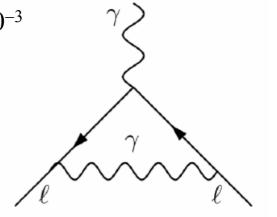

Precise Measurement of the $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ Cross Section with BaBar and the Muon g-2

Michel Davier (LAL – Orsay, BaBar Collaboration)

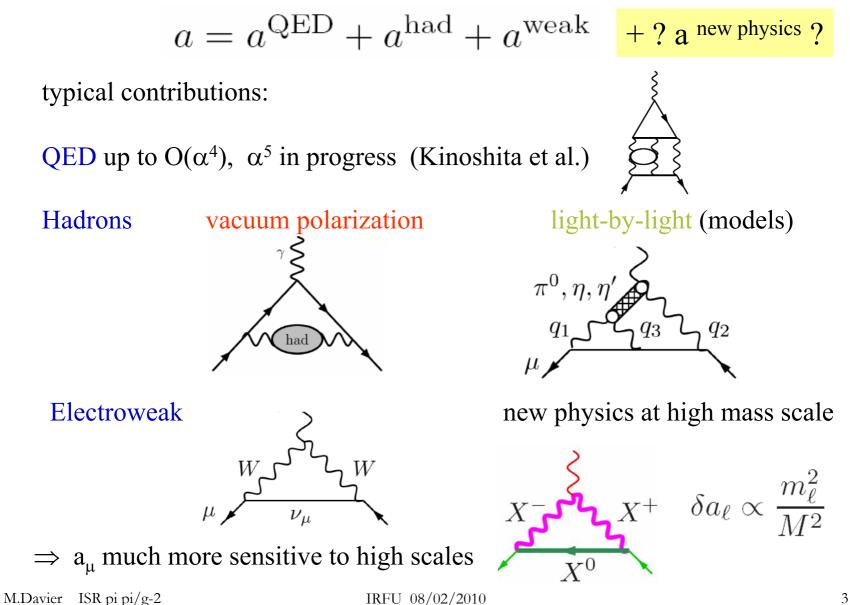
- the muon magnetic anomaly
- $\bullet~e^+e^-$ and (revisited) τ spectral functions
- the BaBar ISR (Initial State Radiation) analysis
- test of the method: $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
- results on $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$
- combination of all ee data
- discussion and perspectives

Lepton Magnetic Anomaly: from Dirac to QED


$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad \qquad a = (g-2)/2$$

Dirac (1928) $g_e=2 a_e=0$

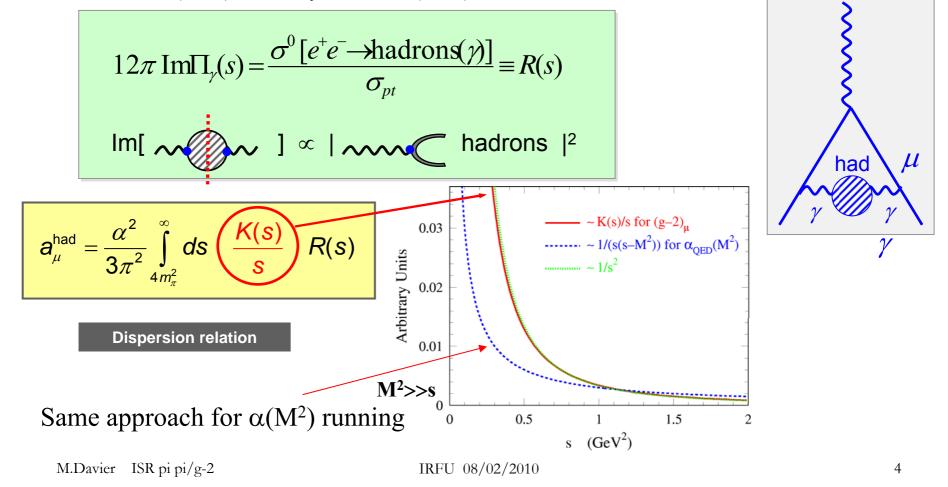
anomaly discovered: Kusch-Foley (1948) $a_e = (1.19 \pm 0.05) \ 10^{-3}$


and explained by O(α) QED contribution: Schwinger (1948) $a_e = \alpha/2\pi = 1.16 \ 10^{-3}$

first triumph of QED

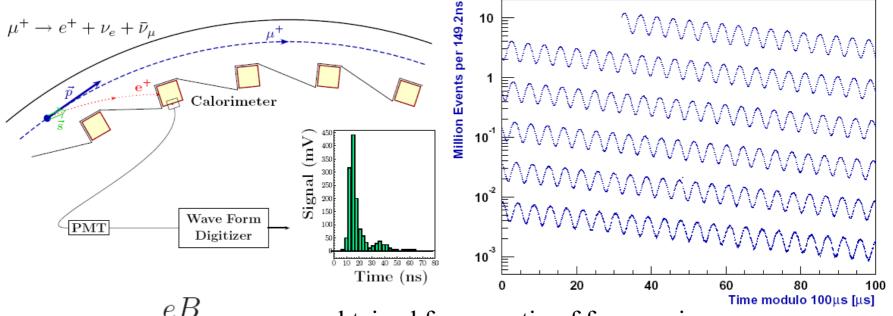
 \Rightarrow a_e sensitive to quantum fluctuations of fields

More Quantum Fluctuations



Hadronic Vacuum Polarization and Muon $(g-2)_{\mu}$

Dominant uncertainty from lowest-order HVP piece


Cannot be calculated from QCD (low mass scale), but one can use experimental data on e⁺e[−]→hadrons cross section

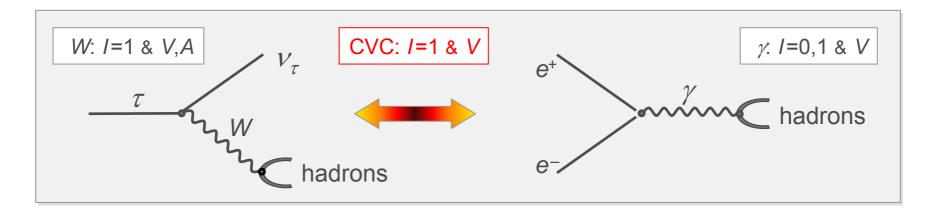
Bouchiat-Michel (1961) Brodsky-de Rafael (1968) Born: $\sigma^{(0)}(s) = \sigma(s)(\alpha / \alpha(s))^2$

The E-821 Direct a_u Measurement at BNL

Storage ring technique pioneered at CERN (Farley-Picasso...)

$$\omega_a = a_\mu \, \frac{eB}{m_\mu}$$

 $\omega_{\text{precession}} - \omega_{\text{rotation}}$

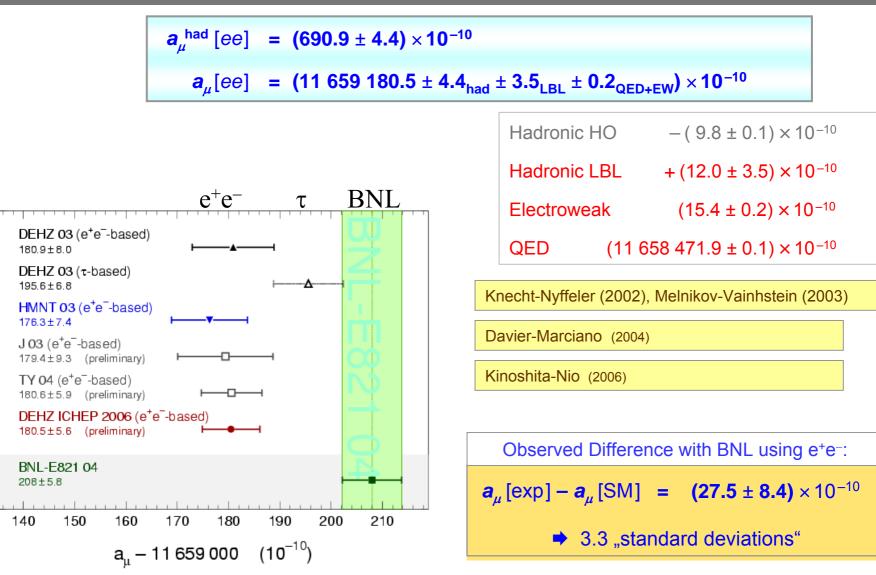

 a_{μ} obtained from a ratio of frequencies result updated with new value for μ_{μ}/μ_{p} (+0.9 10⁻¹⁰) (see next review in RPP2009 (Höcker-Marciano)

$$a_{\mu}^{exp} = (11\ 659\ 208.9 \pm 5.4 \pm 3.3)\ 10^{-10} (\pm 6.3) \ (0.54\ ppm)$$

M.Davier ISR pi pi/g-2

IRFU 08/02/2010

The Role of τ Data through CVC – SU(2)

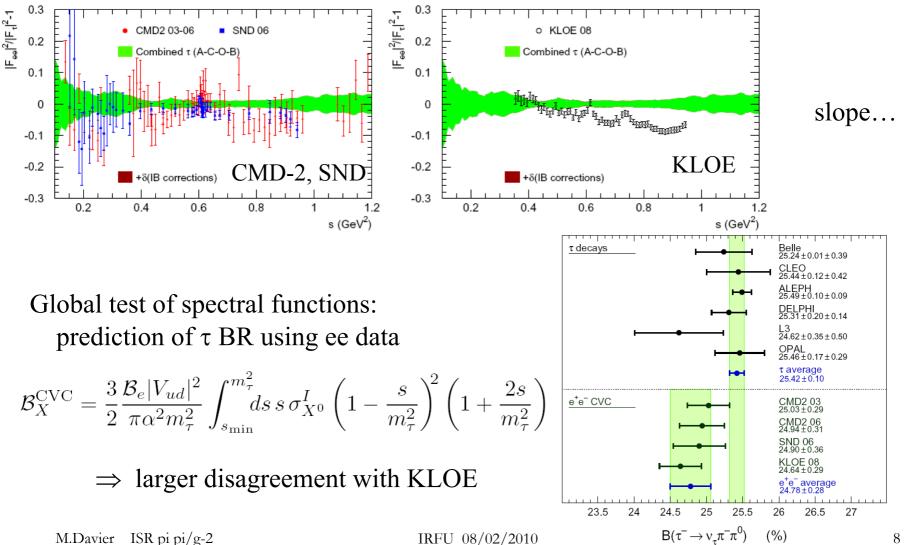


Hadronic physics factorizes (spectral Functions)

$$\sigma^{(l=1)} \left[e^{+}e^{-} \rightarrow \pi^{+}\pi^{-} \right] = \frac{4\pi\alpha^{2}}{s} \upsilon \left[\tau^{-} \rightarrow \pi^{-}\pi^{0}\upsilon_{\tau} \right]$$
$$\upsilon \left[\tau^{-} \rightarrow \pi^{-}\pi^{0}\upsilon_{\tau} \right] \propto \frac{\mathsf{BR} \left[\tau^{-} \rightarrow \pi^{-}\pi^{0}\upsilon_{\tau} \right]}{\mathsf{BR} \left[\tau^{-} \rightarrow e^{-}\overline{\upsilon_{e}}\upsilon_{\tau} \right]} \frac{1}{\mathsf{N}_{\pi\pi^{0}}} \frac{d\mathsf{N}_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1 - s/m_{\tau}^{2} \right)^{2} \left(1 + s/m_{\tau}^{2} \right)}$$
branching fractions mass spectrum kinematic factor (PS)

A precise comparison must take isospin symmetry breaking into account

Situation at ICHEP'06 / 08



Estimate using τ data consistent with E-821

Revisited Analysis using τ Data: Belle + new IB

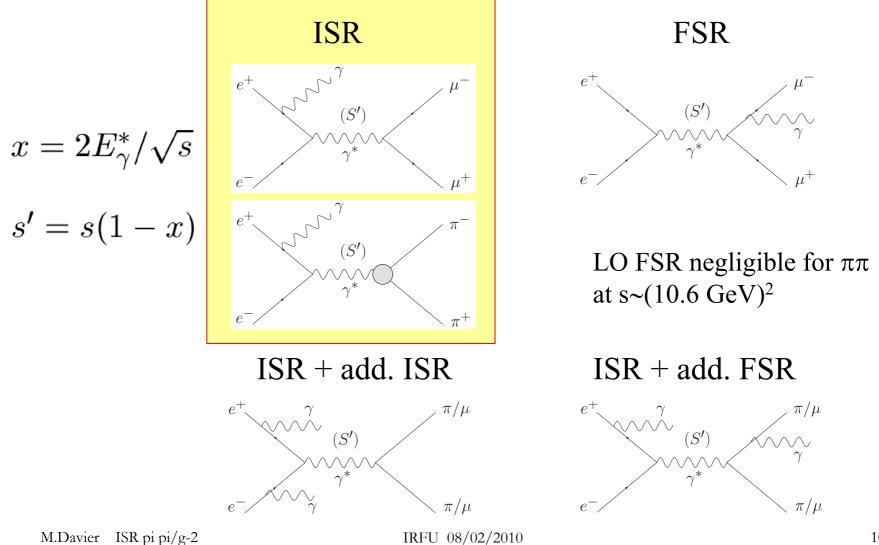
Relative comparison of τ and ee spectral functions (τ green band)

arXiv:0906-5443 MD.Höcker, Malaescu, Zhang +IHEP+Mexico

Goals of the BaBar Analysis

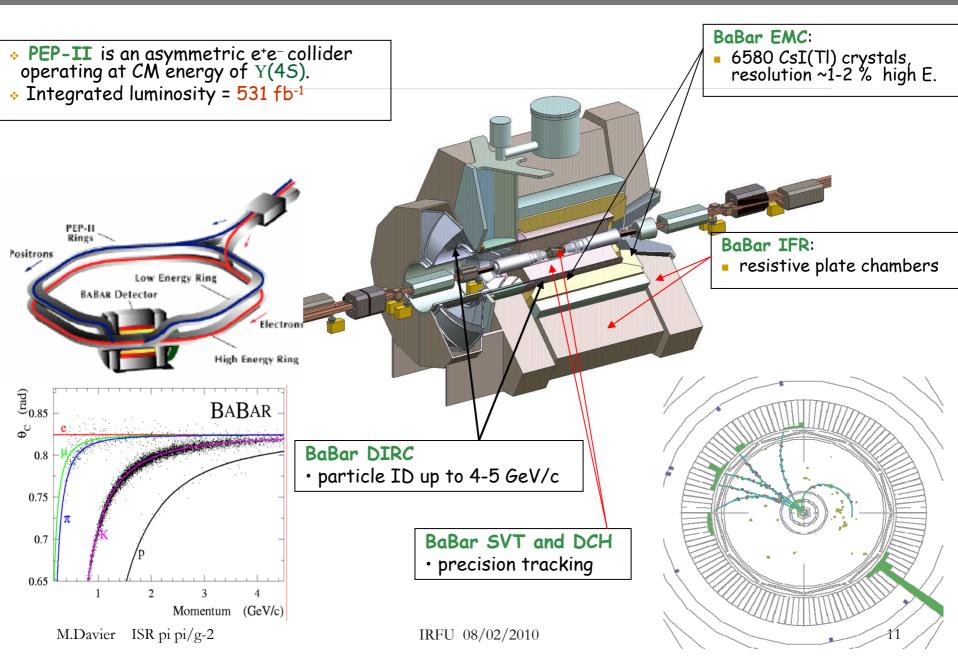
- Measure $\sigma[e^+e^- \rightarrow \pi^+\pi^-(\gamma)]$ with high accuracy for vacuum polarization calculations, using the ISR method $e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma)$
- $\pi\pi$ channel contributes 73% of a_{μ}^{had}
- Dominant uncertainty also from $\pi\pi$
- Also important to increase precision on $\alpha(M_Z^2)$ (EW tests, ILC)
- Present systematic precision of e⁺e⁻ experiments
 CMD-2 0.8% SND 1.5% in agreement
 KLOE (ISR from 1.02 GeV) 2005 1.3% some deviation in shape 2008 0.9% better agreement
- Big advantage of ISR: all mass spectrum covered at once, from threshold to 3 GeV, with same detector and analysis
- Measure simultaneously $\pi^+ \pi^- \gamma(\gamma)$ and $\mu^+ \mu^- \gamma(\gamma)$
- * Compare to spectral functions from previous e^+e^- data and τ decays

 \Rightarrow aim for a measurement with <1% accuracy (syst. errors at per mil level)


great interest to clarify the situation as magnitude of possible discrepancy with SM is of the order of SUSY contributions with masses of a few 100 GeV

M.Davier ISR pi pi/g-2

IRFU 08/02/2010


The Relevant Processes

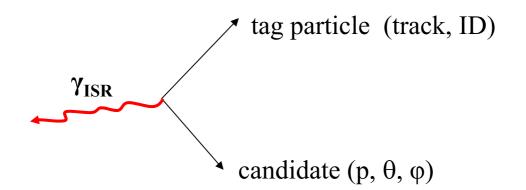
 $e^+e^- \rightarrow \mu^+\mu^-\gamma(\gamma)$ and $\pi^+\pi^-\gamma(\gamma)$ measured simultaneously

IRFU 08/02/2010

BaBar / PEP II

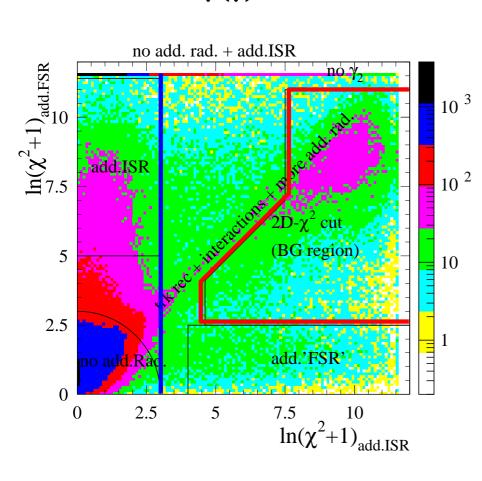
Analysis Steps

232 fb⁻¹ (Y(4S) on-peak & off peak)


- Measure ratio of $\pi\pi\gamma(\gamma)$ to $\mu\mu\gamma(\gamma)$ cross sections to cancel ee luminosity, additional ISR, vacuum polarization, ISR photon efficiency (otherwise 1-2% syst.)
- ISR photon at large angle in EMC + 2 tracks
- Geometrical acceptance (using Monte Carlo simulation)
- All efficiencies measured on data (data/MC corrections)
- Triggers (L1 hardware, L3 software), background-filter efficiencies
- Tracking efficiency
- Particle ID matrix (ID and mis-ID efficiencies): $\mu \pi K$
- Kinematic fitting

reduce non 2-body backgrounds

 χ^2 cut efficiency: additional radiation (ISR, FSR), secondary interactions

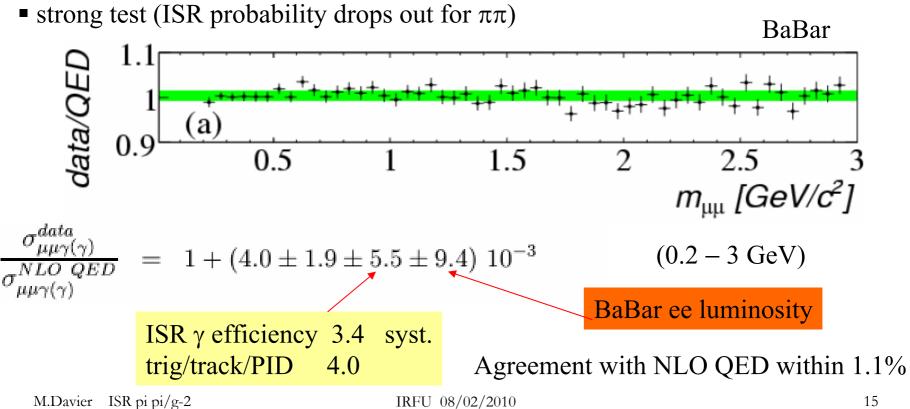

- Unfolding of mass spectra
- Consistency checks for $\mu\mu$ (QED test, ISR luminosity) and $\pi\pi$
- Unblinding $R \Rightarrow$ partial preliminary results (Tau08, Sept. 2008)
- Additional studies and checks
- Final results on $\pi\pi$ cross section and calculation of dispersion integral

Particle-related Efficiency Measurements

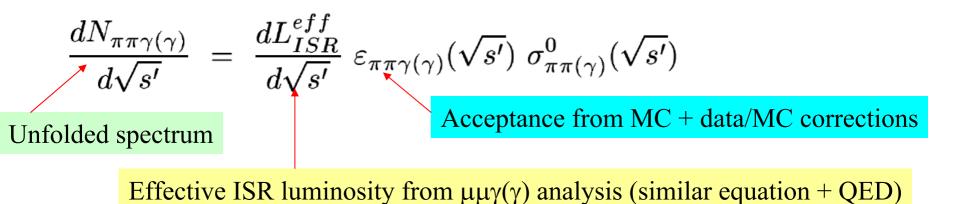
- benefit from pair production for tracking and particle ID
- kinematically constrained events
- efficiency automatically averaged over running periods
- measurement in the same environment as for physics, in fact same events!
- applied to particle ID with $\pi/K/\mu$ samples, tracking, study of secondary interactions...
- assumes that efficiencies of the 2 particles are uncorrelated
- in practice not true ⇒ study of 2-particle overlap in the detector (trigger,tracking, EMC, IFR) required a large effort to reach per mil accuracies

Kinematic Fitting

 $\pi\pi\gamma(\gamma)$


 Two kinematic fits to X X γ_{ISR} γ_{add} (ISR photon defined as highest energy)

Add. ISR fit: γ_{add} assumed along beams Add. 'FSR' if γ_{add} detected


- First analysis to measure cross section with additional photons (NLO)
- Loose χ² cut (outside BG region in plot) for μμ and ππ in central ρ region
- Tight χ² cut (ln(χ²+1)<3) for ππ in ρ tail region
- q \bar{q} and multi-hadronic ISR background from MC samples + normalization from data using signals from $\pi^0 \rightarrow \gamma_{ISR} \gamma$ (q \bar{q}), and ω and ϕ ($\pi\pi\pi^0\gamma$)

QED Test with $\mu\mu\gamma$ sample

- absolute comparison of $\mu\mu$ mass spectra in data and in simulation
- simulation corrected for data/MC efficiencies
- AfkQed corrected for incomplete NLO using Phokhara

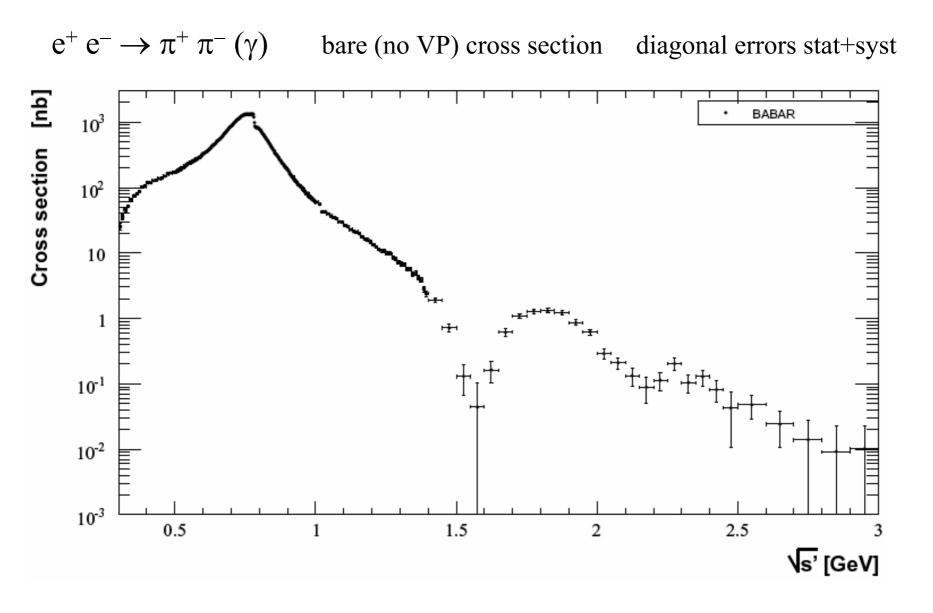
Obtaining the $\pi\pi(\gamma)$ cross section

 $\pi\pi$ mass spectrum unfolded (Malaescu arXiv:0907-3791) for detector response

Additional ISR almost cancels in the procedure $(\pi\pi\gamma(\gamma) / \mu\mu\gamma(\gamma) \operatorname{ratio})$ Correction (2.5 ±1.0) 10⁻³ $\Rightarrow \pi\pi$ cross section does not rely on accurate description of NLO in the MC generator

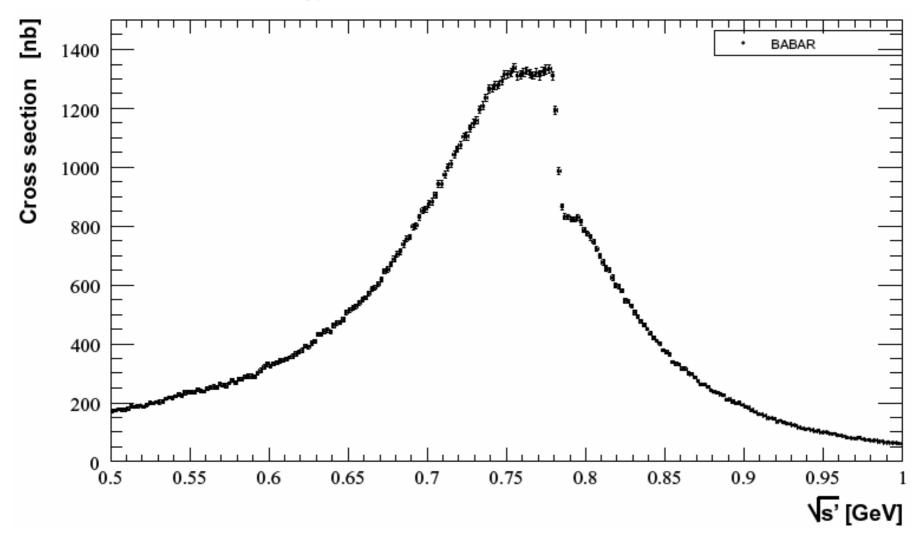
ISR luminosity from μμγγ in 50-MeV energy intervals (small compared to variation of efficiency corrections)

Systematic uncertainties

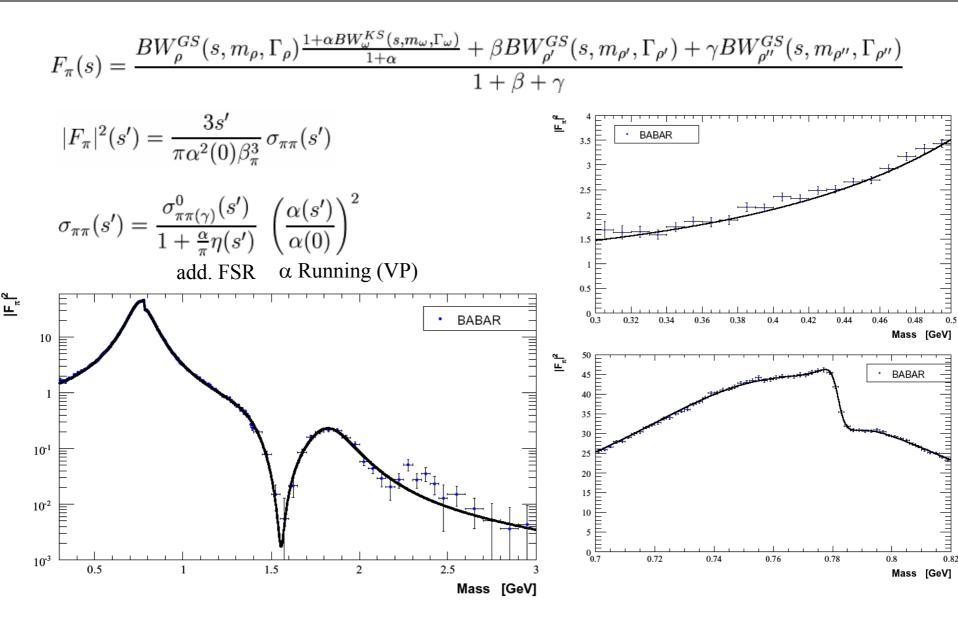

 $\sqrt{s'}$ intervals (GeV)

errors in 10⁻³

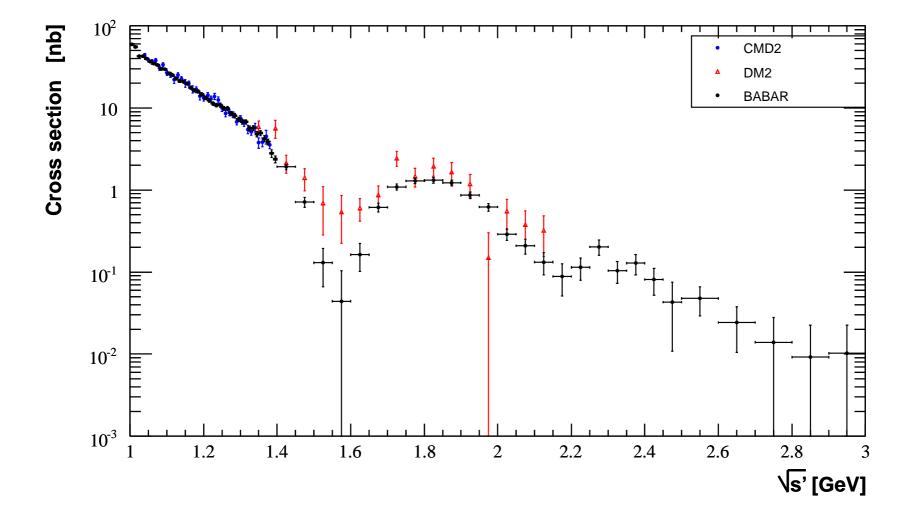
sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2 - 1.4	1.4-2.0	2.0-3.0
trigger/ filter	5.3	2.7	1.9	1.0	0.5	0.4	0.3	0.3
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1
$\pi\text{-ID}$	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0
$\pi\pi/\mu\mu$ cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1
unfolding	1.0	2.7	2.7	1.0	1.3	1.0	1.0	1.0
ISR luminosity	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4


Dominated by particle ID (π -ID, correlated $\mu\mu \rightarrow \pi\pi$, μ -ID in ISR luminosity)

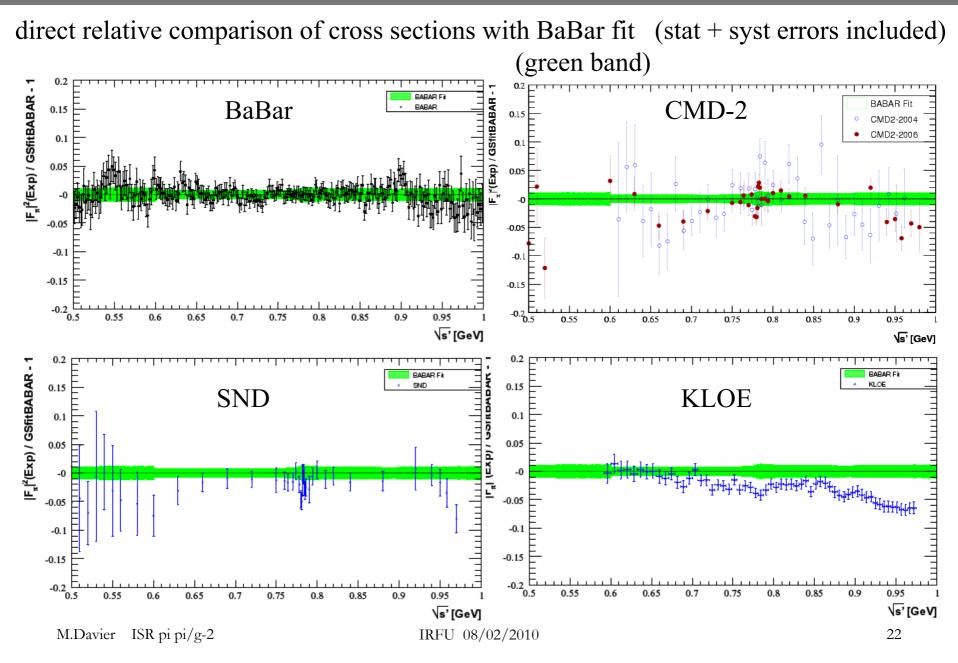
BaBar results (PRL 108, 231801,2009)



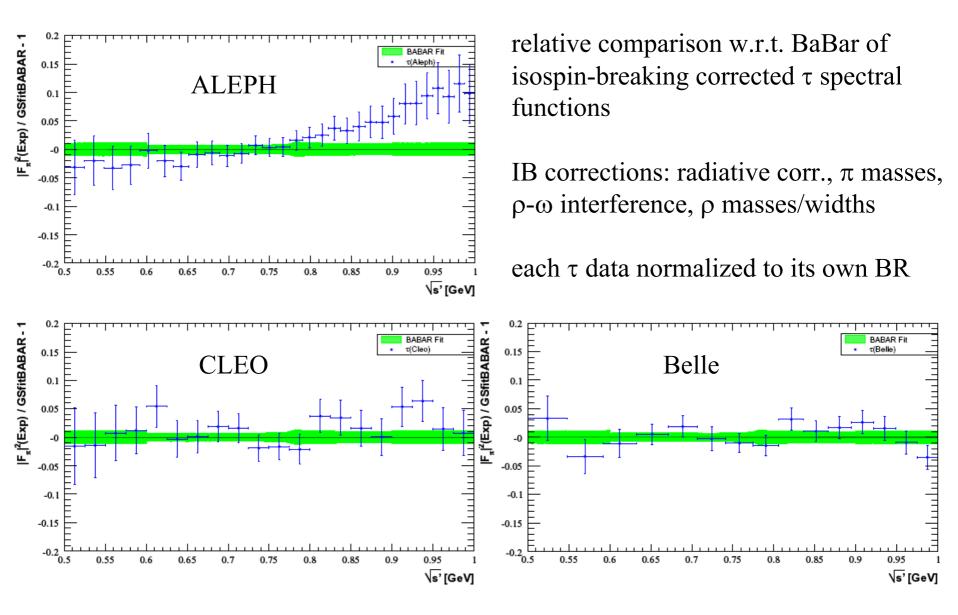
BaBar results in p region


2-MeV energy intervals

VDM fit of the pion form factor



BaBar vs. other experiments at larger mass



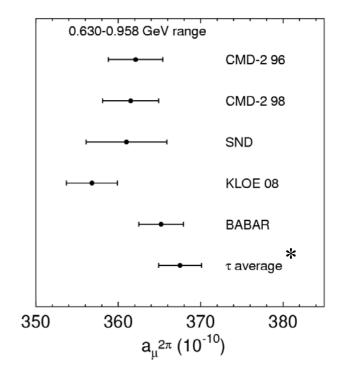
M.Davier ISR pi pi/g-2

BaBar vs.other ee data (0.5-1.0 GeV)

BaBar vs. IB-corrected τ data (0.5-1.0 GeV)

Computing $a_{\mu}^{\pi\pi}$

$$a_{\mu}^{\pi\pi(\gamma),LO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\pi\pi(\gamma)}^0(s) \; ,$$

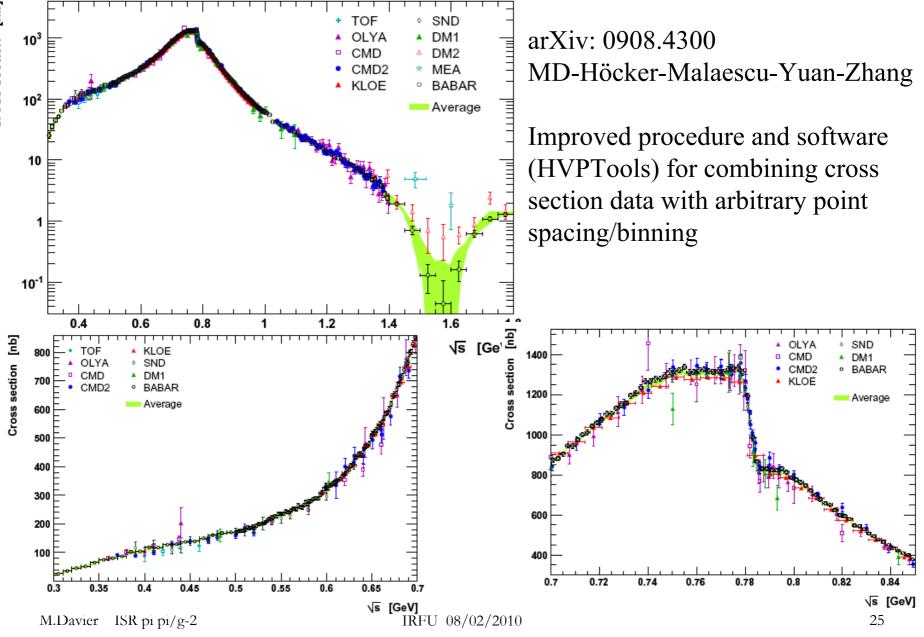

where K(s) is the QED kernel,

$$K(s) = x^{2} \left(1 - \frac{x^{2}}{2}\right) + (1 + x)^{2} \left(1 + \frac{1}{x^{2}}\right) \left[\ln(1 + x) - x + \frac{x^{2}}{2}\right] + x^{2} \frac{1 + x}{1 - x} \ln x ,$$

with
$$x = (1 - \beta_{\mu})/(1 + \beta_{\mu})$$
 and $\beta_{\mu} = (1 - 4m_{\mu}^2/s)^{1/2}$.

$m_{\pi\pi}$ range (GeV)	$a^{\pi\pi(\gamma),LO}_{\mu}$ BABAR	
0.28 - 0.30	$0.55 \pm 0.01 \pm 0.01$	$(\times 10^{-10})$
0.30 - 0.50	$57.62 \pm 0.63 \pm 0.55$	
0.50 - 1.00	$445.94 \pm 2.10 \pm 2.51$,
1.00 - 1.80	$9.97 \pm 0.10 \pm 0.09$	
0.28 - 1.80	$514.09 \pm 2.22 \pm 3.11$	

$$\begin{array}{ll} 0.28 - 1.8 \mbox{ (GeV)} \\ \hline BABAR & 514.1 \pm 3.8 \\ \mbox{previous e } ^+ e^- \mbox{ combined } & 503.5 \pm 3.5 \ * \\ \tau \mbox{ combined } & 515.2 \pm 3.5 \ * \end{array}$$



M.Davier ISR pi pi/g-2

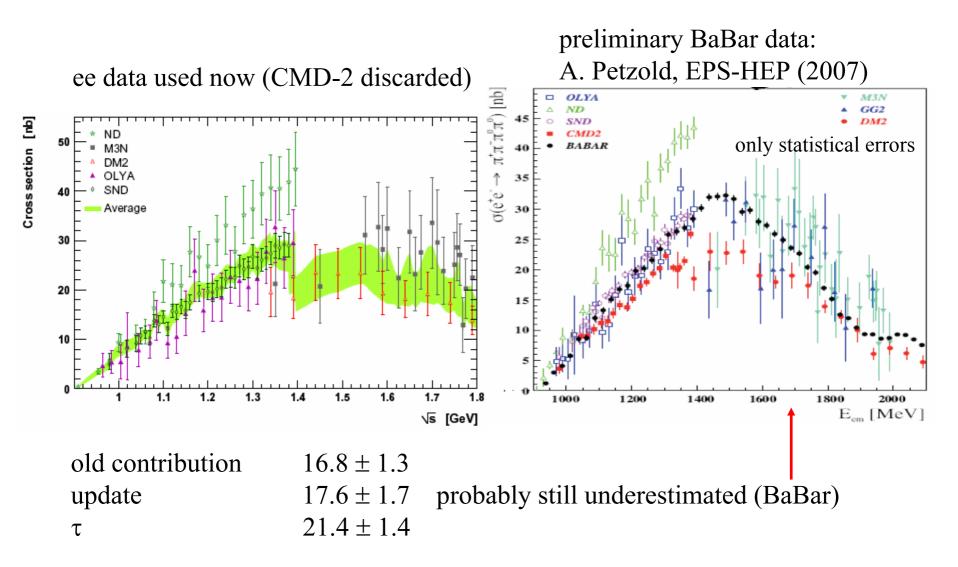
IRFU 08/02/2010

Including BaBar in the e⁺e⁻ Combination

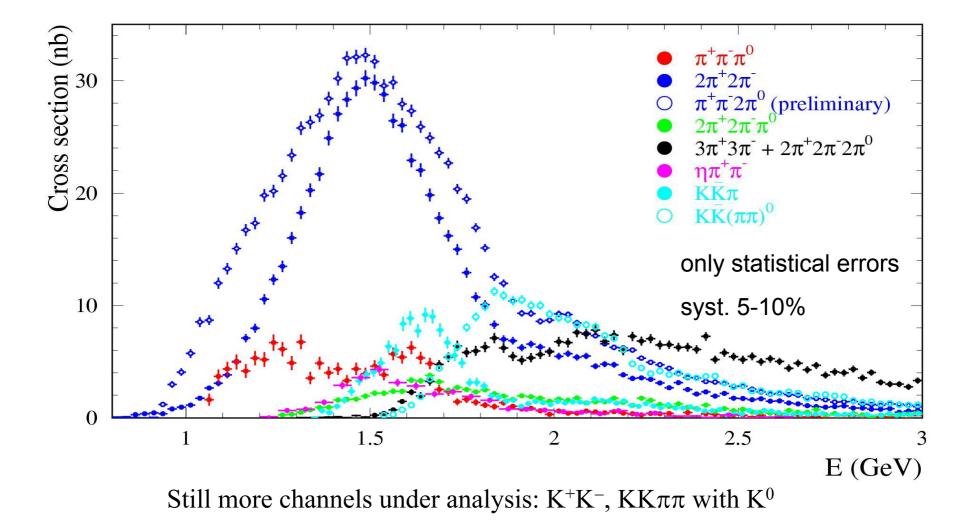
Cross section [nb]

Other hadronic contributions

from MD-Eidelman-Hoecker-Zhang (2006)


Modes	Energy [GeV]	e+e-	au
$\pi^+\pi^-2\pi^0$	2 <i>m</i> _π – 1.8	16.8 ± 1.3 ± 0.2 _{rad}	21.4 ± 1.3 ± 0.6 _{SU(2)}
$2\pi^+2\pi^-$ (+BaBar)	2 <i>m</i> _π – 1.8	13.1 ± 0.4 ± 0.0 _{rad}	12.3 ± 1.0 ± 0.4 _{SU(2)}
<i>w</i> (782)	0.3 – 0.81	38.0 ± 1.0 ± 0.3 _{rad}	-
<i>ф</i> (1020)	1.0 – 1.055	35.7 ± 0.8 ± 0.2 _{rad}	-
Other excl. (+BaBar)	$2m_{\pi} - 1.8$	24.3 ± 1.3 ± 0.2 _{rad}	-
<i>JΙψ</i> , ψ(2S)	3.08 – 3.11	7.4 ± 0.4 ± 0.0 _{rad}	-
R [QCD]	1.8 – 3.7	33.9 ± 0.5 _{theo}	-
R [data]	3.7 – 5.0	7.2 ± 0.3 ± 0.0 _{rad}	-
R [QCD]	5.0 − ∞	9.9 ± 0.2 _{theo}	-

 \Rightarrow another large long-standing discrepancy in the $\pi^+ \pi^- 2\pi^0$ channel !


M.Davier ISR pi pi/g-2

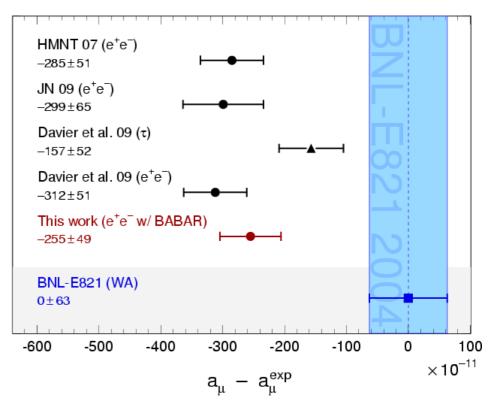
IRFU 08/02/2010

The Problematic $2\pi 2\pi^0$ Contribution

BaBar Multi-hadronic Results

Where are we?

• including BaBar 2π results in the e+e- combination + estimate of hadronic LBL contribution (Prades-de Rafael-Vainhstein, 2009) yields


 $a_{\mu}^{SM}[e+e-] = (11\ 659\ 183.4\ \pm 4.1\ \pm 2.6\ \pm 0.2)\ 10^{-10}$

HVP LBL EW (± 4.9)

• E-821 updated result

11 659 208.9 ±6.3

- deviation (ee) 25.5 ± 8.0 (3.2 σ)
- updated τ analysis
 +Belle +revisited IB corrections
- deviation (τ) 15.7 ± 8.2 (1.9 σ)

Discussion

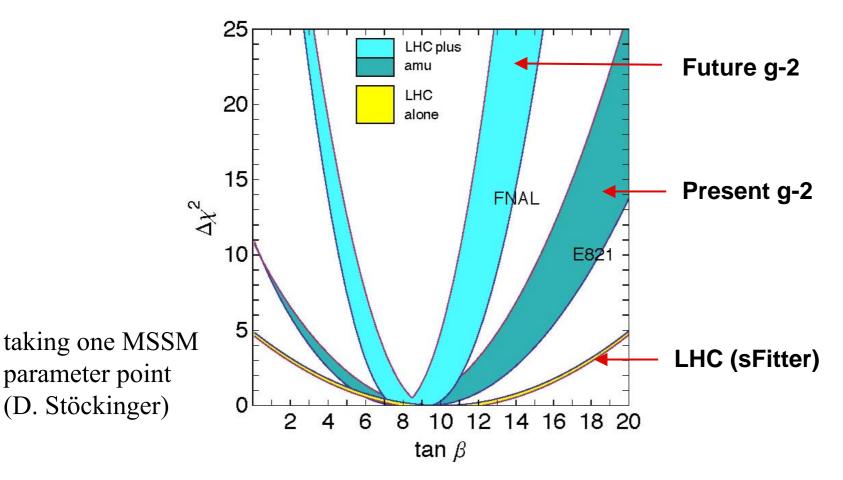
- BaBar 2π data complete and the most accurate, but expected precision improvement on the average not reached because of discrepancy with KLOE
- however, previous τ /ee disagreement strongly reduced

 $2.9\sigma(2006) \rightarrow 2.4\sigma (\tau \text{ update}) \rightarrow 1.5\sigma (\text{including BaBar})$

• a range of values for the deviation from the SM can be obtained, depending on the 2π data used:

BaBar	2.4σ
all ee	3.2σ
all ee –BaBar	3.7σ
all ee -KLOE	2.9σ
τ	1.9σ

- all approaches yield a deviation, but SM test limited by systematic effects not well accounted for in the experimental analyses (ee) and/or the corrections to τ data
- at the moment some evidence for a deviation ($\sim 3\sigma$), but not sufficient to establish a contribution from new physics. However valuable information if NP found at LHC


Perspectives

- first priority is a clarification of the BaBar/KLOE discrepancy:
 - origin of the 'slope' (reduced with the 2008 KLOE results /2004)
 - normalization difference on ρ peak (most direct effect on a_{μ})
 - Novosibirsk results in-between, closer to BaBar
 - slope also seen in KLOE/ τ comparison; BaBar agrees with τ
- further checks of the KLOE results are possible: their method is based on MC simulation for ISR and additional ISR/ISR probabilities \Rightarrow long-awaited test with $\mu\mu\gamma$ analysis (QED)
- contribution from multi-hadronic channels will continue to be updated with more results forthcoming from BaBar, particularly $2\pi 2\pi^0$
- more ee data expected from VEPP-2000 in Novosibirsk
- experimental error of E-821 direct a_{μ} measurement is a limitation, already now
 - \Rightarrow new proposal submitted to Fermilab to improve accuracy by a factor 4
 - \Rightarrow project at JPARC

Impact on new physics : ex. SUSY

LHC: direct search for SUSY partners

difficult to measure couplings and disentangle between models (ILC) g-2 measurement + theory prediction: sensitivity to couplings

Conclusions

- BaBar analysis of $\pi\pi$ and $\mu\mu$ ISR processes completed in full mass range
- Precision goal has been achieved: 0.5% in ρ region (0.6-0.9 GeV)
- Absolute $\mu\mu$ cross section agrees with NLO QED within 1.1%
- Comparison with data from earlier experiments fair agreement with CMD-2 and SND, poor with KLOE agreement with τ data
- e+e- and τ spectral functions are converging, not yet fully satisfactory
- Contribution to a_{μ} from BaBar is (514.1 ±2.2±3.1)×10⁻¹⁰ in 0.28-1.8 GeV
- BaBar result has comparable accuracy (0.7%) to combined previous results
- Deviation between BNL measurement and theory prediction reduced using BaBar $\pi\pi$ data

 a_{μ} [exp] – a_{μ} [SM] =(19.8 ± 8.4)×10⁻¹⁰ 25.5 ± 8.0

 2π from BaBar only combined ee including BaBar

More developments expected in the short and long terms

M.Davier ISR pi pi/g-2

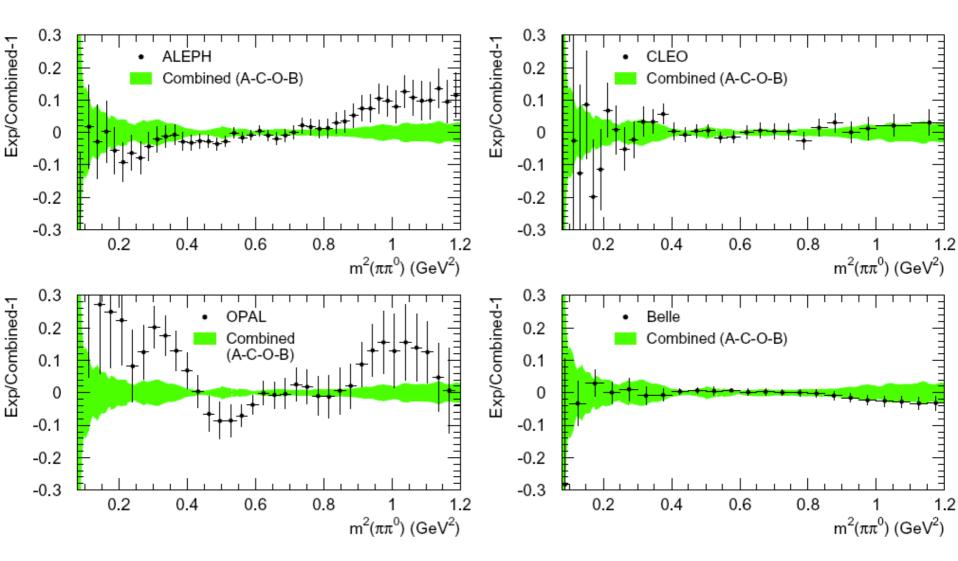
IRFU 08/02/2010

Backup Slides

SU(2) Breaking

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contrib.:

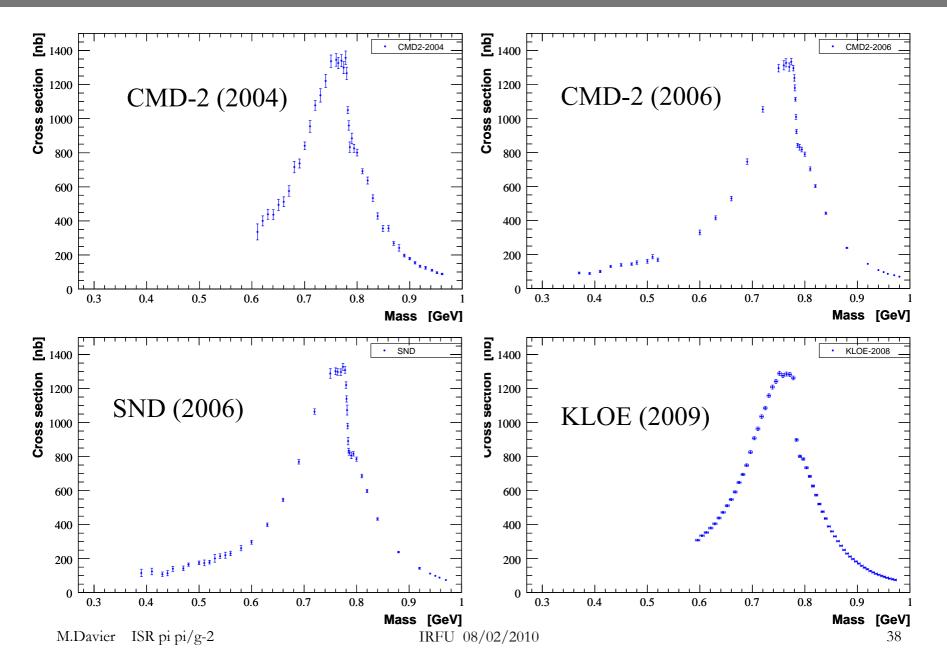
- Electroweak radiative corrections:
 - dominant contribution from short distance correction $S_{\rm EW}$
 - subleading corrections (small)
 - long distance radiative correction $G_{\rm EM}(s)$
- Charged/neutral mass splitting:
 - $m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
 - $\rho \omega \text{ mixing (EM } \omega \rightarrow \pi^- \pi^+ \text{ decay) corrected using FF model}$
 - $m_{\rho-} \neq m_{\rho0}$ *** and $\Gamma_{\rho-} \neq \Gamma_{\rho0}$ ***
- Electromagnetic decays: $\rho \rightarrow \pi \pi \gamma^{***}$, $\rho \rightarrow \pi \gamma$, $\rho \rightarrow \eta \gamma$, $\rho \rightarrow l^+l^-$
- Quark mass difference $m_u \neq m_d$ (negligible)


Marciano-Sirlin' 88 Braaten-Li' 90

Cirigliano-Ecker-Neufeld' 02 Lopez Castro et al.' 06

Alemany-Davier-Höcker' 97, Czyż-Kühn' 01

Flores-Baez-Lopez Castro' 08 Davier et al.'09


Revisited Analysis using τ Data: including Belle

Revisited Analysis τ Data: new IB corrections

Source	$\Delta a_{\mu}^{\rm had, LO}[\pi \pi, \tau] \ (10^{-10})$	
	GS model	KS model
$S_{\rm EW}$	-12.21 ± 0.15	
$G_{\rm EM}$	-1.92 ± 0.90	
FSR	$+4.67 \pm 0.47$	
$\rho – \omega$ interference	$+2.80\pm0.19$	$+2.80\pm0.15$
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on σ	-7.88	
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ}	+4.09	+4.02
$m_{\rho\pm} - m_{\rho_{\rm bare}^0}$	$0.20_{-0.19}^{+0.27}$	$0.11^{+0.19}_{-0.11}$
$\pi\pi\gamma$, electrom. decays	-5.91 ± 0.59	-6.39 ± 0.64
Total	-16.07 ± 1.22	-16.70 ± 1.23
	-16.07 ± 1.85	

Data on $e^+e^- \rightarrow hadrons$

The Measurement

- ISR photon at large angle in EMC
- 1 (for efficiency) or 2 (for physics) tracks of good quality
- identification of the charged particles
- separate $\pi\pi/KK/\mu\mu$ event samples
- kinematic fit (not using ISR photon energy) including 1 additional photon
- obtain all efficiencies (trigger, filter, tracking, ID, fit) from same data
- measure ratio of $\pi\pi\gamma(\gamma)$ to $\mu\mu\gamma(\gamma)$ cross sections to cancel

ee luminosity additional ISR vacuum polarization ISR photon efficiency

• otherwise ~2% syst error

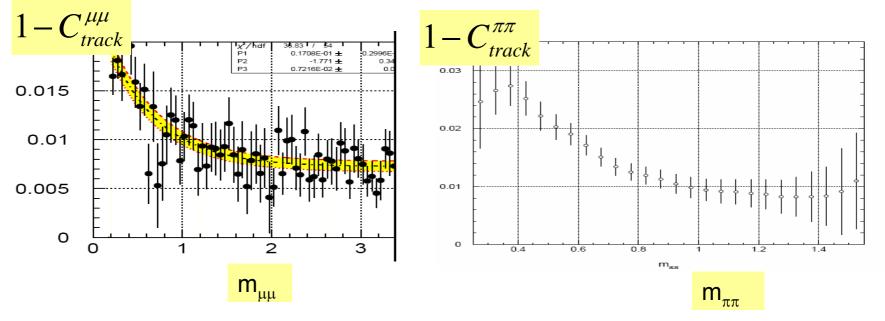
- correct for $|FSR|^2$ contribution in $\mu\mu\gamma(\gamma)$ (QED, <1% below 1 GeV)
- additional FSR photons measured

$$R_{\exp}(s') = \frac{\sigma_{[\pi\pi\gamma(\gamma)]}(s')}{\sigma_{[\mu\mu\gamma(\gamma)]}(s')} = \frac{\sigma^{0}_{[\pi\pi(\gamma)]}(s')}{(1+\delta^{\mu\mu}_{\text{FSR}})\sigma^{0}_{[\mu\mu(\gamma)]}(s')} = \frac{R(s')}{(1+\delta^{\mu\mu}_{\text{FSR}})(1+\delta^{\mu\mu}_{add,FSR})}$$

MC Generators

- Acceptance and efficiencies determined initially from simulation, with data/MC corrections applied
- Large simulated samples, typically 10 × data, using AfkQed generator
- AfkQed: lowest-order (LO) QED with additional radiation: ISR with structure function method, γ assumed collinear to the beams and with limited energy FSR using PHOTOS
- Phokhara 4.0: (almost) exact second-order QED matrix element, limited to NLO
- Studies comparing Phokhara and AfkQed at 4-vector level with fast simulation
- QED test with $\mu \mu \gamma (\gamma)$ cross section requires reliable NLO generator
- $\pi \pi (\gamma)$ cross section obtained through $\pi \pi \gamma / \mu \mu \gamma$ ratio, rather insensitive to detailed description of radiation in MC

M.Davier ISR pi pi/g-2

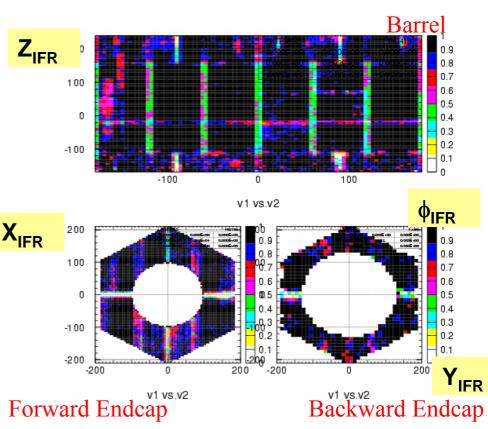

IRFU 08/02/2010

Data/MC Tracking Correction to $\pi\pi\gamma$, $\mu\mu\gamma$ cross sections

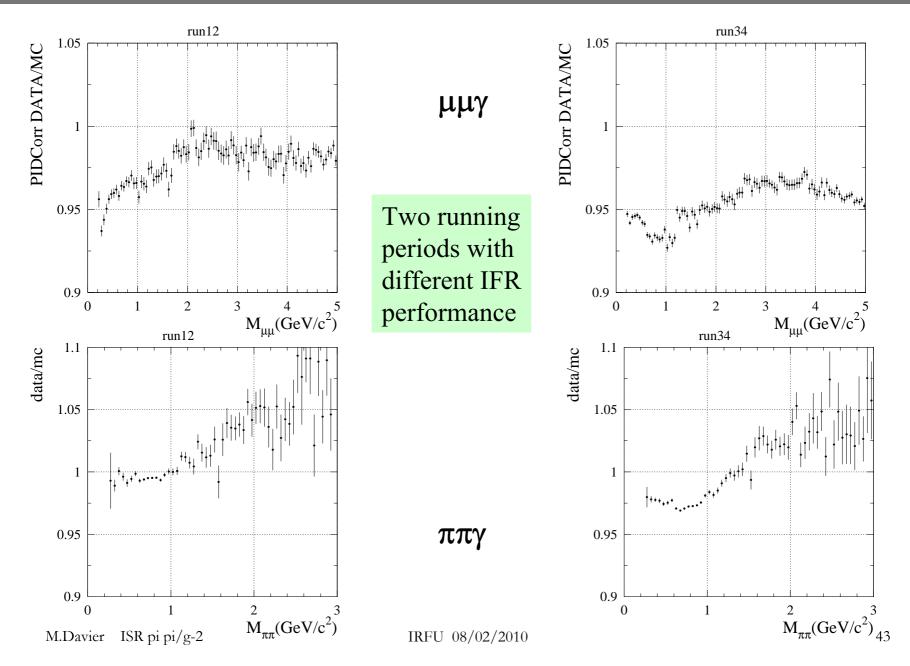
- single track efficiency
- correlated loss probability f₀
- probability to produce more than 2 tracks f₃

$$C_{track}^{\mu\mu} = \left(\frac{\varepsilon_{track}^{data}}{\varepsilon_{track}^{MC}}\right)^2 \frac{(1 - f_0 - f_3)^{data}}{(1 - f_0 - f_3)^{MC}}$$

and similarly for $\pi\pi$

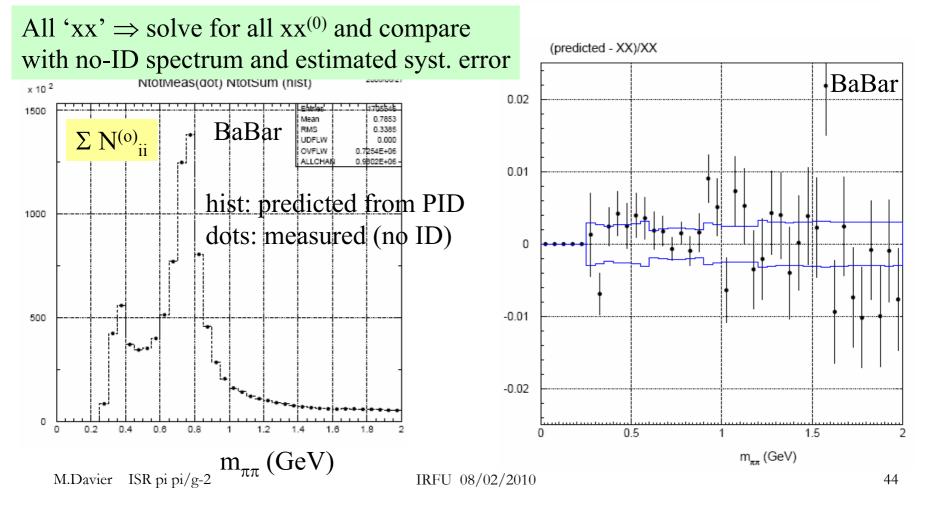

M.Davier ISR pi pi/g-2

Particle Identification

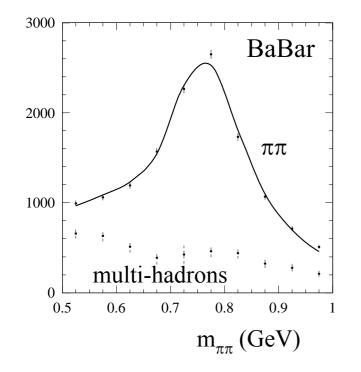

- Particle identification required to separate XXγ final processes
- Define 5 ID classes using cuts and PID selectors (complete and orthogonal set)
- Electrons rejected at track definition level (E_{cal}, dE/dx)
 - All ID efficiencies measured

 $\epsilon_{x \to I}$

• a tighter π ID (π_h) is used for tagging in efficiency measurements and to further reject background in low cross section regions. * isolated muons Mµµ > 2.5 GeV
→ efficiency maps (p,v₁,v₂) impurity (1.1±0.1) 10⁻³
* correlated efficiencies/close tracks
→ maps (dv₁,dv₂)



Data/MC PID corrections to $\mu\mu$ and $\pi\pi$ cross sections

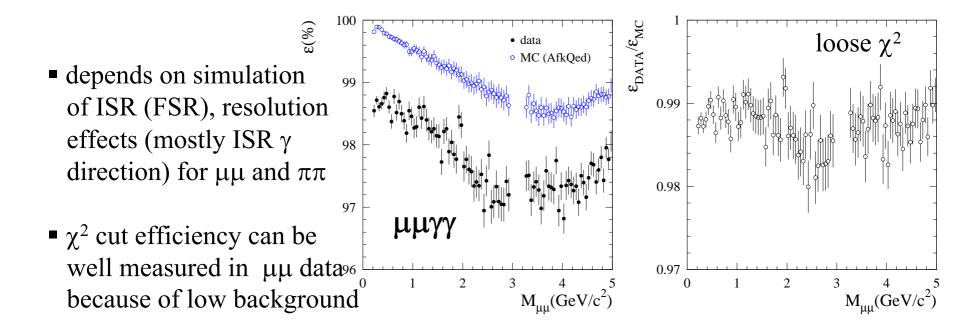

PID separation and Global Test

$$N_{'\pi\pi'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'\pi\pi'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'\pi\pi'} + N_{KK}^{(0)} \varepsilon_{KK\to'\pi\pi'} + N_{ee/'\pi\pi'}^{(0)}$$
$$N_{'\mu\mu'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'\mu\mu'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'\mu\mu'} + N_{KK}^{(0)} \varepsilon_{KK\to'\mu\mu'}$$
$$N_{'KK'} = N_{\mu\mu}^{(0)} \varepsilon_{\mu\mu\to'KK'} + N_{\pi\pi}^{(0)} \varepsilon_{\pi\pi\to'KK'} + N_{KK}^{(0)} \varepsilon_{KK\to'KK'}$$

Backgrounds

- background larger with loose χ^2 cut used in 0.5-1.0 GeV mass range
- $q \overline{q}$ and multi-hadronic ISR background from MC samples + normalization from data using signals from $\pi^0 \rightarrow \gamma_{ISR} \gamma$ (qq), and ω and ϕ ($\pi \pi \pi^0 \gamma$)
- global test in background-rich region near cut boundary

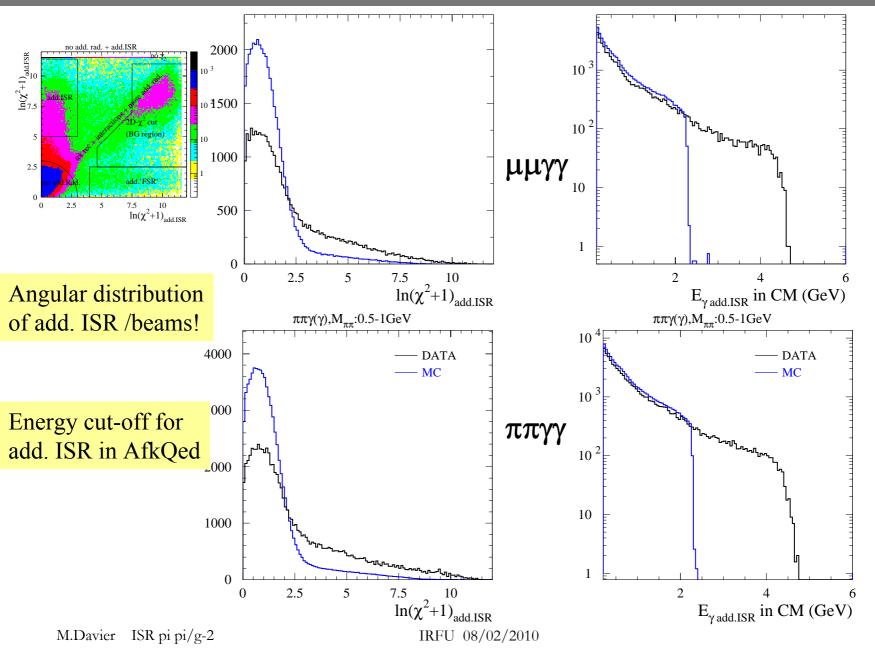
Fitted BG/predicted = 0.968 ± 0.037

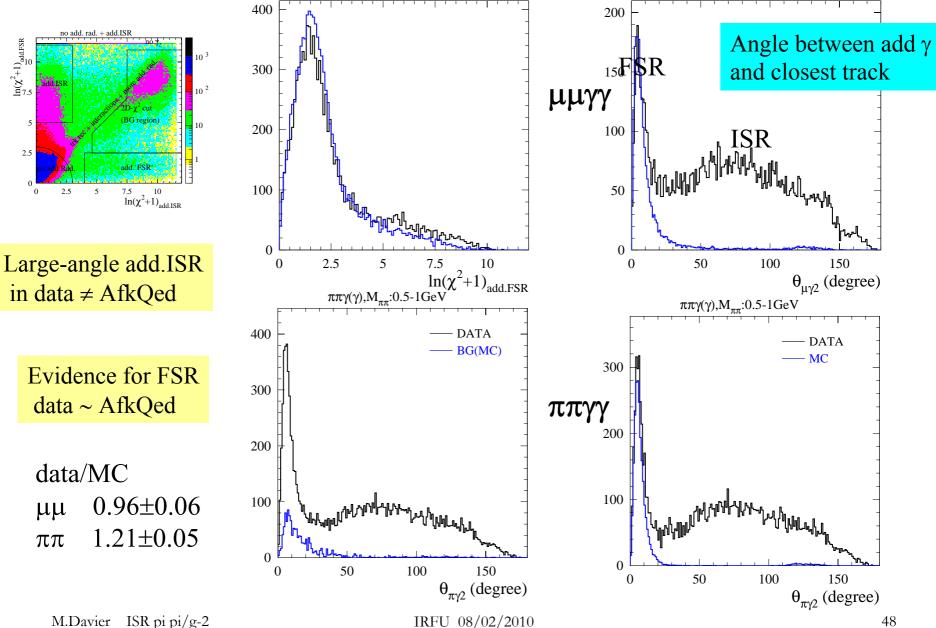

BG fractions in 10⁻² at $m_{\pi\pi}$ values

process	$0.525~{\rm GeV}$	$0.775~{ m GeV}$	$0.975~{ m GeV}$
$\mu\mu$	3.48 ± 0.36	0.37 ± 0.23	2.71 ± 0.31
KK	0.08 ± 0.01	0.01 ± 0.01	0.08 ± 0.01
$\gamma 2\pi \pi^0$	8.04 ± 0.41	0.39 ± 0.05	0.88 ± 0.19
$q\overline{q}$	1.11 ± 0.17	0.26 ± 0.03	1.81 ± 0.19
$\gamma 2\pi 2\pi^0$	1.29 ± 0.16	0.06 ± 0.01	0.46 ± 0.09
$\gamma 4\pi$	0.20 ± 0.04	0.09 ± 0.01	0.24 ± 0.06
$\gamma p \overline{p}$	0.22 ± 0.02	0.04 ± 0.01	0.52 ± 0.06
$\gamma \eta 2\pi$	0.02 ± 0.01	0.03 ± 0.01	0.09 ± 0.01
$\gamma K_S K_L$	0.18 ± 0.03	0.01 ± 0.01	0.10 ± 0.02
$\gamma 4\pi 2\pi^0$	< 0.01	< 0.01	< 0.01
$\tau\tau$	0.17 ± 0.03	0.04 ± 0.01	0.31 ± 0.05
γee	0.63 ± 0.63	0.03 ± 0.03	0.27 ± 0.27
total	15.38 ± 0.87	1.31 ± 0.24	7.37 ± 0.51

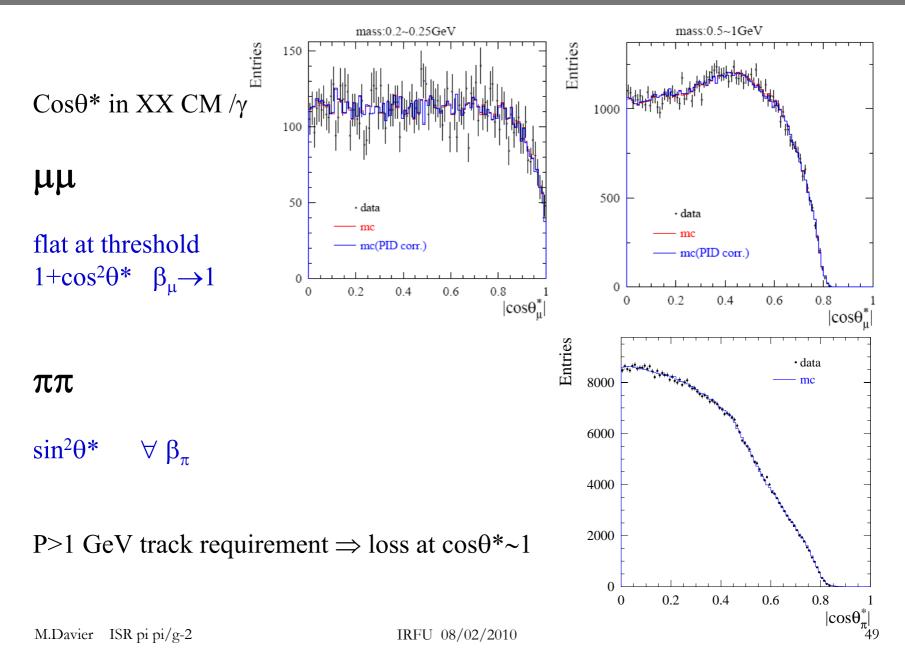
M.Davier ISR pi pi/g-2

IRFU 08/02/2010

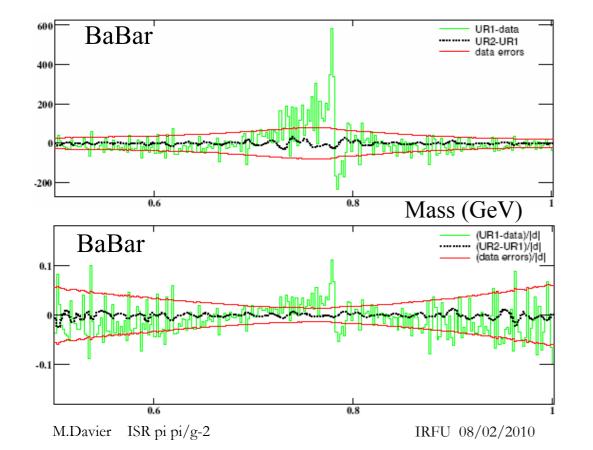

χ^2 cut Efficiency Correction


- main correction from lack of angular distribution for additional ISR in AfkQed
- common correction: 1% for loose χ^2 , 7% for tight χ^2
- additional loss for ππ because of interactions studied with sample of interacting events much better study now, 2 independent methods

secondary interactions data/MC 1.51 ± 0.03 syst error $0.3 - 0.9 \times 10^{-3}$


Additional ISR

Additional FSR



Checking Known Distributions

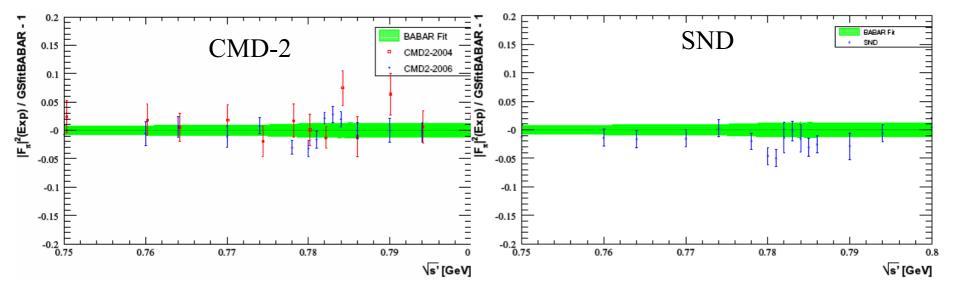
Unfolding $\pi\pi$ Mass Spectrum

- measured mass spectrum distorted by resolution effects and FSR ($m_{\pi\pi}$ vs. $\sqrt{s'}$)
- iterative unfolding method (B. Malaescu arXiv:0907-3791)
- mass-transfer matrix from simulation with corrections from data
- 2 MeV bins in 0.5-1.0 GeV mass range, 10 MeV bins outside
- most salient effect in ρ - ω interference region (little effect on $a_{\mu}^{\pi\pi}$)

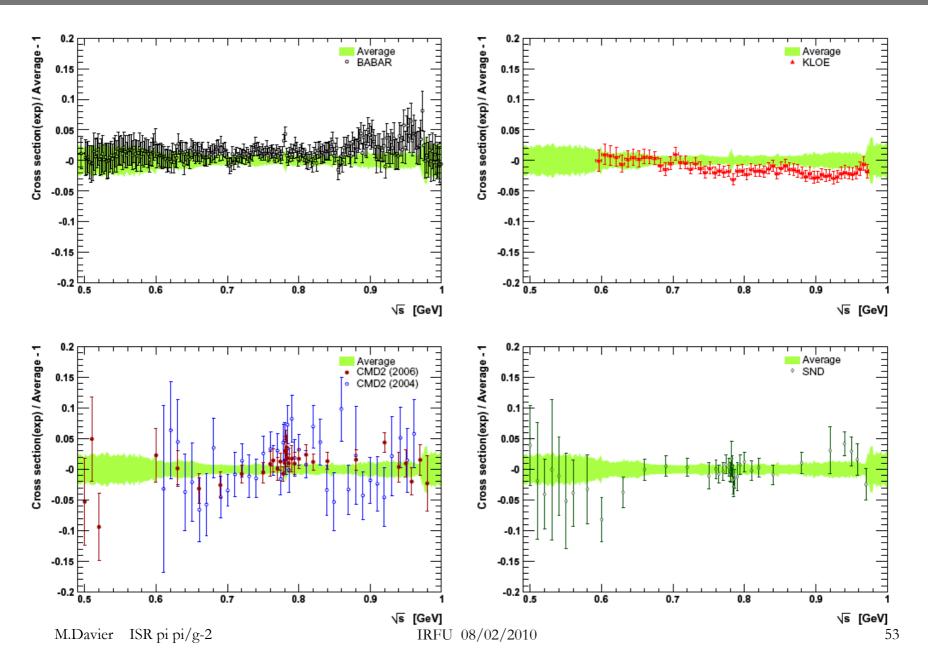
Absolute difference unfolded(1) – raw data unfolded(2) – unfolded(1) Statistical errors (band)

Relative difference

Changes since preliminary results at Tau08

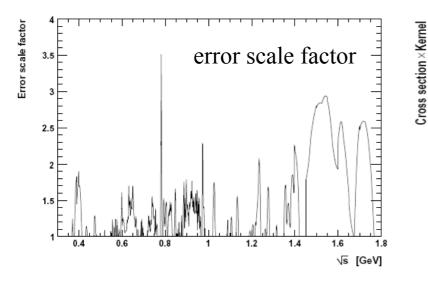

- preliminary results Sept. 2008: only 0.5-3 GeV (excess/expect. near threshold)
- problem explored (Oct. 2008- Feb. 2009): trigger/BGFilter, ee background
- $\mu\mu \rightarrow \pi\pi'$ re-investigated \Rightarrow direct measurement achieved using ID probabilities before: model for correlated loss, no precise direct check \Rightarrow significant changes $\mu\mu$ efficiency for ISR lumi $\uparrow +0.9\%$ $\mu\mu$ contamination in $\pi\pi'$ sample \downarrow $\Rightarrow \pi\pi$ cross section $\downarrow -1.8\%$ 0.525 GeV -1.0% 0.775 GeV -1.4% 0.975 GeV
- other changes: MC unfolding mass matrix corrected for data/MC differences
 (small) ISR lumi now used in 50-MeV sliding bins, instead of global fit
 cancellation of add ISR in ππ/μμ ratio studied/corrected
- extensive review

BaBar vs.other ee data (ρ – ω interference region)


- \bullet mass calibration of BaBar checked with ISR-produced J/ $\psi \rightarrow \mu \mu$
- expect $-(0.16 \pm 0.16)$ MeV at ρ peak
- $\hfill \omega$ mass determined through VDM mass fit

 $m_{\omega}^{\text{fit}} - m_{\omega}^{\text{PDG}}$ = -(0.12 ± 0.29) MeV

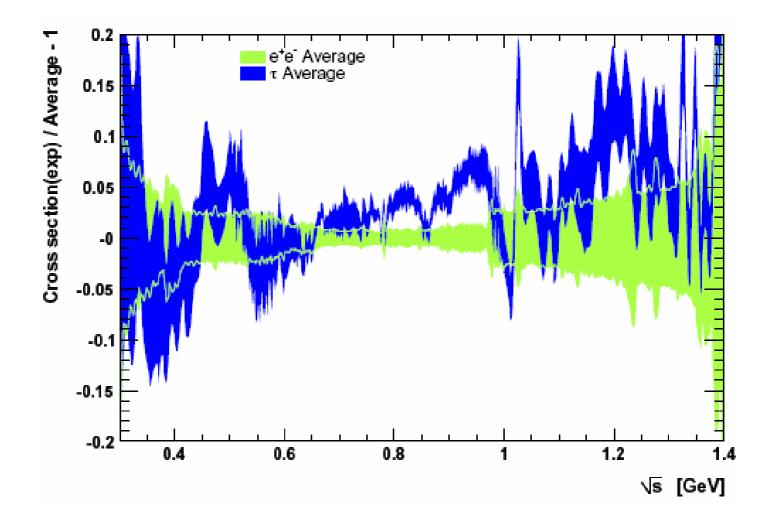
- Novosibirsk data precisely calibrated using resonant depolarization
- comparison BaBar/CMD-2/SND in ρ-ω interference region shows no evidence for a mass shift




Consistency of Experiments with Average

Obtaining the average cross section

- local weighted average performed
- full covariance matrices
- local χ^2 used for error rescaling
- average dominated by BaBar and KLOE, BaBar covering full range



Backup Slides

Energy range (GeV)	Experiment	$a_{\mu}^{\text{had,LO}}[\pi\pi] \ (10^{-10})$
$2m_{\pi\pm} - 0.3$	Combined e^+e^- (fit)	0.55 ± 0.01
0.30 - 0.63	Combined e^+e^-	$132.6 \pm 0.8 \pm 1.0 \ (1.3_{\rm tot})$
0.63 - 0.958	CMD2 03	$361.8 \pm 2.4 \pm 2.1 \ (3.2_{tot})$
	CMD2 06	$360.2 \pm 1.8 \pm 2.8 \ (3.3_{\rm tot})$
	SND 06	$360.7 \pm 1.4 \pm 4.7 \ (4.9_{tot})$
	KLOE 08	$356.8 \pm 0.4 \pm 3.1 \ (3.1_{\rm tot})$
	BABAR 09	$365.2 \pm 1.9 \pm 1.9 (2.7_{tot})$
	Combined e^+e^-	$360.8 \pm 0.9 \pm 1.8 \ (2.0_{\rm tot})$
0.958 - 1.8	Combined e^+e^-	$14.4 \pm 0.1 \pm 0.1 \ (0.2_{\rm tot})$
Total	Combined e^+e^-	$508.4 \pm 1.3 \pm 2.6 \ (2.9_{tot})$
Total	Combined τ [1]	$515.2 \pm 2.0_{\text{exp}} \pm 2.2_{\mathcal{B}} \pm 1.6_{\text{IB}} (3.4_{\text{tot}})$

Backup Slides

