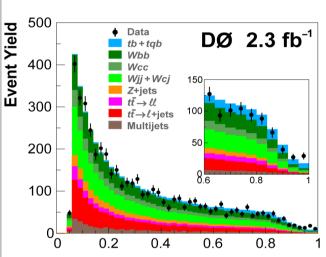
- Includes signal and background events or background only
- Includes all systematic uncertainties
- Purpose before data
 - Test performance of different methods
 - Measure expected cross section uncertainty
 - Expected significance
- With data
 - Consistency of the measured cross section with the SM
 - Observed significance

Significance – probability of the upward background fluctuation that gives observed result in data

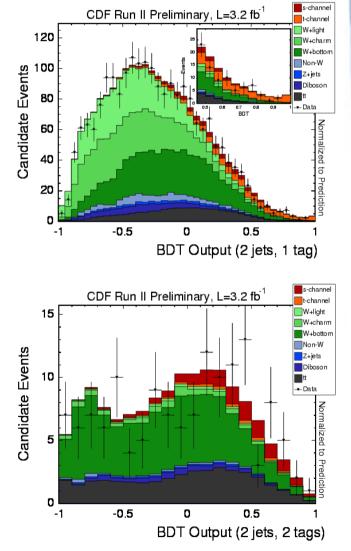


Signal from background separation

Boosted Decision Trees method


- Idea: recover events that fail criteria in cut-based analyses
- Start with all events (first node
 - For each variable, find splitting value with best separation
 - Select variable and cut: produce Pass and Failed branches
- Repeat recursively on each node
- Stop when no improvement or too few (100) events left
- Terminal node: leaf with purity = Ns/(Ns+NB)
- Decision tree output for each event = leaf purity value (closer to 0 for background, closer to 1 for signal)
- Boosting averaging over many trees improves stability and performance by ~20% by diluting discrete output
- Adaptive boosting algorithm with 50 cycles
- Run independent MC and data through the tree to obtain the result

Boosted Decision Trees results

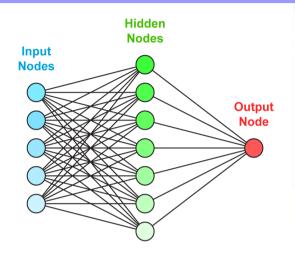

Advantages:

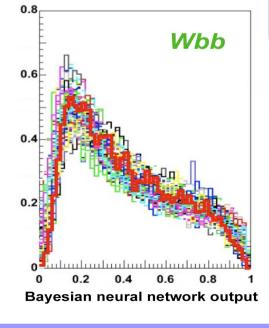
- Fast to train
- Not degraded by the addition of more input variables
- no need to optimize the choice
- use all sensitive variables with good agreement to data
- Input variables 64 (D0), 20 (CDF)

Boosted Decision Trees Output

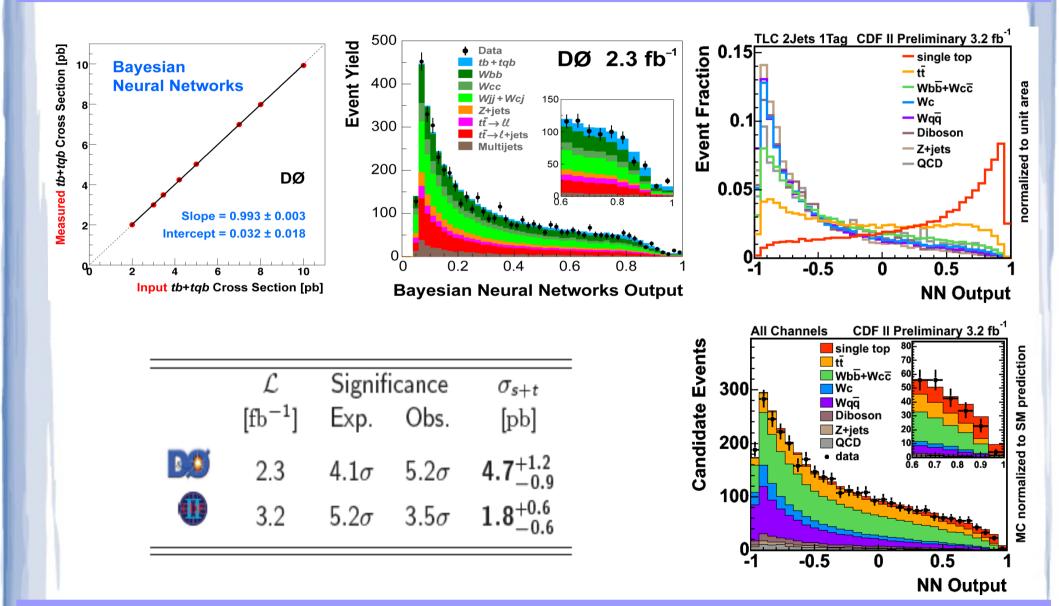
	\mathcal{L} [fb ⁻¹]		icance Obs.	σ_{s+t} [pb]
8	2.3			$3.7^{+1.0}_{-0.8}$
0	3.2	5.2σ	3.5σ	$2.1\substack{+0.7 \\ -0.6}$

Neural Networks method


- A Neural Network (NN) is an Interconnected group of nodes. It can be used to model complex relationships between inputs and outputs, or to find patterns in data
- For this analysis:
 - Inputs: variables with high discriminating power
 - Output: probability for the event to be signal



- 3 layer feed-forward network with complex and robust preprocessing of input variable
- Bayesian regularization to avoid over-training
- 4 networks, each divided into 2 channels based on trigger
- 14 variables


Bayesian NN

- Weighted average over hundreds of networks
- Better stability
- Immune to overtraining
- 18-25 input variables

Neural Networks results

Matrix Elements method

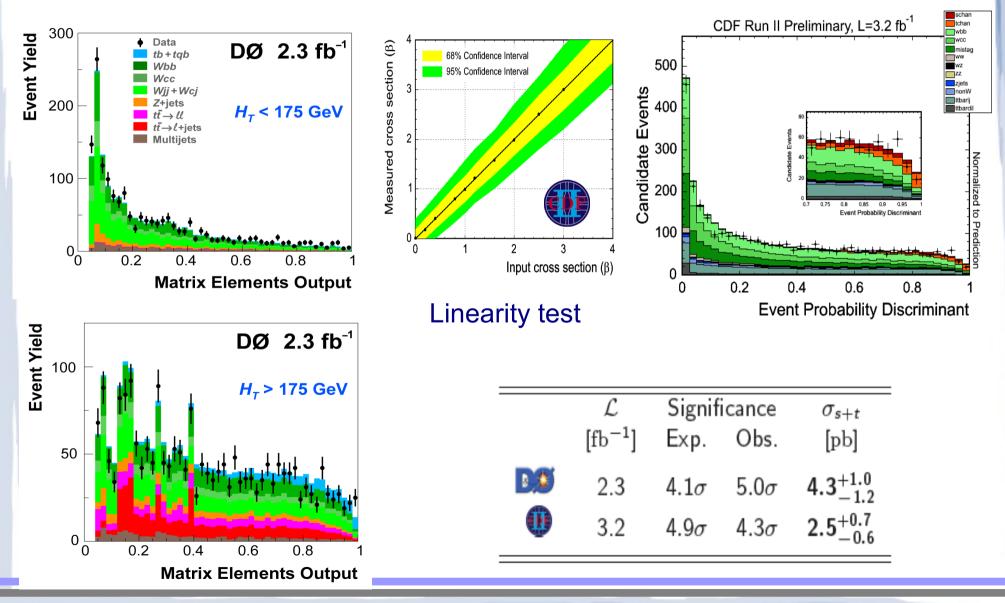
Given 4-vectors of reconstructed lepton and jets compute event probability density for signal and background hypothesis

 $P(\vec{x}) = \frac{1}{\sigma} \times \frac{\partial \sigma}{\partial \vec{x}}$

$$d\sigma(\vec{x}) = \sum_{i,j} \int d\vec{y} \left[f_i(q_1, Q^2) dq_1 \times f_j(q_2, Q^2) dq_2 \times \left[\frac{\partial \sigma_{hs,ij}(\vec{y})}{\partial \vec{y}} \times (V(\vec{x}, \vec{y}) \times \Theta_{Parton}(\vec{y}) \right] \right]$$
Parton distribution functions for initial parton i,j carrying momentum q
$$d\sigma(\vec{x}) = \sum_{i,j} \int d\vec{y} \left[f_i(q_1, Q^2) dq_1 \times f_j(q_2, Q^2) dq_2 \times \left[\frac{\partial \sigma_{hs,ij}(\vec{y})}{\partial \vec{y}} \times (V(\vec{x}, \vec{y}) \times \Theta_{Parton}(\vec{y}) \right] \right]$$

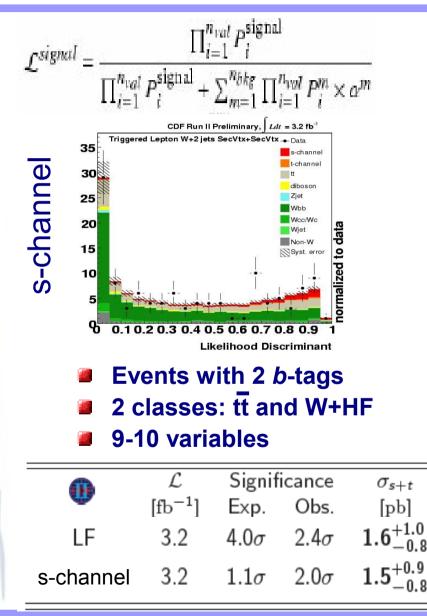
$$Transfer function which relates observed state in the detector (x) to original partons (y)$$

$$Matrix elements:$$

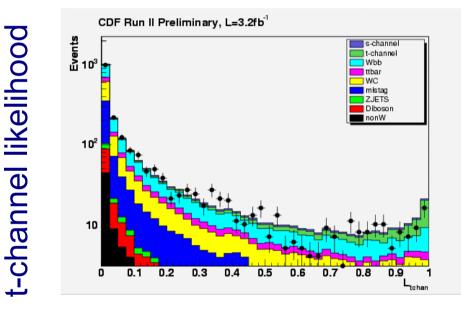

$$2 \text{ jets: tb, tq, Wbb, Wcg, Wgg, WW, WZ, ggg, tt}$$

$$3 \text{ jets: tbg, tqg, tqb, Wbbg, tcg, tf, Wugg$$

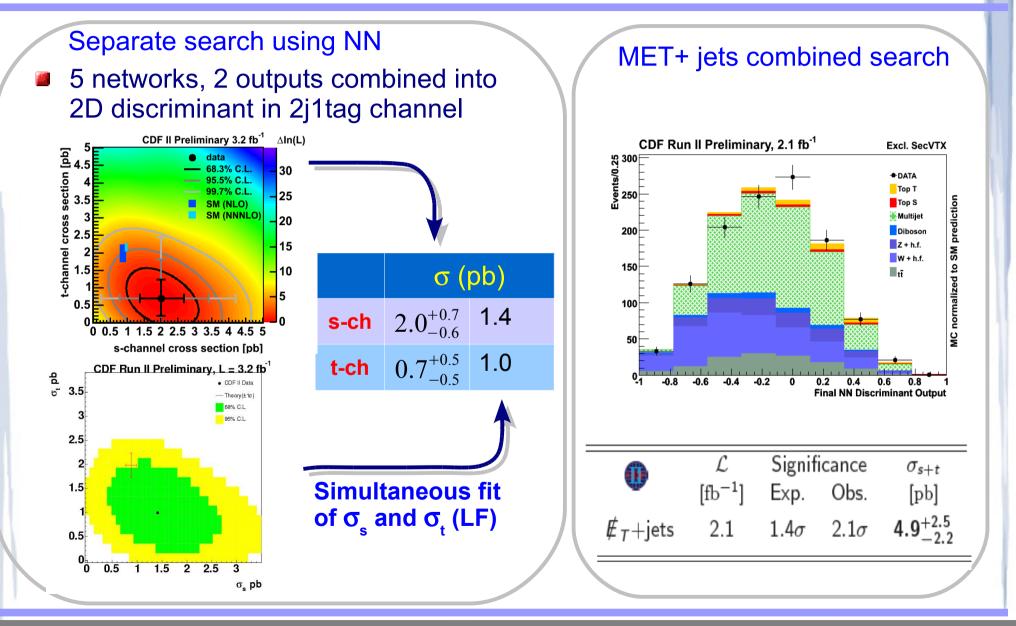
$$D = \text{ tb, tq, tbg, tqg, wbb, Wcg, Wgg, tt, Wcc}$$


$$EPD = \frac{b \cdot P_{singletop}}{b \cdot P_{singletop} + b \cdot (P_{Wbi} + P_{ti}) + (1-b) \cdot (P_{Wci} + P_{Wcj} + P_{Wgg})}$$

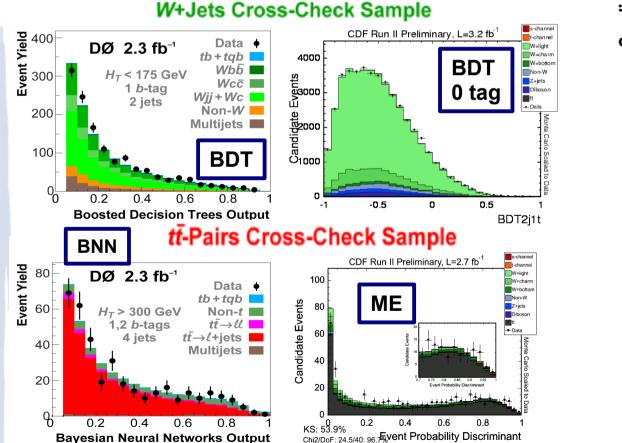
Matrix Elements results

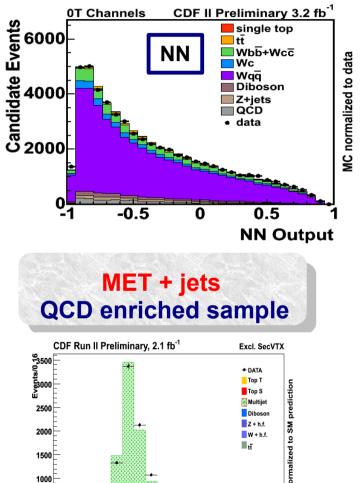


Multivariate Likelihood Function


Combine many variables into a likelihood function

- Signal template built for t-channel
- 4 background classes: Wbb, Wcc/ Wc, tt, mistags
- 7 (10) variables in 2 (3) jet bin to isolate t-channel contribution


More results...



Cross check samples

Cross checks of discriminant performance using samples depleted in signal

- Untagged (high statistics)
 W+jets (nj=2, 1 *b*-tag, H_T(I,v,jets) < 175 GeV)
- tt dominated (nj=4, \geq 1 *b*-tag, H_T > 300 GeV)

500

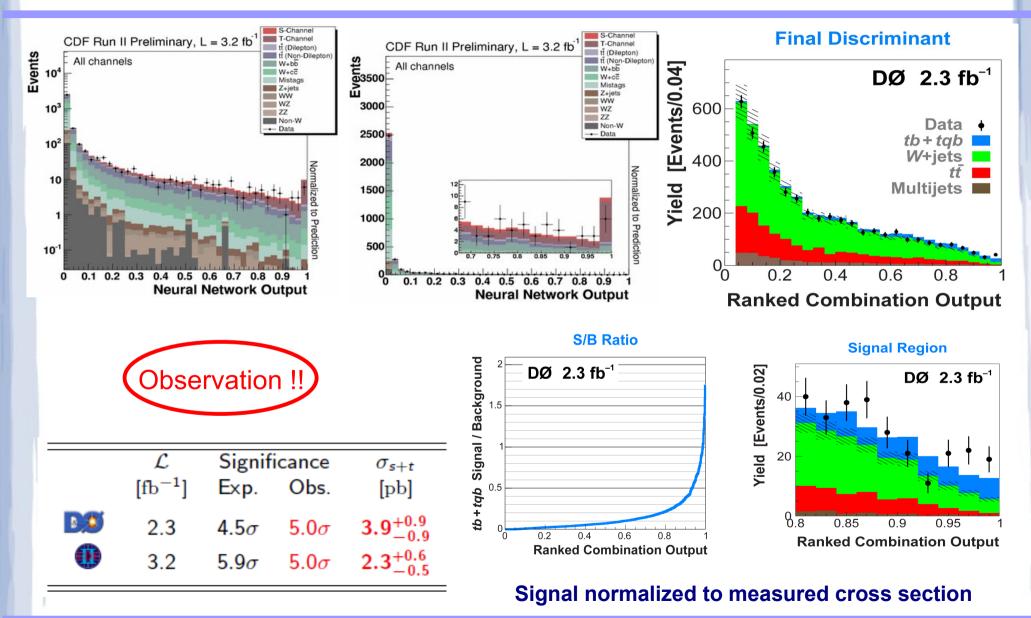
9.5

-1

-0.5

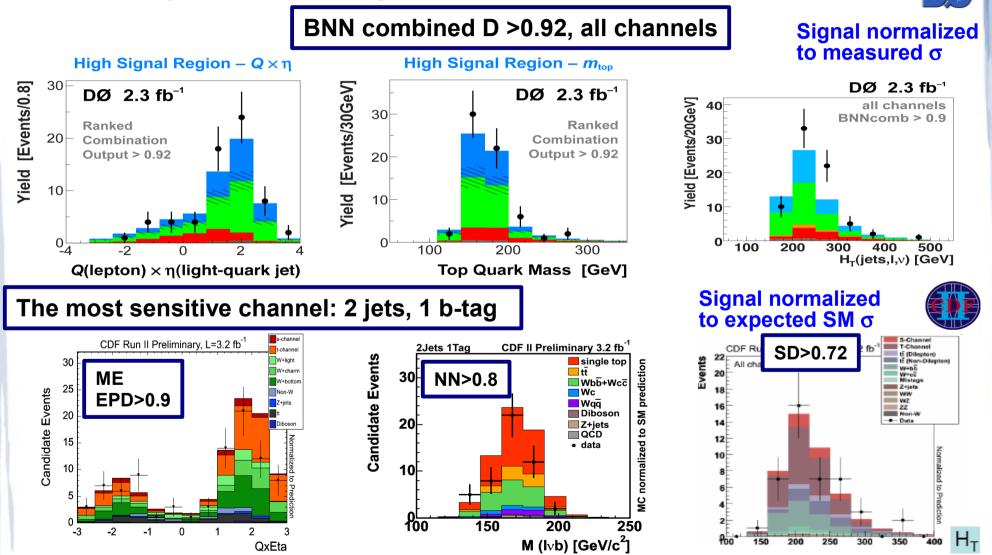
0.5

Final NN Discriminant Output

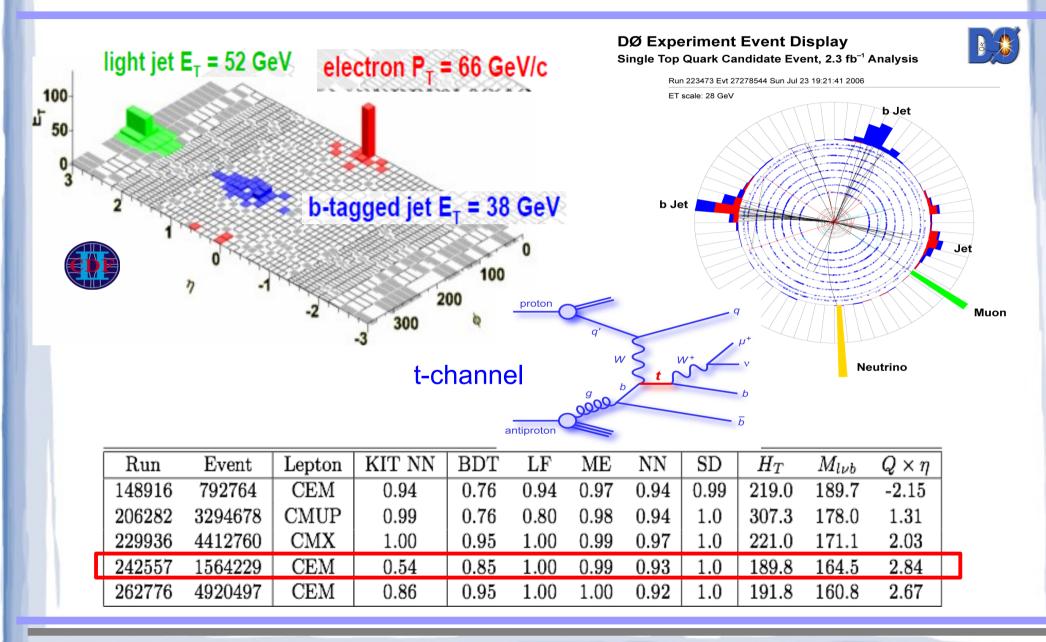

1.5

Combination method

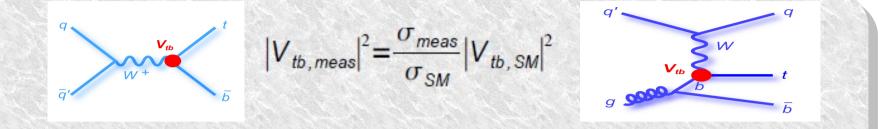
- Even though all (majority) D0 (CDF) MVA analyses **DØ 2.3 fb⁻¹** use the same data they are not 100% correlated [dd] 74% correlation tb+tqb Xsection Choose a priori to quote combination result as main **Technique: Technique:** Bayesian **NeuroEvolution of Neural Network Augmenting Topologies** BNN Inputs: 3 discriminant with background and SM signal Optimizes network output distributions 5 (BDT, ME, NN) **BDT** *tb*+*tqb* Xsection [pb] topology, inter-node weights, output binning Sensitivity: $4.3\sigma \rightarrow 4.5\sigma$ **DØ 2.3 fb⁻¹** 10 NN trained to give the tb+tqb Xsection [pb] **57% correlation** 9 best expected *p*-value Measured tb+tqb Cross Section [pb] **BNN Combination** 10 Inputs: **5** l+jets discriminants (BDT, ME, NN, LF, SLF), and MET+ jets discriminant DØ (8+3=11 channels) Slope = 1.017 ± 0.006 tb+tab Xsection [pb] Intercept = -0.009 ± 0.032
 - Sensitivity: $5.2\sigma \rightarrow >5.9\sigma$

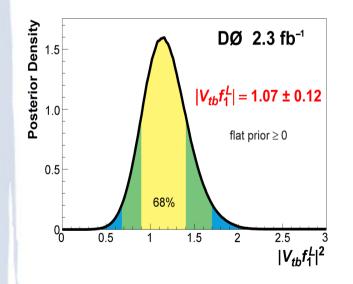

Input tb+tqb Cross Section [pb]

Combination results

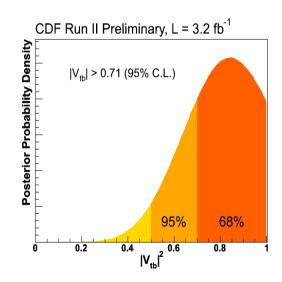


Can we see it?


Look at high discriminant regions


Events

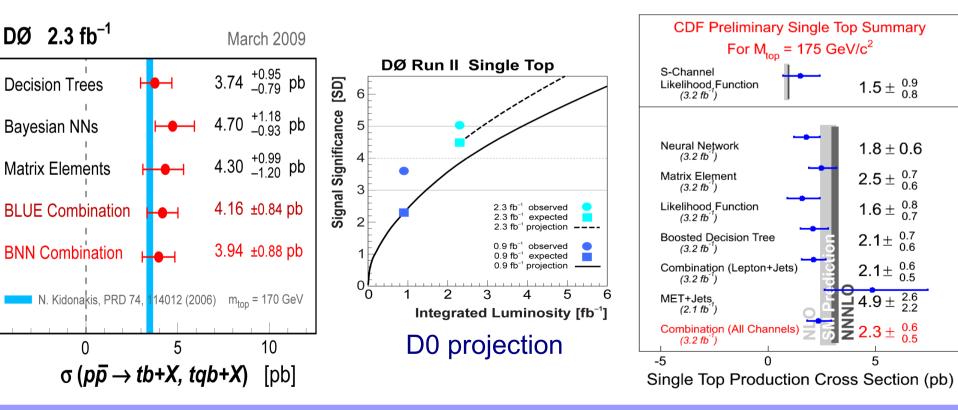
Measurement of |V_{tb}|


Assume |V_{td}|²+|V_{ts}|²<<|V_{tb}|², SM (V–A) and CP conserving Wtb vertex
 No assumption on the number of quark families or CKM unitarity

 $|V_{tb}f_1^L|=1.07\pm0.12(sys+th)$

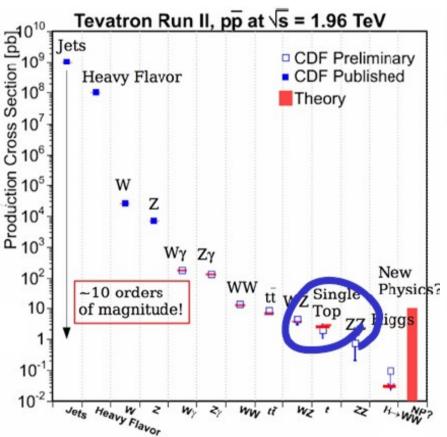
|V_{tb}|>0.78 at 95% CL

Additional Systematic Uncertainties for the <i>V_{tb}</i> Measurement			
DØ 2.3 fb ⁻¹			
For the <i>tb+tqb</i> theory cross section			
Top quark mass	4.2%		
Parton distribution functions	3.0%		
Factorization scale	2.4%		
Strong coupling α_s	0.5%		



Summary

- Single top quark production has been observed at Tevatron by CDF and D0 with signal significance of 5σ
- Both cross section and |V_{tb}| measurements agree with SM



Elizaveta Shabalina (Uni Goettingen)

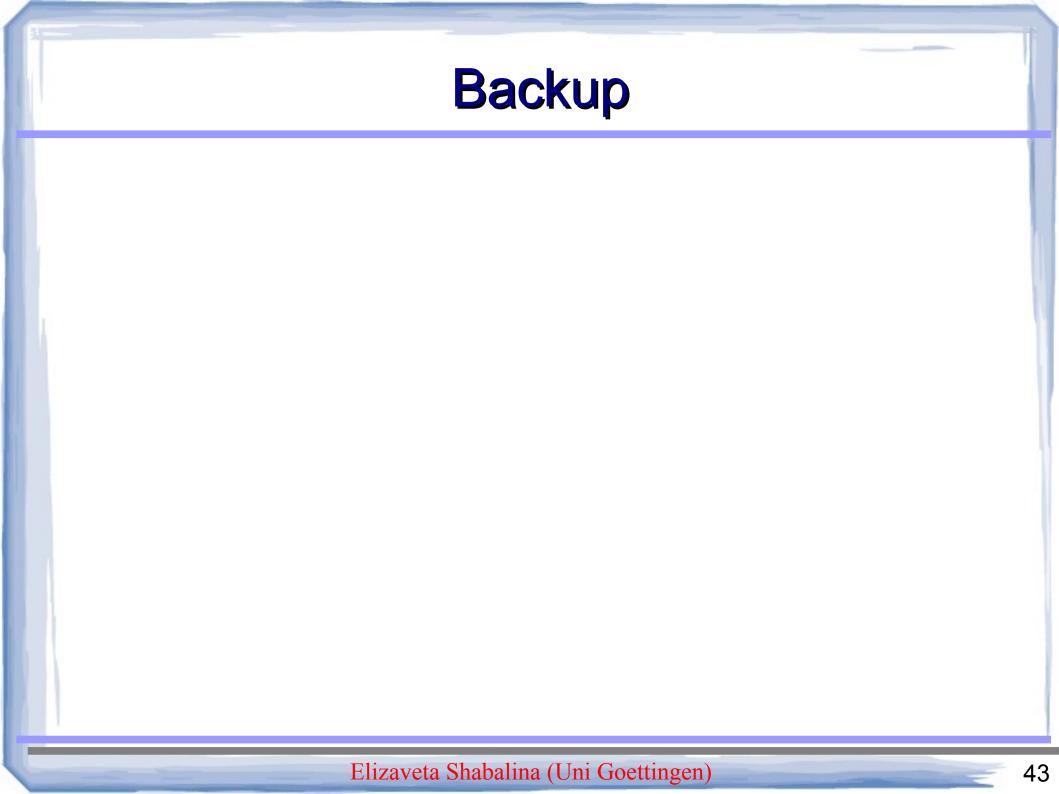
Outlook

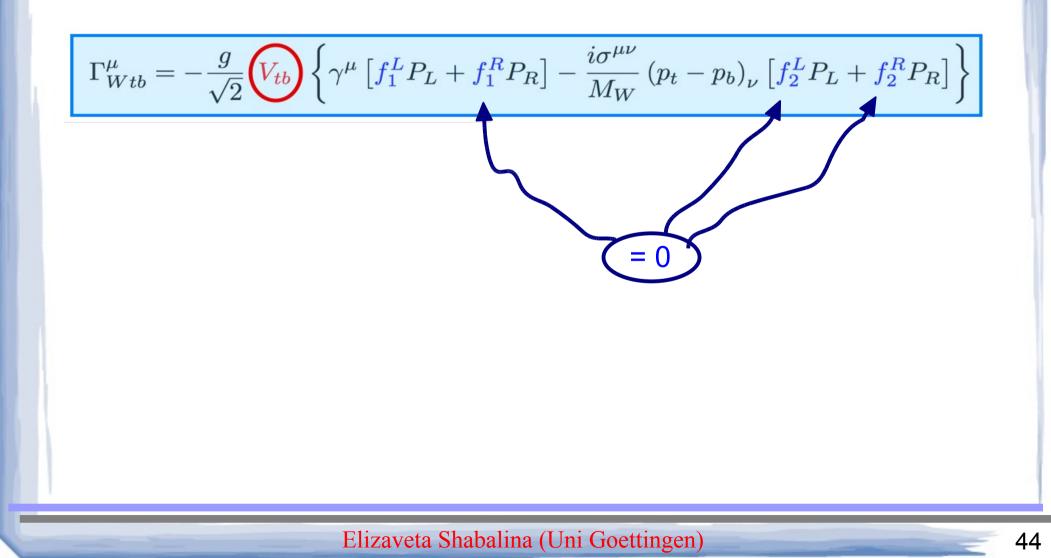
- This is just the beginning of the single top physics
- Precise measurements of σ_t and σ_s
- Top quark polarization
- Search for Anomalous Top quark couplings
- W ' and H⁺ searches
- Top production through FCNC

From R.Wallny's Wine and Cheese talk, 03/10/2009

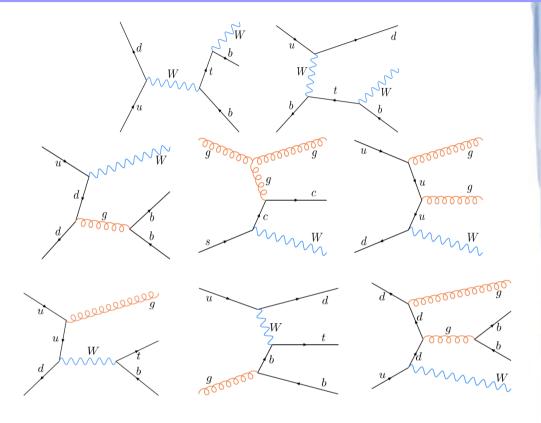
Milestone in the race for Higgs Boson !

Public web sites


More details can be found on the public pages of the experiments:


http://www-cdf.fnal.gov/physics/new/top/public_singletop.html

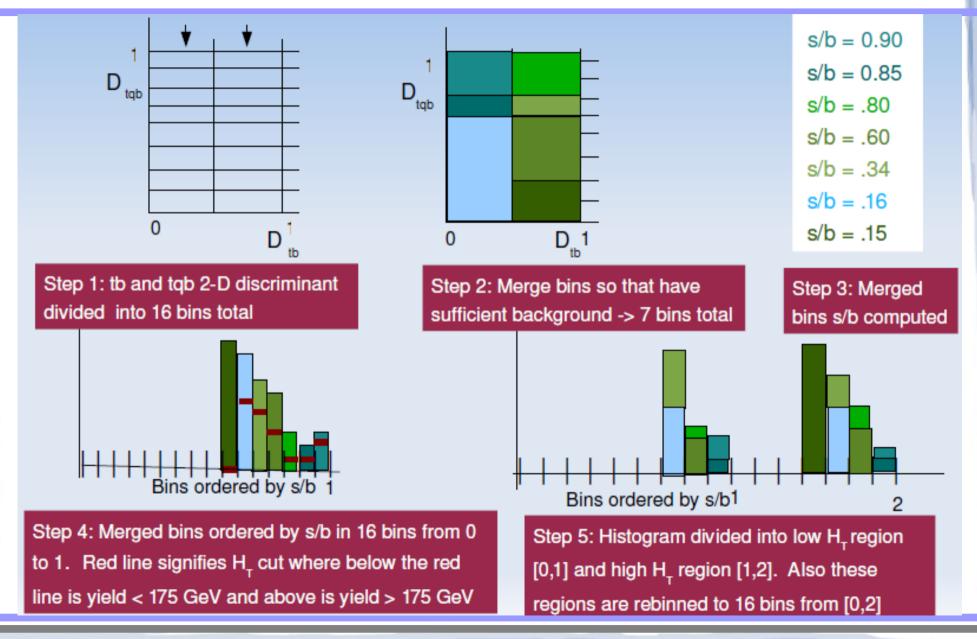
http://www-d0.fnal.gov/Run2Physics/top/singletop_observation



V_{tb} measurement

Summary of MEs

Matrix Elements used to Separate Single Top Signal from Background							
	DØ 2.3 fb ^{−1}						
	2 Jets	3 Jets					
tb	$u\overline{d} \rightarrow t\overline{b}$	tbg	$u\overline{d} \rightarrow t\overline{b}g$				
tq	$ub \rightarrow td$ $d\overline{b} \rightarrow t\overline{u}$	tqg	ub ightarrow tdg $d\overline{b} ightarrow t\overline{u}g$				
		tqb	$ug ightarrow tdar{b} \ ar{d}g ightarrow tar{u}ar{b}$				
Wbb	$Wb\overline{b}$ $u\overline{d} \rightarrow Wb\overline{b}$		$u\overline{d} \rightarrow Wb\overline{b}g$				
Wcg	$\bar{s}g ightarrow W \bar{c}g$						
Wgg	$u\overline{d} ightarrow Wgg$	Wūgg	$\overline{u}g ightarrow W\overline{u}gg$				
WW	WW $q\bar{q} \rightarrow WW$						
WZ	$WZ \qquad q\overline{q} \rightarrow WZ$						
<i>ggg</i>	gg ightarrow ggg						
tī	$q\overline{q} \rightarrow t\overline{t} \rightarrow \ell^+ v b \ell^- v \overline{b}$						
tī	$q\overline{q} ightarrow t\overline{t} ightarrow \ell^+ \nu b\overline{u}d\overline{b}$	tī	$q\overline{q} \rightarrow t\overline{t} \rightarrow \ell^+ \nu b\overline{u}d\overline{b}$				



$$P_B(\vec{x}) = C_{Wbbg} P_{Wbbg}(\vec{x}) + C_{Wugg} P_{Wugg}(\vec{x}) + C_{t\bar{t}} P_{t\bar{t}}(\vec{x})$$

 $d\sigma_{Wcg}(\ell, j_1, j_2) = \varepsilon_c(j_1)(1 - \varepsilon_l(j_2))d\sigma_{Wcg}(\ell, j_1 \rightarrow c, j_2 \rightarrow g) + \varepsilon_l(j_2))(1 - \varepsilon_c(j_1))d\sigma_{Wcg}(\ell, j_2 \rightarrow c, j_1 \rightarrow g).$

Wcg example with one tagged and one not tagged jet

Presentation of discriminant

Variables in BDT and BNN

Object Kinematics

Event Kinematics Jet Reconstruction

$p_T(lepton)$ ĒΤ $p_T(\text{jet1})$ $p_T(jet2)$ $p_T(jet3)$ $p_T(\text{jet4})$ $p_T(tag1)$ $p_T(\text{tag2})$ $p_T(light1)$ $p_T(light2)$ $p_T(\text{best1})$ p_T (notbest2) E(jet2)E(light1) $Q(\text{lepton}) \times \eta(\text{jet1})$ $Q(\text{lepton}) \times \eta(\text{jet2})$ $Q(\text{lepton}) \times \eta(\text{light1})$ $Q(\text{lepton}) \times \eta(\text{light2})$ $Q(\text{lepton}) \times \eta(\text{best1})$ $Q(\text{lepton}) \times \eta(\text{notbest1})$

Aplanarity(W, all jets)Centrality(alljets) Sphericity(W, all jets)H(alljets-tag1) H_T (alljets) $H_T(\text{alljets}-\text{tag1})$ $H_T(\text{alljets-best1})$ $H_T(\text{jet1},\text{jet2})$ $H_T(lepton E_T)$ $H_T(\text{lepton} \not\!\!E_T, \text{alljets})$ $H_T(\text{lepton} \not\!\!E_T, \text{jet1}, \text{jet2})$ M(alljets)M(alljets-tag1)M(alljets-best1)M(jet1,jet2)M(jet3, jet4)M(light1, light2)M(W, jet1, jet2) $M_T(\text{jet1},\text{jet2})$ $p_T(jet1, jet2)$ $\sqrt{\hat{s}}$ $M_T(W)$

 $Width_n(jet1)$ $Width_n(jet2)$ $Width_{\eta}(jet4)$ $Width_n(tag1)$ $Width_n(tag2)$ $Width_n(best1)$ $Width_n(light2)$ $Width_n(notbest2)$ $Width_{\phi}(jet1)$ $Width_{\phi}(jet2)$ $Width_{\phi}(jet4)$ $Width_{\phi}(tag2)$ $Width_{\phi}(light1)$ $Width_{\phi}(light2)$ $Width_{\phi}(notbest1)$ $p_T^{rel}(jet1,\mu)$ M(jet1)M(tag1)M(best1)

M(W, jet1) (leading jet top mass) M(W, jet1.S2) (with second neutrino solution) M(W, jet2)M(W, jet 2, S2)M(W, jet3, S2)M(W.tag1) ("b-tagged" top mass) M(W, tag 1.S2)M(W, tag2)M(W, light1, S2)M(W, best1) ("best" top mass) M(W, best 1, S2)M(W, notbest1, S2)M(W, notbest2)M(W, notbest 2, S2) $M_{
m top}^{\Delta M^{
m min}}$ $M_{
m top}^{
m sig}$ $\Delta M_{\rm top}^{\rm min}$ Significance_{min} (M_{top}) $p_z(\nu, S2)$

Top Quark Reconstruction

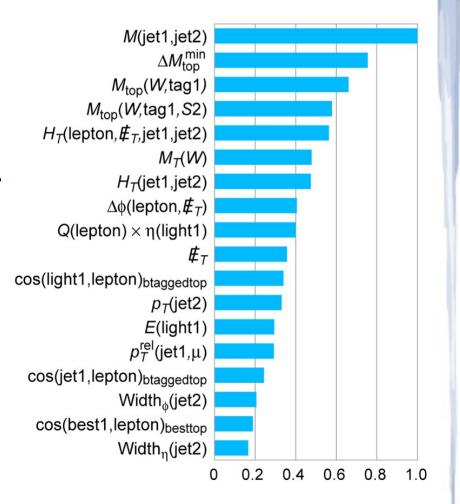
Angular Correlations

 $\Delta R(\text{jet1,jet2})$ $\Delta R(\text{lepton,jet1})$ $\Delta R(\text{lepton,tag1})$ $\Delta R(\text{lepton,best1})$ $\Delta R(\text{lepton,light1})$ ΔR^{min} (alljets) ΔR^{min} (lepton.alliets) $\Delta \phi(\text{lepton}, E_T)$ $\Delta \phi$ (lepton,tag1) cos(lepton, jet1)_{btaggedtop} cos(lepton,tag1)_{btaggedtop} cos(lepton_{btaggedtop}, btaggedtop_{CMframe}) $\cos(\text{lepton}, \text{light1})_{\text{btaggedtop}}$ cos(lepton, best1)_{besttop} cos(best1,notbest1)_{besttop} $\cos(\text{lepton}_{\text{besttop}}, \text{besttop}_{\text{CMframe}})$ $\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}$

Choice of variables – BDT

- Start with 600 variables expected to differ between signal and at least one of the background components
- Remove variables from list with low KS-test value between data and background model
- Remove variables with not much discrimination power to reduce computation time later (rank them after decision tree training)

Single Top from W+Jets			
DØ 2.3 fb ^{−1} Analysis			
Object kinematics	₽Ţ		
	ρ _τ (jet2)		
	ρ ₇ ^{rel} (jet1,tag-μ)		
	<i>E</i> (light1)		
Event kinematics	M(jet1,jet2)		
	<i>M</i> ₇ (VV)		
	H_{T} (lepton, $\not{\!\! E}_{T}$,jet1,jet2)		
	<i>H</i> ₇ (jet1,jet2)		
	H_{τ} (lepton, $\not{\!\! E}_{\tau}$)		
Jet reconstruction	Width _e (jet2)		
	Width _n (jet2)		
Top quark reconstruction	M _{top} (W,tag1)		
	ΔM_{top}^{min}		
	M _{top} (W,tag1,S2)		
Angular correlations	cos(light1,lepton) _{btaggedtop}		
	Δφ(lepton, ∉ ₇)		
	Q(lepton) x η(light1)		

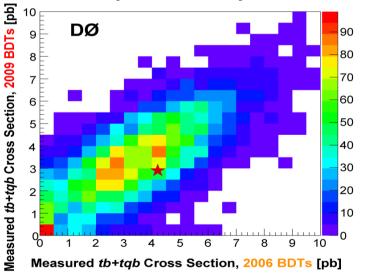

Best Variables to Separate

Best Variables to Separate Single Top from Top Pairs			
DØ 2.3 ft	o ⁻¹ Analysis		
Object kinematics	<i>pT</i> (notbest2)		
	<i>pT</i> (jet4)		
	pT(light2)		
Event kinematics	M(alljets-tag1)		
	Centrality(alljets)		
	M(alljets-best1)		
	$H_{\tau}(alljets-tag1)$		
	H_{τ} (lepton, $\not{\!\!\! E}_{\tau}$, alljets)		
	M(alljets)		
Jet reconstruction	Width _n (jet4)		
	Width _o (jet4)		
	Width _o (jet2)		
Angular correlations	cos(lepton _{btaggedtop} , btaggedtop _{CMframe})		
	Q(lepton) x η(light1)		
	ΔR (jet1,jet2)		

Choice of variables – BNN

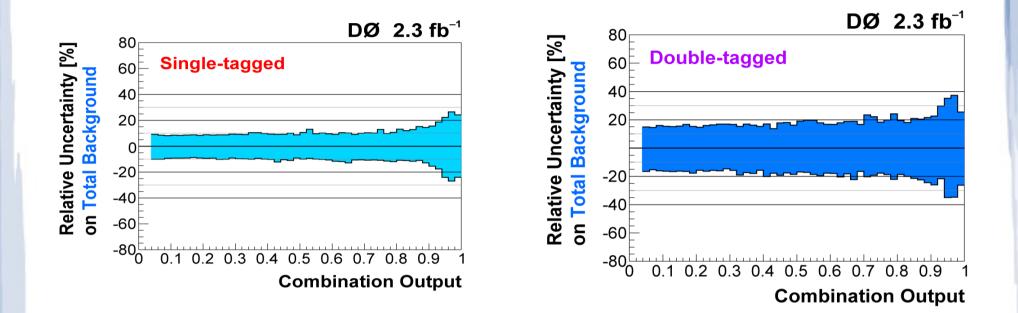
- Start from a set of ~150 well modeled variables
- Use the highest ranked variables for each channel
- Ranking determined by Rulefit* -a MVA based on Decision Trees (DT)
- Uses 1/3 of the available MC samples. These samples are later not used for the measurement
- Importance of each variable given by how often it appears in the set of rules that define the DT
- Keep variables with Importance > 10
- Corresponds to 18-28 variables, depending on the channel

DØ 2.3 fb⁻¹ Single Top BNN Analysis RuleFit Ranking for e+2jets/1tag Channel



Consistency test

Measured <i>tb+tqb</i> Cross Section [pb]						
DØ 2.3 fb ^{−1} Analysis						
Method	All Channels	Electron Only	Muon Only	Run Ila Only	Run IIb Only	
BDT	3.74 +0.95 -0.79	4.4 +1.5 -1.2	3.3 +1.2 -1.0	2.5 +1.3 -1.2	4.9 +1.4 -1.2	
BNN	4.70 +1.18 -0.93	5.3 +1.5 -1.4	4.0 +1.3 -1.2	3.4 +1.4 -1.3	5.7 +1.5 -1.3	
ME	4.30 +0.98 -1.20	3.2 +1.9 -1.6	3.9 +1.2 -1.2	2.6 +1.3 -1.2	5.4 +1.7 -1.4	
Combination	3.94 +0.88 -0.88	4.5 +1.3 -1.2	3.5 +1.1 -1.0	2.6 +1.2 -1.1	5.0 +1.2 -1.2	


Analysis Consistency

Measured single top cross sections using the 2009 and the 2006 decision trees on 5,000 pseudo-datasets generated from the 2009 Run IIa e+jets samples.

The red star shows the measurements in real data: 4.2 pb from the 2006 analysis and 2.9 pb from the 2009 analysis. This 1.3 pb shift is not uncommon, as seen from the width of the distribution from the pseudo-datasets.

Systematics on combination

