COSMOLOGY FROM THE CMB AT ARCMINUTE SCALES: FIRST RESULTS FROM THE ATACAMA COSMOLOGY TELESCOPE

CEA Saclay Particle Physics Group Seminar

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

THE REAL MICROWAVE SKY

Joe Fowler—CEA Saclay 2010

NEW SCIENCE FROM LARGE MILLIMETER TELESCOPES

Joe Fowler—CEA Saclay 2010

CMB ANISOTROPY POWER SPECTRUM

Measurements to date mainly observe effects imprinted in the first 1 Myr, the "primary anisotropy".

• (Single-field) inflation governs the spectral tilt n_s

CURRENT RECENT STATE OF THE CMB POWER SPECTRUM

Joe Fowler—CEA Saclay 2010

SECONDARY ANISOTROPIES IN THE CMB

"Secondary" = all effects later than the *z*=1089 last scattering surface. Secondary anisotropies also contain information beyond the power spectrum.

Cosmic Microwave Background

Using the CMB as a backlight—study structure as it was forming. Structure formation \rightarrow Dark Energy

GALAXY CLUSTERS TRACE COSMIC STRUCTURE FORMATION

Hubble Ultra-deep field

Cluster: Abell 2667

SUNYAEV-ZEL'DOVICH EFFECT (1970): SIGNATURE OF MASSIVE CLUSTERS

Elastic Compton $e\gamma \rightarrow e\gamma$ from hot electron ICM

A *z*-independent signal!

Traces integral of n_e rather than n_e^2 .

Once *z* measured in optical: a history of the formation of large structures. Need *coordinated observations*.

WHY SURVEY FOR CLUSTERS WITH THE CMB?

- Clusters are (exponentially) sensitive to growth of structure in the universe.
- Constrain the cosmological model and the evolution of Ω_{Λ} .
- SZ effect is independent of *z*.
- Integrated Compton *y* is tightly correlated with cluster mass.

Extragalactic Foregrounds

Flat-spectrum radio galaxies

Dusty starburst galaxies

Centaurus A (optical, submm, X-ray composite) Arp 220 Visible (HST)

THE MILLIMETER-WAVE SKY AT ACT FREQUENCIES

Simulations : Sehgal et al, arxiv:0908.0540

LENSING OF THE CMB (NOT THERE YET...)

CMB Lensing Geometry

Sudeep Das

Typical 3' shift, but convergence spectrum peaks at ℓ = 50: large & small scales coupled!

Difference map (Lensed—Unlensed)

More on recovery : Das, Hajian & Spergel 2008

ACT SCIENCE GOALS

- 1. Constrain Inflationary Potential through n_s
- 2. Constrain σ_8 Through tSZ Power Spectrum, Cluster Counts, CMB Lensing
- 3. Produce Mass-Selected tSZ Cluster Catalog
- 4. Probe Galaxy Cluster Pressure Profiles
- 5. Measure CMB Lensing Convergence and Correlate Lensing Convergence with LSS
- 6. Characterize Flat Spectrum Radio and Submm Galaxies
- 7. Search for Missing Baryons through kSZ

HIGH-RESOLUTION MILLIMETER OBSERVATIONS ARE UNDERWAY

Shown here:

- South Pole Telescope
- APEX-SZ
- BLAST
- Planck
- SZA

THE ATACAMA COSMOLOGY TELESCOPE TEAM

With collaborators now at:

- Cardiff University (UK)
- Columbia University (USA)
- Harvard/Smithsonian CfA (USA)
- Haverford College (USA)
- INAOE (Mexico)
- LLNL (USA)
- MPI Garching (Germany) •
- NASA/GSFC (USA)
- NIST (USA)

- Oxford University (UK)
- Pontificía Universidad Católica (Chile)
 University of Massachusetts (USA)
- Princeton University (USA)
- Rutgers University (USA)
- Stanford University (USA)
- University of Barcelona (Spain)
- University of British Columbia (Canada)
- University of Chicago (USA)

- Swetz at the site with ACT Receiver D.
- U. of KwaZulu-Natal (South Africa)
- University of Miami (USA)
- University of Pennsylvania (USA)
- University of Pittsburgh (USA)
- University of Rome (Italy)
- University of Toronto (Canada)
- University of Tokyo/IPMU (Japan)
- West Chester University (USA)

CERRO TOCO SITE

5200 meters near peak of Cerro Toco, in the Atacama Desert in the Andes of Northern Chile

23° south latitude.

Joe Fowler—CEA Saclay 2010

INSTALLATION: EARLY 2007

TELESCOPE

Some constraints:

- Diffraction-limited beams
- 25' fields of view (x3)
- Clear aperture
- 6-meter (off-axis) primary
- 2-meter secondary
- Fast / compact system
- Robotic control

Roughly an aplanatic Gregorian.

Measuring the 71 facets of 6 m primary

$25-30 \ \mu m \ rms \ surface \ accuracy$

CRYOSTAT

Cylindrical, axis aimed at secondary No consumable liquid cryogens

Pulse Tube Coolers:

- 1st stage: 30W @ 40K
- 2nd stage: 0.2W @ 3K
- ⁴He+³He sorption fridges
- 270 mK

• Cold all night

Cold silicon lenses reimage sky

145, 215, 280 GHz filters (Cardiff)

CRYOSTAT AND COLD SILICON OPTICS

TRANSITION EDGE SENSOR BOLOMETERS (GSFC)

One absorber (Si) with TES

• 1 mm square absorber (silicon with implant)

• Transition edge sensor (TES) held on transition at

• No feed horns

T_c=0.45 K

One TES (Au+Mb)

0.030 **C** 0.025 R • Pop-up geometry; build focal plane one "column" at a ¥ 0.020 ê 0.015 ĝ Transition 0.010 0.005 0.000 5 10 TES P (pr) 0 15 Total thermal power (pW)

time (32 columns of 1 x 32)

THREE TES ARRAYS: 3072 DETECTORS

2007: 1000 x 150 GHz 2008: 1000 x (150 & 220 & 280 GHz)

150 GHz

220 GHz

280 GHz ACBAR (2005)

High-ρ silicon "coupling layer" is mounted some ~50 μm above absorbers.

TIME-DOMAIN MULTIPLEXING WITH SQUIDS (NIST)

- 3 stages of SQUIDs
- Feed 1st SQUID output current into a 2nd SQUID many-to-one.
- Turn on only one of the many at a time.
- 2 µs on, 64 µs off.
- Cycle the 33 inputs before L/R time.

Green parts = One MUX chip per TES column.

OBSERVING STRATEGY

Observe [20:30-09:00 local] =

- Scan ~5° range each 10 sec
- Southeast (or NE) for 1/2 night
- Southwest (or NW) afterwards
- 10 minutes for a planet most nights

Atmosphere causes gradient on the sky ~60-100 mK

ACT approach: Scan at constant elevation

Each spot observed in 2 distinct stripes: before and after meridian crossing

ONE-HALF SECOND SCANNING ACROSS SATURN

OBSERVED REGIONS

Noise level (0-80 µK color scale) Black=Galactic dust region

ACT RAW DATA SET

- The data are the stage1 SQUID feedback values, causally filtered by a DSP to prevent aliasing above f_{Nyg}=200 Hz.
- 3 arrays * (32x32 detectors) * (400 Hz samples) * (4 bytes each) →
 19 GB raw data per hour! (6 GB with lossless compression)
- Over 2 TB per month for a single copy of raw data.
- Transport protocol: HDOA

STRAIGHTFORWARD MAPPING IS NOT ENOUGH

The simplest kind of map produces stripes parallel to the scan(s) So how do you get from there to here?

MAXIMUM LIKELIHOOD MAPS

Mapmaking equation:

 $A^{T} N^{-1} A m = A^{T} N^{-1} d$

d = raw data set (>10x10⁹ per array per night)
 m = desired map (30x10⁶ per array)
 N = noise covariance between data
 A = pointing matrix

If N were diagonal, this would be an **O**(n) process:

N⁻¹ d would be the weighted data set

A^T N⁻¹ d would map the weighted data set

- A^T N⁻¹A would be the total weight per map pixel
- \rightarrow Generalizes the idea of weighted means

But N is not diagonal!

- 1. Detectors have non-white noise
- 2. Any mech/elec coupling in camera
- 3. ATMOSPHERE

ACT APPROACH TO THE MAPPING PROBLEM

Our goal: converge to a maximum likelihood map.

Mapmaking equation:

 $A^T N^{-1} A m = A^T N^{-1} d$

How to approximate *m* without losing information?

- Work on N in Fourier space
- Pre-conditioned Conjugate Gradient solver
- Find/remove noisy modes (common mode+others).
- Recover low-& sky modes iteratively.

Final calibration to WMAP maps is underway. It follows:

- Pointing
- Time constants
- DAC→pW
- Flat field
- Atmosphere loss
- Load-dependent correction
- Beam
- Uranus and Saturn amplitudes

DISCOVERING CLUSTERS AND POINT SOURCES

ACT Map

with Planck resolution

BULLET CLUSTER (1E 0657-56)

Color: ACT 145 GHz map Black contours: Chandra 0.5-2 keV Orange contours: dark matter Gray disk: ACT filtered beam (2.4')

Composite Credit: X-ray: NASA/CXC/CfA/M. Markevitch et al; Lensing Map: NASA/STScI; ESO WFI; Magellan/Arizona/ D. Clowe et al Optical: NASA/STScI; Magellan/Arizona/D.Clowe et al.

ABELL 3128

NE: separate cluster z = 0.44. X-ray: 5 keV

> Contours: XMM-Newton 100 ks (mosaic) Color: ACT 145 GHz map

Nice illustration of the redshift-independence of SZ

SW: Horologium-Reticulum supercluster at *z* = 0.06. X-ray: 3 keV.

15 CLUSTERS FOUND IN BLIND SURVEY

7 of 15 are new.

5 others never before seen in SZ.

Redshifts to known:

- 0.295 Bullet
- 0.222 AS0592
- 0.301 AS0295
- 0.167 A3040
- 0.440 A3128 NE
- 0.88 SPT 0547
- 0.295 AS0520
- 0.343 RXC
- 0.118 A2941
- 0.45 SPT 0509

7 of 15 are new.

5 others never before seen in SZ.

Redshifts to known:

- 0.295 Bullet
- 0.222 AS0592
- 0.301 AS0295
- 0.167 A3040
- 0.440 A3128 NE
- 0.88 SPT 0547
- 0.295 AS0520
- 0.343 RXC
- 0.118 A2941
- 0.45 SPT 0509

OPTICAL FOLLOW-UP IS UNDERWAY

POWER SPECTRUM: CURRENT GOAL

ACT aims to estimate the "total model" spectrum from 1000-8000.

- 1. Inflation ℓ<3000
- 2. Total SZ
- 3. Dusty galaxies

With 220, 280 GHz, start to distinguish items 1, 2, 3.

POWER SPECTRUM CHALLENGES

- Foregrounds include SZ clusters, radio galaxies, star-forming galaxies.
- Mapmaking: difficult to recover large-scale power.
- Source masks spread out power in the spectrum.
- Maps have edges.
- Partial correlation in source locations.

ACT SOUTHERN FIELD AT 150 GHz

Top: full data set (filtered to remove ℓ <300 power)</th>Bottom: difference between halves of data

Separate maps into 13 patches of equal size, (nearly) equal weight. $4.2^{\circ} \times 4.2^{\circ}$ squares \rightarrow spectral resolution of $360^{\circ}/4.2^{\circ} \approx 86$

This analysis:

- 228 deg²
- RA 1^h to 7^h,
- δ -55° to -51°,
- a low-dust area south of the Galactic plane.

First, mask out 108 bright sources (105 are radio-identified)

Current uata set: 2008 (Aug-Dec) at 150 GHZ only. Not yet included:

- 2007 and 2009 data (1+7 months)
- 220 or 280 GHz data

MASK EFFECTS ON THE SPECTRUM

The inverse operation can be applied, but it increases high-k error bars.

Multi-Taper Method to Minimize Leakage

- Use the DPSS (above) in 2D (right)
- Multiple tapers to extract most info
- Prewhiten map to reduce ill effects of remaining leakage

DATA ARE SPLIT INTO FOUR PARTS FOR CROSS-SPECTRA

Region mapped 4x with ¼ of data:

Splitting data into 4 also offers strong null tests.

TWO-DIMENSIONAL POWER SPECTRUM

Multi-taper method with N_{res} =3 gives resolution of ~250 in ℓ

The entire data set, averaged over all 13 patches just for visualizing:

Narrow band of problems in $|\ell_x|$ <250 due to stable scan-synchronous pickup.

Expedient: mask in e-space.

TWO-DIMENSIONAL POWER SPECTRUM (MASKED)

Isotropy test in 2d ℓ-space:

- Noise: no
- Mean: yes

Filtered out lowest angular frequencies, |**2**|<300:

Next step: annular averaging \rightarrow 1d spectrum

ACT 150 GHz POWER SPECTRUM

Cross-power with WMAP agrees with WMAP spectrum!

UNCERTAINTIES

• Analytic model for statistical errors

 \diamond

 ∇

- Calibration to Uranus: 6% systematic from $T_{\rm U}$ (WMAP7 improves—and changes—this)
- Calibration to WMAP most promising for future work: expect 3% or better.

PARAMETERS FIT TO ACT POWER SPECTRUM

 A_{sz} < 1.63 x (the power expected from a σ_8 =0.80 model) even if all sources are Poisson.

While model-dependent, this requires $\sigma_8 < 0.86$. (consistent with SPT; low for WMAP5 cosmology)

POWER SPECTRUM AT LOWER MULTIPOLES

ACT POWER SPECTRUM CONCLUSIONS

With improved spectral resolution, we see 3-500 acoustic peak and higher.

- 1. Agrees with WMAP at low: gets 2 ~400 to 6000 with preinstrument.
- 2. Agrees with SPT spectrum (Dec 2009).
- 3. Consistent with known source information.
- 4. Upper limit on amount of SZ effect so far.
- 5. If interpreted as a σ_8 , it's less than 0.86 (95%CL).
- 6. Promise for much improvement with (a) more data and (b) 220 GHz maps.

NEXT STEPS: 150 GHz CMB POLARIMETER (NIST)

ACTPOL: AN ACT UPGRADE (2012+)

Instrument

- A 150/220 GHz camera for ACT
- Silicon lenses
- 640 feed horns+PSBs per array
- Band filter on chip
- TES sensors
- Time-domain MUXed SQUIDs

Science

- More sensitive SZ survey
- Spectrum at high-*l* constrains *n*_s
- EE spectrum
- Lensing deflection field (matter at z~2) sensitive to neutrino masses
- Many cross-correlations

Currently proposed to US NSF

ATACAMA B-MODE SEARCH (UNDER CONSTRUCTION)

39.92

- Focal plane array of NIST polarization-sensitive TES
- 240 machined Al feeds
- Cryogenic crossed-Dragone mirrors
- Feeds and on-chip filters define a band ~150 GHz
- Rotating half-wave plate outside cryostat
- 0.6° (FWHM) beams, 20° overall field of view
- Compact telescope

POWER SPECTRUM ERRORS: ANALYTIC VERSUS SCATTER

Joe Fc