

Séminaire du SPP, IRFU Saclay 2 juin, 2009

Mesure précise de la masse du boson W avec les premières données du Run II de l'expérience DØ

Jan Stark

Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France

Laboratoire de Physique Subatomique et de Cosmologie

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Motivation

W mass is a key parameter in the Standard Model. This model does not predict the value of the W mass, but it predicts this relation between the W mass and other experimental observables:

$$M_W = \sqrt{rac{\pi lpha}{\sqrt{2}G_F}} rac{1}{\sin heta_W \sqrt{1 - \Delta r}}$$

Radiative corrections (Δ r) depend on M_t as ~M_t² and on M_H as ~log M_H. They include diagrams like these:

Motivation

For equal contribution to the Higgs mass uncertainty need: $\Delta M_{w} \approx 0.006 \Delta M_{t}$.

Current Tevatron average: $\Delta M_t = 1.3 \text{ GeV}$ \Rightarrow would need: $\Delta M_w = 8 \text{ MeV}$ Currently have: $\Delta M_w = 25 \text{ MeV}$

At this point, i.e. after all the precise top mass measurements from the Tevatron, the limiting factor here is ΔM_w , not ΔM_t .

Secret hopes

... as shown by Terry Wyatt at the EPS 2007 conference.

Current precision

The Tevatron average is driven by a recent Run II measurement from CDF (200 pb⁻¹), but the analysis of the Tevatron Run II data is really just starting ...

Jan Stark

 $m(W) = 80.413 \pm 0.048 \text{ GeV}$

Phys.Rev.D77:112001 (2008)

Phys.Rev.Lett.99:151801 (2007)

Signature in the detector

Experimental observables

No $P_T(W)$ $P_T(W)$ included Detector Effects added

 $p_T(e)$ most affected by $p_T(W)$

$$M_T = \sqrt{2E_T^l E_T (1 - \cos \Delta \phi)}$$

 M_{T} most affected by measurement of missing transverse momentum

Need Monte Carlo simulation to predict shapes of these observables for given mass hypothesis. DØ use **ResBos** [Balazs, Yuan; Phys Rev D56, 5558] + **Photos** [Barbiero, Was, Comp Phys Com 79, 291] for W/Z production and decay, plus **parameterised detector model**.

First DØ Run II measurement of the W boson mass (preliminary)

1 fb⁻¹ of data using central electrons ($|\eta|$ <1.05)

- ~ 500k W events
- ~ 19k Z events

DØ: integrated luminosity

The DØ detector too !

Tevatron is running extremely well Thanks, FNAL (and Accelerator Division!)

Run II Integrated Luminosity

19 April 2002 - 31 May 2009

Comments on analysis strategy

Before analysing the collider data, we perform a **Monte Carlo closure test**. This means we treat simulated events from a detailed Pythia/Geant simulations as collider data and perform a full W mass/width analysis. <u>Goal: develop and test analysis procedures and code</u> with known input values. At each analysis step, check that predictions from parameterised MC match MC truth.

We perform our measurements as a **blind analysis**. This means that the central values (but not the uncertainties) are deliberately hidden from the analysers and reviewers until the analysis is considered complete. The blinding technique we used is a standard technique that is routinely used by other collaborations, *e.g.* BaBar:

Simply change your mass fitting program in such a way that it reports the fitted mass, offset by some hidden offset.

The offset is the same for all three observables (=> allow comparisons),

no uncertainties, neither statistical nor systematic are ever obscured by the blinding.

"Unblinding" has been done only after collaboration approval.

Model of W production and decay

Tool	Process	QCD	EW
RESBOS	W,Z	NLO	-
WGRAD	W	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon
ZGRAD	Z	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon
PHOTOS			QED FSR, ≤ 2 photons

Our main generator is "ResBos+Photos". The NLO QCD in ResBos allows us to get a reasonable description of the p_{τ} of the vector bosons. The two leading EWK effects are the first FSR photon and the second FSR photon. Photos gives us a reasonable model for both.

We use W/ZGRAD to get a feeling for the effect of the full EWK corrections.

The final "QED" uncertainty we quote is 7/7/9 MeV (m_{T} , p_{T} ,MET). This is the sum of different effects; the two main ones are:

- Effect of full EWK corrections, from comparison of W/ZGRAD in "FSR only" and in "full EWK" modes (5/5/5 MeV).
- Very simple estimate of "quality of FSR model", from comparison of W/ZGRAD in FSR-only mode vs Photos (5/5/5 MeV).

The upgraded Dzero detector

Overview of the calorimeter

- Liquid argon active medium and (mostly) uranium absorber
- > Hermetic with full coverage : $|\eta| < 4.2$
- Segmentation (towers): $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

(0.05x0.05 in third EM layer, near shower maximum)

Keep in mind: the CAL is not alone !

Samples and weights

The plot on the right shows the average longitudinal profile of a shower with E = 45 GeV. Assuming normal incidence, the position of the active parts of the CC are also indicated.

In the reconstruction, we apply artificially high weights to the early layers (especially EM1) in an attempt to partially compensate the losses in the dead material:

Layer	depth (X ₀)	weight (a.u.)	weight/X ₀
EM1	2.0	31.199	15.6
EM2	2.0	9.399	4.7
EM3	6.8	25.716	3.8
EM4	9.1	28.033	3.1
FH1	≈ 40	24.885	≈ 0.6

The lower plot illustrates the situation for the same average shower, but this time under a more extreme angle of incidence (physics eta = 1). The shower maximum is now in EM1 !

Energy-dependence and fluctuations

The plots on the previous slide show the *average* shower profile at E = 45 GeV. The plot on the right is basically the same, except that it includes typical *shower fluctuations*.

=> The fraction of energy lost in the dead material varies from shower to shower.

The bottom plot illustrates the situation at a different, lower, energy. The position of the shower maximum (in terms of X_0) varies approximately like ln(E).

=> The average fraction of energy lost in dead material, as well as the relative importance of shower-by-shower fluctuations depend on the energy of the incident electron.

Average response ...

So we need to apply an energy-loss correction to our reconstructed electron energies to account for the energy lost in front of the calorimeter. This correction, as a function of energy and angle (eta) is estimated using detailed detector simulations based on Geant.

Knowing the amount of dead material is the key to energy response linearity: Measure amount of dead material *in situ* using electrons from $Z \rightarrow e e$.

... and fluctuations around the average

Here we show the impact on the energy resolution for electrons. This is again from a detailled detector simulation based on Geant.

Resolution at normal incidence, as a function of electron energy:

for an ideal sampling calorimeter (no dead material) one would expect this to scale as 1/sqrt(E) Resolution at E = 45 GeV, as a function of the angle of incidence (eta):

for an ideal sampling calorimeter (no dead material) one would expect this to be almost flat

How to split our (already small) $Z \rightarrow e e sample ??$

So we need to understand both average response and the resolution as a function of both energy and angle of incidence.

 $Z \rightarrow e$ e data gives us access to a line in energy/angle space. Consider CC/CC events. At a given angle, the distribution of energies provided by Nature is rather narrow.

How to proceed:

- => Bin electrons in angle (5 bins).
- => Two electrons per Z.
- => 15 distinct combinations of bins "categories" (no E ordering).

Split CC/CC Z \rightarrow e e sample into the 15 categories and study measured Z mass and mass resolution per category.

Once the information from Z has been harvested, we still need to propagate that down to the lower energies of the W. Need to understand scaling laws.

$\lim_{n \to \infty} 0 \le n \le 0.2$	Cate	gory	Bins of Each Electron
$0 \le 0 \le 1 > 0.2$		10	0 - 0
bin 1 : $0.2 \le n < 0.4$		11	0 – 1
		12	0 – 2
bin 2 : $0.4 \le \eta < 0.6$		13	0 – 3
$hin 3 \cdot 0.6 \le n \le 0.8$		14	0 – 4
$0 \text{ III } 5 : 0.0 \le \mathbf{I} < 0.8$		15	1 – 1
bin 4 : $0.8 \le n $		16	1 – 2
		17	1 – 3
		18	1 – 4
		19	2 – 2
	1	20	2 – 3
		21	2 – 4
		22	3 – 3
	1	23	3 – 4
	1	24	4 – 4

Simple plots (after splitting)

Let's start with a few simple plots that are based on the idea of splitting the sample according to eta of the two electrons. Here are the Z mass peaks (early version of data reconstruction) for "both electrons very central" and "both electrons very forward", i.e. "both electrons at close to normal incidence" and "both electrons at highly non-normal incidence"

We note:

- different resolutions (material !),
- the peaks are not in the same place.

Why aren't the peaks in the same place ? Could be a problem in the MC-based E-loss corrections. But could also be a problem with gain calibrations in different regions of the CAL. This plot alone is not going to tell us, we need more information, new observables.

Need more information: additional observables

Let's go back to one of the plots that we have discussed on an earlier slide. It clearly suggests that we should try to **exploit the longitudinal segmentation of the EM CAL** to get a handle on dead material:

Imagine we vary the size of the "DEAD" region a little bit => the individual layers (EM1 etc) would sample different parts of the shower and therefore see different fractions of the shower energy !!

Using the longitudinal segmentation to get a handle on material is a standard technique, it is discussed in the textbooks (e.g. Wigmans).

Back to Dzero. Let's compare data (old reconstruction) and full Monte Carlo (nominal geometry) in terms of the four fractional EM energy deposits. We do this separately in each of the 15 eta categories.

Before tuning of material model

Before tuning of material model: distributions of fractional energy deposits do not quite match between data and the simulation.

Fit for amount of missing material

"Turn the plots from the previous slides into a fit for the amount of missing material":

Take data/MC ratios per η category for EM1, EM2 and EM3 and fit each one (separately) to a constant. Add the chi-squareds from the three fits. Vary amount of extra material to minimise the global chi-squared.

This implies that we leave the absolute energy scale of each layer free to float. This is because this fit is the first time that we have a handle on the intercalibration of the layers.

Amount of fudge material to within less than $0.01X_0$! With comparatively small systematics from background (underlying event) subtraction and modelling of cut efficiencies.

After tuning of material model

After tuning of material model: distributions of fractional energy deposits are very well described by the simulation.

As a cross-check: Repeat fit for nX_0 , separately for each EM layer. Good consistency is found.

Electrons: energy scale

After having corrected for the effects of the uninstrumented material: final energy response calibration, using $Z \rightarrow e e$, the known Z mass value from LEP, and the standard "f₂ method":

 $E_{measured} = \alpha x E_{true} + \beta$

Use energy spread of electrons in Z decay to constrain $\alpha~$ and $\beta~.$

In a nutshell: the f_z observable allows you to split your sample of electrons from Z \rightarrow e e into subsamples of different true energy; this way you can "scan" the electron energy response as a function of energy. f_z = (E(e1)+E(e2))(1-cos(γ ee))/m_z

 $\gamma_{\rm ee}$ is the opening angle between the two electrons

Result:
$$\alpha = 1.0111 \pm 0.0043$$

 $\beta = -0.404 \pm 0.209 \text{ GeV}$
correlation: -0.997

This corresponds to the dominant systematic uncertainty (by far) in the W mass measurement (but this is really just Z statistics ... more data will reduce it) :

 Δ m(W) = 34 MeV, 100 % correlated between all three observables

Electrons: energy resolution

Electron energy resolution is driven by two components: sampling fluctuations and constant term

Sampling fluctuations are driven by sampling fraction of CAL modules (well known from simulation and testbeam) and by uninstrumented material. As discussed before, amount of material has been quantified with good precision.

Switching gears: recoil model

Recoil model

Recoil vector in parameterised MC: $\vec{u}_T = \vec{u}_T^{\text{Hard}} + \vec{u}_T^{\text{Soft}} + \vec{u}_T^{\text{Elec}} + \vec{u}_T^{\text{FSR}}$

 $\vec{u}_{T}^{\text{Hard}} = \vec{f}(\vec{q}_{T}) \qquad \begin{array}{l} \text{Hard component that balances the vector boson in transverse plane.} \\ \text{Ansatz from full } \textbf{Z} \rightarrow \nu \ \nu \ \text{MC}; \text{ plus free parameters for fine tuning,}} \\ \text{e.g. multiplicative scale adjustment as function of } q_{_{T}}; \\ \text{RelResp} = \text{RelScale} + \text{RelOffset} \cdot \exp \frac{-q_T}{\tau_{\text{HAD}}} \\ \vec{u}_{T}^{\text{Soft}} = \alpha_{\text{MB}} \cdot \vec{E}_{T}^{\text{MB}} + \alpha_{\text{ZB}} \cdot \vec{E}_{T}^{\text{ZB}} \quad \begin{array}{c} \text{Soft component,} \\ \text{not correlated with vector boson.} \\ \end{array} \\ \text{Two sub-components; - additional ppbar interactions and detector noise: from ZB events,} \\ \text{plus parameter for fine tuning} \\ \text{- spectator partons: from MB events, plus parameter for fine tuning} \end{array}$

$$\vec{u}_T^{\text{Elec}} = -\sum_e \Delta u_{\parallel} \cdot \hat{p}_T(e)$$

Recoil energy "lost" into the **electron cones**. Electron energy leakage outside cluster.

$$\vec{u}_T^{\text{FSR}} = \sum_{\gamma} \vec{p}_T(\gamma)$$

FSR photons (internal bremsstrahlung) outside cone; includes detailed response model.

Recoil calibration

Final adjustment of free parameters in the recoil model is done *in situ* using balancing in $Z \rightarrow e$ e events and the standard UA2 observables.

$1 < p_{\tau}(ee) < 2 \text{ GeV}$

Electron reco efficiency model

Efficiency model also takes into account relative orientation of electron and "rest of the event" (hadronic activity). For example:

- Efficiency corrections vs. $p_{\tau}(e)$ and scalar E_{τ} .
- Efficiency corrections vs. u_{..}.

Much of this level of detail is only necessary for a measurement of the W width, not the mass.

Results: $Z \rightarrow e e data$

Good agreement between parameterised MC and collider data.

Mass fits

 $m(Z) = 91.185 \pm 0.033 \text{ GeV}$ (stat) (remember that Z mass value from LEP was an input to electron energy scale calibration, PDG: $m(Z) = 91.1876 \pm 0.0021 \text{ GeV}$) m(W) = 80.401 ± 0.023 GeV (stat)

Mass fits

Summary of uncertainties

		Source	$\sigma(m_W)$ MeV m_T	$\sigma(m_W) \text{ MeV } p_T^e$	$\sigma(m_W) \operatorname{MeV} E_T$
		Experimental			
S		Electron Energy Scale	34	34	34
<u>ě</u>		Electron Energy Resolution Model	2	2	3
t		Electron Energy Nonlinearity	4	6	7
a		W and Z Electron energy	4	4	4
P		loss differences (material)			
ğ		Recoil Model	6	12	20
らノ		Electron Efficiencies	5	6	5
<u>.</u> 2		Backgrounds	2	5	4
at		Experimental Total	35	37	41
Ë		W production and			
l še		decay model			
Š		PDF	9	11	14
<i>°</i> ,		QED	7	7	9
		Boson p_T	2	5	2
		W model Total	12	14	17
		Total	37	40	44
stati	statistical		23	27	23
total			44	48	50

Comparison to previous results

Latest constraints on Higgs mass

For detailed description of this update, please see web page of Gfitter group.

Back to Terry's hopes

... as shown at the EPS 2007 conference.

Are such expectations reasonable ?

Back to Terry's hopes

... as shown at the EPS 2007 conference.

Are such expectations reasonable ?

Yes ! And you can read it in detail in the following article.

When the authors of

"Measurement of the W Boson Mass at the Tevatron" Ashutosh V. Kotwal , Jan Stark Annual Review of Nuclear and Particle Science, November 2008

http://arjournals.annualreviews.org/toc/nucl/forthcoming

wrote that 25 MeV per experiment are around the corner, and that a final combined error of <15 MeV is realistic, they really meant it.

Summary and outlook

We have presented, for the first time, a new preliminary measurement of the W boson mass from the DØ Collaboration. It is based on central electrons in 1 fb⁻¹ of Run II data:

 $m_W = 80.401 \pm 0.023(\text{stat}) \pm 0.037(\text{syst}) \text{ GeV} = 80.401 \pm 0.044 \text{ GeV} (m_T)$ $80.400 \pm 0.027(\text{stat}) \pm 0.040(\text{syst}) \text{ GeV} = 80.400 \pm 0.048 \text{ GeV} (p_T^e),$ $80.402 \pm 0.023(\text{stat}) \pm 0.044(\text{syst}) \text{ GeV} = 80.402 \pm 0.050 \text{ GeV} (\not\!\!\!E_T).$

A combination of the results from these three observables gives:

80.401 ± 0.021 (stat.) ± 0.038 (syst.) = 80.401 ± 0.043 GeV

This is the most precise single measurement of the W boson mass to date.

This measurement is in good agreement with a previous Run II measurement from CDF (electron and muons in 200 pb⁻¹ of data), as well as with the LEP average.

DØ and CDF use very different techniques for the main ingredient of the measurement, namely to establish the lepton energy scale. Their systematic uncertainties are uncorrelated to a large extent, which is good for cross-checks and combination. Similar comments apply to (non-)correlation with LEP results.

For both D0 and CDF these measurements are just the beginning. Both collaborations are analysing larger datasets. CDF predict 25 MeV total uncertainty with 2.3 fb⁻¹. DØ expect similar or better uncertainties with the 6 fb⁻¹ in the can.

Backup slides

MC closure test: $Z \rightarrow e e$

MC closure test: W \rightarrow e ν

MC closure test: $W \rightarrow e v$ WCandMt Spatial Match 0 WCandElecPt_Spatial_Match_0 WCandMet Spatial Match 0 35000 18000 x²/ndf = 89.8/100 χ^2 /ndf = 79.2/70 χ^2 /ndf = 85.0/70 30000 FULL MC FULL MC FULL MC 30000 16000 AST MC - FAST MC FAST MC 14000 12000 **Mass** fit ranges: [65,90] GeV for M_{τ} , [32,48] GeV for $p_{\tau}(e)$ and MET. 10000 8000 Variable Fitted Mass [GeV] **Results:** 6000 $80.441 \pm 0.015 \text{ (stat)} \pm 0.011 \text{ (EM scale)} \pm 0.010 \text{ (E-loss bias)}$ m_T 4000 $p_T(e)$ $80.441 \pm 0.019 \text{ (stat)} \pm 0.007 \text{ (EM scale)} \pm 0.010 \text{ (E-loss bias)}$ 2000 E_T $80.429 \pm 0.019 \text{ (stat)} \pm 0.011 \text{ (EM scale)} \pm 0.010 \text{ (E-loss bias)}$ 9<u></u> ⁵⁰Ge⁵⁵ 60 Input value: 80.450 GeV oins χ distribution w **3**⊢ 2 Width fit range: [100,200] GeV for M₊ Result: 2.065 + 0.027 GeV oŀ Input value: 2.070 GeV -2 ✓ Measurements in good agreement with input values. -3 30 35 40 45 50 55 60 70 100 25 50 60 80 90 30 40 45 50 55 25 35 60 GeV GeV GeV

Fermilab Tevatron

Proton-antiproton collisions with centre-of-mass = 1.96 TeV

36 p and pbar bunches 396 ns between bunch crossing

Currently the only place in the world where W and Z bosons can be produced directly

This is a U/LAr sampling calorimeter

sampling fraction: 15 %

Basically a stack of Uranium plates with liquid Argon in between. Shower develops in U and LAr (mainly U); charged shower particles ionise the Argon atoms => current in Argon because of HV applied across each gap. This current is measurable (thanks to electronic charge amplifiers with very large gain).

EM1, EM2, EM3 and EM4 are read out separately; each one of these layers regroups a number of digaps.

- Detector signal ~ 450 ns long (bunch crossing time: 396 ns)
- Charge preamplifiers
- BLS (baseline subtraction) boards
 - short shaping of ~2/3 of integrated signal
 - signal sampled and stored every 132 ns in analog buffers (SCA) waiting for L1 trigger
 - samples retrieved on L1 accept, then baseline subtraction to remove pile-up and low frequency noise
 - signal retrieved after L2 accept
- Digitisation

$J/\Psi \rightarrow e^+ e^-$

Fortunately, when I said "*extrapolation*" down to \Box the W, that was not the whole story. We also have another di-electron resonance that sits **lower** in energy than the W: the J/ Ψ .

At a hadron collider, such a sample is *extremely* hard to obtain. One of the keys to our success is D0's excellent *Central Track Trigger*. It allows us to trigger on isolated tracks already at Level 1. We typically require two tracks of $p_{\tau} > 3$ GeV.

It took us many many person-months to obtain this sample: design/implementation of the trigger, understanding efficiencies, etc, etc.

In contrast to the Z, the energy resolution at J/Ψ energies is practically insensitive to issues with gain calibration (the constant term in the energy resolution is irrelevant). The J/Ψ is a nice probe for sampling fluctuations and scale issues related to dead material.

Cross-sections: QED is easy, right ?

But in practice these calculations involve time-consuming Hartree-Fock calculations, partial wave expansions, etc, etc.

In addition, popular simulation programs (like Geant or EGS) often use simplified models or simple parameterisations of cross sections in order to avoid large look-up tables and to implement fast random number techniques.

A detailed comparison of Geant and EGS to state-of-the-art cross section calculations is striking, especially for Bremsstrahlung

Example: Bremsstrahlung in by electrons in uranium

Pathlength correction in e-tracking

In a nutshell:

- There are various parameters in Geant particle tracking. These include things like the "maximum fractional energy loss in one step" and the "shortest step size Geant is willing to take".
- We use Geant in AUTO mode, *i.e.* Geant choses the values of the parameters for us.
- Mulitiple scattering is simulated using Molière theory.
 That theory provides predictions (PDFs) for things like the scattering angles defined in the plot on the right.
 It also provides the *pathlength correction* (predict *t* for a given *s*).
- The formula for the pathlength correction is only valid for small steps *s* (a precise definition for "small" is provided by the theory).
- As it turns out, already at high energies (1 MeV level), the upper limit on *s* from Molière theory is **inconsistent** with the lower limit on *s* chosen by Geant (to conserve CPU).
- Geant choses to not say anything, take the large step anyway, and not apply the pathlegth correction. At 400 keV the correction should be of the order of 3; it rises for lower energies.

EM fractions in $Z \rightarrow e^+ e^-$ events

Use electrons from Z -> e e, plot mean fractional energy deposit in each one of the EM layers. Separate the events into the standard categories in physics eta. The plot below shows each of the four EM fractions for each of the 15 categories.

This is a busy plot that can be tricky to read. Let's look at the data/MC ratios instead (on the next slide).

EM fractions in $Z \rightarrow e^+ e^-$ events

Data / Monte Carlo (MC without fudge material):

Clear trends are visible, especially for EM1 and EM3.

Also, the excursions away from unity are pretty large. Part of the mean per-layer excursion could be explained by the layers not being properly calibrated with respect to each other, but deviations of O(5 %) are not really expected.

EM fractions in $Z \rightarrow e^+ e^-$ events

Certainly less trendy than with the nominal detector geometry.

The layers that receive the bulk of the energy (EM1, EM2 and EM3) are also much closer to unity.

Dzero Run I

DØ Collaboration, PRD 58, 092003 (1998)

Observable: "transverse mass"

$$M_T = \sqrt{2E_T^l E_T (1 - \cos \Delta \phi)}$$

Relatively robust against uncertainties in physics model.

Uncertainties

Stat.	m_T fit (MeV)	$p_T(e)$ fit (MeV)		$p_T(\nu)$ fit (MeV)
<i>W</i> sample	W sample 70		85	105
Z sample	Z sample 65		65	65
Total	Total 95		05	125
"Detector	"Detector		$p_T(e)$ fit	$p_T(\nu)$ fit
understand	understanding"		(MeV)	(MeV)
Calorimeter linearity	v	20	20	20
Calorimeter uniform	nity	10	10	10
Electron resolution		25	15	30
Electron angle calib	ration	30	30	30
Electron removal		15	15	20
Selection bias	5	10	20	
Recoil resolution	25	10	90	
Recoil response	20	15	45	
Total	60	50	115	
"Production	m_T fit	$p_T(e)$ fit	$p_T(\nu)$ fit	
decay model"		(MeV)	(MeV)	(MeV)
$p_T(W)$ spectrum		10	50	25
Parton distribution functions		20	50	30
Parton luminosity β		10	10	10
Radiative decays		15	15	15
W width		10	10	10
Total		30	75	45

Model detector effects using parameters "from data" (and a lot of hypotheses).

Generate M_{τ} templates for different M_{τ} points -> likelihood fit.

Understanding the detector behaviour, based mainly on $Z \rightarrow e e$ and $\Psi \rightarrow e e$ calibration samples, is crucial.

$W \rightarrow e \nu data WARNING !$

Data-MC apparently not in good agreement !

Error bars only reflect limited W statistics they do not reflect the much more limited **Z statistics** that have been used to calibrate the recoil model !

The blue band in the bottom plot reflects one sigma excursions in the recoil parameters.

 \rightarrow agreement is not so bad !

Jan Stark

Jan Stark

2200

2000

 χ^2 /ndf = 67.1/80

DATA

Séminaire SPP, Saclay, 2 juin 2009

$Z \rightarrow e e and W \rightarrow e v$ Data in red

Changes in the fitted m_w when the fitting range (m_τ observable) is varied.

Instantaneous luminosity (split data into two subsets - high and low inst. luminosity)

Time (i.e. data-taking period)

Scalar E_{τ} ("global event activity as seen by calorimeter")

Electron distance from phi cracks

Cut on u_T ("length of recoil vector")

Latest constraints on Higgs mass

For detailed description of this update, please see web page of Gfitter group.

