Résumé des conférences

$$
\begin{aligned}
& \text { de l'été 2011: } \\
& \text { collísíonneurs }
\end{aligned}
$$

Fabrice Couderc
Overview

- b-physics
- top phyiscs
- Higgs searches
- BSM searches
- a few words on EW \& QCD measurements

With the help from worldwide best experts on:
top :slides from Frederic Deliot BSM :slides Henri Bachacou

> b-physics

CKM in B_{d} sector amasingly well understood by B factories Some old tensions resolved...

Compare $\sin 2 \beta$ measured in clean
$b \rightarrow c c s$ with measurements of
" $\sin 2 \beta$ " in:

- $\mathrm{b} \rightarrow$ sss (used to be 2.X σ away)
- b $\rightarrow c c d, b \rightarrow c u d$

b-phyiscs

CKM in B_{d} sector amasingly well understood by B factories

Some old tensions resolved... but other tensions appeared recently

Compare $\sin 2 \beta$ measured in clean $b \rightarrow c c s$ with measurements of " $\sin 2 \beta$ " in:

- $\mathrm{b} \rightarrow$ sss (used to be 2.X σ away)
- b $\rightarrow c c d, b \rightarrow c u d$

Search for $\mathcal{B}_{s} \rightarrow \mu \mu$

- Predicted to be very rare in the SM due to GIM \& helicity suppression:
- $\quad \operatorname{Brsm}\left(B_{s} \rightarrow \mu \mu\right)=(3.2 \pm 0.2) \times 10^{-9}$
- Large sensitivity to NP, eg SUSY:
- $\operatorname{Br}_{\mathrm{MSSM}}\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right) \propto \frac{M_{b}^{2} M_{\ell}^{2} \tan ^{6} \beta}{M_{A}^{4}}$

New result from CDF: positive!

Abstract

A search has been performed for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$and $B^{0} \rightarrow \mu^{+} \mu^{-}$decays using $7 \mathrm{fb}^{-1}$ of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B^{0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of $\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<6.0 \times 10^{-9}$ at 95% confidence level. We observe an excess of B_{s}^{0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expected standard model rate of $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$could produce such an excess or larger is 1.9%. These data are used to determine $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.8_{-0.9}^{+1.1}\right) \times 10^{-8}$ and provide an upper limit of $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)<4.0 \times 10^{-8}$ at 95% confidence level.

$$
\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)=1.8^{+1.9} \times 10^{-8}
$$

p-value bkg: 0.27\% (3 σ)
p-value bkg+SM sig: I.9\% (2.3б)

Studies of flavor-changing neutral current (FCNC) decays have played an important role in formulating the theoretical description of particle physics known as the standard model (SM). In the SM all neutral currents conserve flavor so that FCNC decays do not occur at lowest order. The decays of B_{s}^{0} mesons (with a quark content of $\bar{b} s$) and B^{0} mesons ($\left(\bar{b} d\right.$) into a dimuon pair ($\mu^{+} \mu^{-}$) [1] are examples of FCNC processes that can occur in the SM through higher order loop diagrams. Their branching fractions are predicted in the SM to be $(3.2 \pm 0.2) \times 10^{-9}$

One of the golden channel

CMS+LHCb: Combined $B_{s} \rightarrow \mu \mu$ Limit

CMS: $B_{s} \rightarrow \mu \mu$?

- p -value background only:
- p -value background + SM BR: 55% CDF: $18^{-0.9} \times 10^{-9}$
- $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)<11 \times 10^{-9} @ 95 \% C L$
- Given that the $95 \% \mathrm{CL}$ is still $3.4 \times \mathrm{SM}$, there
remains plenty of room for NP, keep an eye
- Given that the $95 \% \mathrm{CL}$ is still $3.4 \times$ SM, there
remains plenty of room for $N P$, keep an eye in the near future!

8\%

< IIxI0-9 @ 95\% CL

Dimuon Charge Asymmetry

$$
a_{s l}^{b}=\frac{\Gamma\left(\bar{B} \rightarrow \mu^{+} X\right)-\Gamma\left(B \rightarrow \mu^{-} X\right)}{\Gamma\left(\bar{B} \rightarrow \mu^{+} X\right)+\Gamma\left(B \rightarrow \mu^{-} X\right)}
$$

Direct semileptonic decay

Neutral B meson oscillation and then semileptonic decay

- Measure CP violation in mixing via

$$
A_{s l}^{b}=\frac{N_{b}\left(\mu^{+} \mu^{+}\right)-N_{b}\left(\mu^{-} \mu^{-}\right)}{N_{b}\left(\mu^{+} \mu^{+}\right)+N_{b}\left(\mu^{-} \mu^{-}\right)}
$$

- DØ: Evidence for anomalous dimuon charge asymmetry, (6 fb ${ }^{-1}$,PRL 105, 081801 (2010))
3.2б deviation from $A_{s l}^{b}(S M)=\left(-0.023_{-0.006}^{+0.005}\right) \%$

$$
\begin{aligned}
& \text { DØ Update } 9.0 \mathrm{fb}^{-1} \quad \text { arXiv:1106.6308, sub. to PRD } \\
& A_{s l}^{b}=(-0.787 \pm 0.172 \pm 0.093) \%
\end{aligned}
$$

Now a 3.9б deviation from SM prediction
2 same sign muons: one B meson has necessarily oscillated.
Combination of B_{d} and B_{s} asymmetry:
B_{d} asymmetry is zero (B factories) \Rightarrow hint for new physics in B_{s}

Link with CPP violation in \mathcal{B}_{s}

$$
\psi_{S}^{J / \psi \phi} \approx-2 \beta_{S}=-2 \beta_{-(0.038 \pm 0.002)}=-\psi_{S}+\psi_{S}
$$

Golden mode, Hadron Colliders
"Squashed"

CP violation through interference of diagrams with and w/o mixing

Link with dimuon asymmetry:
$a_{\mathrm{sl}}^{s}=\frac{\left|\Gamma_{s}^{12}\right|}{\left|M_{s}^{12}\right|} \sin \phi_{s}=\frac{\Delta \Gamma_{s}}{\Delta M_{s}} \tan \phi_{s}{ }^{\prime}$

Link with CP violation in \mathcal{B}_{s}

Golden mode, Hadron Colliders

CP violation through interference of diagrams with and w/o mixing
same Φ_{s}
Link with dimuon asymmetry:
$a_{\mathrm{sl}}^{s}=\frac{\left|\Gamma_{s}^{12}\right|}{\left|M_{s}^{12}\right|} \sin \phi_{s}=\frac{\Delta \Gamma_{s}}{\Delta M_{s}} \tan \phi_{s}$
Two completely different measurements at the Tevatron deviates and point to the same corner. But here comes LHCb....

New result from LHCb with $300 \mathrm{pb}^{-1}$ much more compatible with SM than current Tevatron measurements

This is NOT an official accurate overlay!! - only an "artist's view"

Context

Asymmetry FB of the lepton system vs its q^{2} is very sensitive to new physics.
Some hints of deviations from B-factories and CDF

$\mathcal{A}_{\mathcal{F B}}$ in $\mathcal{B}_{d} \rightarrow \mathcal{K}^{*} \mathbb{C} \mathbb{C}$

top physics

ttbar Cross Section

- most precise measurement: in the ljets channel
- fit the number of $\mathrm{W}+\mathrm{jets}$ together with the number of ttbar
- fit the systematic uncertainties to reduce them

Altas new result w/o b-tagging w/ profiling

- cross section in different final states (consistency of the SM)
- Tevatron: in almost all the channels
- LHC: apart from ljets and dilepton, now measurements in alljets and μ т
- agreements between the different channels
- in addition to the cross section, fit R

$$
R=\frac{\mathcal{B}(t \rightarrow W b)}{\mathcal{B}(t \rightarrow W q)}=\frac{\left|V_{t b}\right|^{2}}{\left|V_{t b}\right|^{2}+\left|V_{t s}\right|^{2}+\left|V_{t d}\right|^{2}}
$$

Ijets+dilepton: $\left|V_{t b}\right|=0.95 \pm 0.02$ assuming CKM unitarity (agreement with the SM: 1.6%)

ttbar Cross Section Summary

Measurements agree with the QCD predictions
Future measurements will focus on differential cross sections

Top Quark Mass

- why measuring the top mass precisely? - predict the Higgs boson mass together with the W boson mass
- consistency of the SM and possibly with the direct Higgs measurements
- Tevatron:
- most precise measurements using the matrix element method
- new channel : CDF MET+jets
- new Tevatron combination
- uncertainty below 1 GeV for the first time
- all channels give consistent results
- still working on decreasing the systematic uncertainties
- LHC in the ljets channel:
- CMS: ideogram method
- Altas: 2D template fit (Mtop,JES)
- mass difference: Mt-Mtbar
- CMS: $\Delta m_{t}=-1.2 \pm 1.2$ (stat.) ± 0.5 (syst.) GeV
-CDF: $\Delta \mathrm{M}_{\mathrm{top}}=-3.3 \pm 1.4$ (stat.) ± 1.0 (syst.) $\mathrm{GeV} / \mathrm{c}^{2}$

Mass of the Top Quark

W Boson Helicity In Top Decays

- motivation:
- test the SM at the electroweak scale
- new physics could affect the helicity, no right-handed W in the SM

- measurement methods:
- template fit of the $\cos \theta^{*}$ distribution (angle between the lepton from the W boson and the top direction in W boson rest frame)
- matrix element (ME)
- combination of the latest Tevatron results:
- taken correlation into account both when f_{0} and f_{+}are floating or only one of them

$$
\begin{align*}
f_{0} & =0.732 \pm 0.063(\text { stat }) \pm 0.052 \text { (syst) } \\
f_{+} & =-0.039 \pm 0.034(\text { stat }) \pm 0.030(\text { syst }) \tag{2D}
\end{align*}
$$

- Atlas result:
- dilepton/lepton+jets template ($0.7 \mathrm{fb}^{-1}$) already the same precision as the Tevatron combination:

$$
\begin{equation*}
f_{0}=0.75 \pm 0.08(\text { stat }+ \text { syst }) \tag{1D}
\end{equation*}
$$

Measurements agree with the SM predictions

Top Pair Spin Correlations

- in the SM, the spin of the top and of the antitop are produced correlated
- correlation preserved in the decay products
- can be affected by new physics
- measurement methods:
- template fit of the $\cos \theta_{1} \cos \theta_{2}$ distribution (θ : angle from the down-type fermion wrt spin basis in the top/ antitop rest frame) or $\Delta \Phi=\left|\Phi_{I_{+}-} \Phi_{\mid-}\right|$(in the lab frame)

Top-Antítop Charge Asymmetry

- At NLO, QCD predicts an asymmetry for $t \bar{\mp}$ produced via qā initial state

A_{fb} of the Top Quark

smaller at LHC since low $q \bar{q}$ fraction

$$
A_{C}=\frac{N(\Delta|Y|>0)-N(\Delta|Y|<0)}{N(\Delta|Y|>0)+N(\Delta|Y|<0)}
$$

$$
\Delta|Y|=\left|Y_{t}\right|-\left|Y_{\bar{t}}\right|
$$

	unfolded data	SM prediction
Altas: $A_{C}^{y}\left(0.7 \mathrm{fb}^{-1}\right)$	-0.024 ± 0.016 (stat) ± 0.023 (syst)	0.006 (MC@NLO)
CMS: $A_{C}^{T}\left(1.1 \mathrm{fb}^{-1}\right)$	-0.016 ± 0.030 (stat) $)_{-0.019}^{+0.010}$ (syst)	0.0130

Currently no deviation from the predictions at the LHC Summer' I I conferences summary

Top-Antitop Charge Asymmetry

Charged signed lepton asymmetry

Fabrice Couderc
$A^{\mathrm{t} \bar{t}}=\frac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}$
$\Delta y=y_{t}-y_{\bar{t}}$

Forward-Backward Top Asymmetry, \%

Inclusive asymmetry consistent at D0 and CDF, but not dependence on Mtt not so much

top in a mutshell

we know already a lot about the top quark
Tevatron: focusing on the legacy measurements
LHC top physics is only warming up !

Property		Measurement	SM Prediction	Luminosity (fb^{-1})
$\sigma_{t \bar{t}}\left(\right.$ for $\left.M_{t}=172.5 \mathrm{GeV}\right)$	$\begin{aligned} & p \bar{p} \rightarrow t \bar{t} \\ & p p \rightarrow t \bar{t} \end{aligned}$	CDF; 7.5 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (theory) pb D0: $7.56_{-0.56}^{+0.63}$ (stat + syst + lumi) pb Atlas: 179.0 ± 9.8 (stat + syst) ± 6.6 (lumi) pb CMS: 158 ± 10 (uncor.) ± 15 (cor.) ± 6 (lumi) pb	$\begin{aligned} & 7.46_{-0.67}^{+0.4 \mathrm{pb}} \\ & 164.6_{-15.7}^{+11.4} \mathrm{pb} \end{aligned}$	$\begin{aligned} & \text { up to } 4.6 \\ & 5.6 \\ & 0.7 \\ & 0.036 \end{aligned}$
$\sigma_{\text {tbq }}\left(\right.$ for $\left.M_{\mathrm{t}}=172.5 \mathrm{GeV}\right)$	$p \bar{p} \rightarrow t \bar{t}$ $p p \rightarrow t \bar{t}$	$\begin{aligned} & \text { CDF: } 0.8 \pm 0.4 \mathrm{pb}\left(M_{t}=175 \mathrm{GeV}\right) \\ & \text { D0: } 2.90 \pm 0.59 \mathrm{pb} \\ & \text { Atlas: } 90_{-22}^{+32} \mathrm{pb} \\ & \text { CMS: } 83.6 \pm 29.8 \text { (stat }+ \text { syst }) \pm 3.3 \text { (lumi) } \mathrm{pb} \end{aligned}$	$\begin{aligned} & 2.26 \pm 0.12 \mathrm{pb} \\ & 64.6_{-2.6}^{+3.3} \mathrm{pb} \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.4 \\ & 0.7 \\ & 0.035 \end{aligned}$
$\sigma_{\text {tb }}\left(\right.$ for $\left.M_{t}=172.5 \mathrm{GeV}\right)$	$p \bar{p} \rightarrow t b$ $p p \rightarrow t b$	$\begin{aligned} & \text { CDF: } 1.8_{-0.5}^{+0.7} \mathrm{pb}\left(M_{t}=175 \mathrm{GeV}\right) \\ & \text { D0: } 0.68_{-0.35}^{+0.38} \mathrm{pb} \\ & \text { Atlas: }<26.5 \mathrm{pb} \end{aligned}$	$1.04 \pm 0.04 \mathrm{pb}$	$\begin{aligned} & \hline 3.2 \\ & 5.4 \\ & 0.7 \end{aligned}$
$\sigma^{\mathbf{W t s}}$ (for $M_{\mathrm{t}}=172.5 \mathrm{GeV}$)	$p p \rightarrow W t$	Atlas: < 39.1 pb	$15.7 \pm 1.4 \mathrm{pb}$	0.7
$\left\|V_{t b}\right\|$		CDF: $\left\|V_{t b}\right\|=0.91 \pm 0.11$ (stat + sys) ± 0.07 (theory) $\mathrm{D} 0:\left\|V_{t b}\right\|=1.02_{-0.11}^{+0.10}$	1	$\begin{aligned} & 3.2 \\ & 5.4 \end{aligned}$
$R=B(t \rightarrow W b) / B(t \rightarrow W q)$		CDF: $>0.61 \propto 95 \% \mathrm{CL}$ D0: 0.90 ± 0.04	1	$\begin{gathered} 0.2 \\ 5.4 \end{gathered}$
$\sigma(g g \rightarrow t \bar{t}) / \sigma(p \bar{p} \rightarrow t \bar{t})$	$p \bar{p} \rightarrow t \bar{t}$	CDF: $0.07{ }_{-0.07}^{+0.15}$	0.18	1
M_{t}		Tev: $173.2 \pm 0.9 \mathrm{GeV}$ Atlas: $175.9 \pm 2.8 \mathrm{GeV}$ CMS: $173.4 \pm 3.3 \mathrm{GeV}$		$\begin{aligned} & \text { up to } 5.8 \\ & 0.7 \\ & 0.036 \end{aligned}$
$M_{t}-M_{\bar{i}}$		CDF: -3.3 ± 1.4 (stat) ± 1.0 (syst) GeV D0: 0.8 ± 1.8 (stat) ± 0.5 (syst) GeV CMS: -1.2 ± 1.2 (stat) ± 0.5 (syst) GeV	0	$\begin{aligned} & 5.6 \\ & 3.6 \\ & 1.1 \end{aligned}$
W helicity fraction		Tev: $f_{0}=0.732 \pm 0.063$ (stat) ± 0.052 (syst) Atlas: $f_{0}=0.75 \pm 0.08$ (stat + syst)	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \text { up to } 5.4 \\ & 0.7 \end{aligned}$
Charge		CDF: $-4 / 3$ excluded $@ 95 \%$ CL D0: $4 / 3$ excluded 092% CL	2/3	$\begin{aligned} & 5.6 \\ & 0.37 \end{aligned}$
I_{t}		CDF: $<7.6 \mathrm{GeV} @ 95 \% \mathrm{CL}$ D0: $1.99_{-0.55}^{+0.69} \mathrm{GeV}$	1.26 GeV	4.3 up to 2.3
spin correlation	$p \bar{p} \rightarrow t \bar{t}$, beam $p p \rightarrow t \bar{t}$, helicity	CDF: 0.72 ± 0.64 (stat) ± 0.26 (syst) D0: 0.66 ± 0.23 (stat + sys) Atlas: $0.34_{-0.11}^{+0.15}$	$\begin{aligned} & 0.777_{-0.042}^{+0.0 .07} \\ & 0.32 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.4 \\ & 0.7 \end{aligned}$
Charge asymmetry	$p \tilde{p} \rightarrow t \bar{t}$ $p p \rightarrow t \bar{t}$	CDF: 0.158 ± 0.074 D0: 0.196 ± 0.065 Atlas: $A_{C}^{\mathrm{y}}=-0.024 \pm 0.016$ (stat) ± 0.023 (syst) CMS: $A_{C}^{\eta}=-0.016 \pm 0.030(\text { stat })_{-0.019}^{+0.010}($ syst $)$	$\begin{aligned} & 0.06 \\ & 0.006 \\ & 0.013 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.4 \\ & 0.7 \\ & 1.1 \end{aligned}$

Higgs 6oson(s) searches

NB: Journée Higgs SPP le 2 novembre 201I. Présentations détaillées de tous les résultats de l'été.

Higgs searches

Impressive showing from LHC. This summer saw the really transition from Tevatron to LHC

Strategy is mass dependent, because the Higgs boson branching ratio changes a lot with the m_{H} :

- at low mass inclusive $\mathrm{H} \rightarrow \mathrm{bb}$ with H channel can not be used (mostly $\mathrm{H} \rightarrow \gamma \gamma$ is left at LHC).
- background, hence sensitivity, very much depends on the final state
- Combine a lot of different channels, both at LHC and Tevatron

Golden channels at $\mathcal{L H C}$

Low mass ($\mathrm{m}_{\mathrm{H}}<140 \mathrm{GeV}$): $\mathrm{H} \rightarrow \mathrm{VY}$ very good mass resolution ($\sim 1.5 \%$), very low $B R(\sim 0.001)$ quite a lot of background

Intermediate mass ($\mathrm{m}_{\mathrm{H}}>120 \mathrm{GeV}$):
$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow 2\lceil 2 \nu$
very poor mass resolution ($\sim 10 s \mathrm{GeV}$), higher BR , low background (diboson)

Intermediate - high mass:
$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4$ §
cleanest mode
very good mass resolution, small $B R$, low background
High mass only ($\mathrm{m}_{\mathrm{H}}>200 \mathrm{GeV}$):
$H \rightarrow Z Z \rightarrow 2$ 2q / 2 (2ν
quite good / poor mass resolution, good BR, small background at high mass.

SM Higgs results (i)

- Overall broad 2σ excess in the region $130-150 \mathrm{GeV}$ for both experiments, this is due to WW.
- Fluctuations in the observed curves are due to a superposition of three different sources: high frequency for good mass resolution modes (short correlation length), low frequency for WW mode (long correlation length), low frequency at high mass because Higgs natural width is large. Look elsewhere effect (LEE) factors are not straightforward.
- Low mass caveats ($\mathrm{m}_{\mathrm{H}}<125 \mathrm{GeV}$):
- sensitivity is not yet very good (will need statistics)
- for now poor sensitivity to $H \rightarrow b b$ which is important to test the EWSB.
- $\mathrm{H} \rightarrow \mathrm{bb}$ still the domain of the Tevatron
- A new hope: $\mathrm{H} \rightarrow \mathrm{bb}$ tagging @ LHC

$$
\begin{gathered}
\text { Tevatron exclusion @ 95\% CL } \\
\mathrm{m}_{\mathrm{H}}<109 \mathrm{GeV} \\
156<\mathrm{m}_{\mathrm{H}}<177 \mathrm{GeV}
\end{gathered}
$$

From associated W/Z+H prod.
Tevatron Run II Preliminary $\mathrm{H} \rightarrow \mathrm{bb}$ Combination, $\mathrm{L} \leq 8.6 \mathrm{fb}^{-1}$

100105110115120125130135140145150
$\mathrm{m}_{\mathrm{H}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

MSSM Higgs searches

- MSSM is a two Higgs doublet model $\Rightarrow 5$ physical Higgs boson: 3 neutral (h/H/A), 2 charged ($\mathrm{H}^{+/-}$)
- coupling to down-type fermions proportional to $\tan \beta$.
$-\tan \beta>$ IO: $\mathrm{H} \rightarrow \tau \tau / \mathrm{H} \rightarrow \mathrm{bb}: 10 \% / 90 \%$

- produced via b-quarks
- can only exploit $\tau \tau$ channel (bbb only done at Tevatron)
$-\tan \beta \sim 40$ theoretically interesting ($\mathrm{m}_{\text {top }} / \mathrm{m}_{\mathrm{b}} \sim 40$)

Charged Higgs In pp \rightarrow ttbar Decays: EPS Results

$\mathrm{H}^{+} \rightarrow \tau^{+} v$
in ttbar decays

Tevatron limit : $0.15-0.2$

4th generation of quarks

4th generation relaxed the tension in the EWfit and allows for a higher mass Higgs boson. It enhances the Higgs boson production by ~ 9.

Higgs limits assuming a 4th generation of quarks and leptons:

Other exotic fermions are still alive and interesting, but the sequential 4th generation is in deep troupble!

BSM searches

Bump confirmed by CDF at EPSII and LPII ($\sim 4 \sigma$)
In the meanwhile at Higgs Hunting: CDF speaker was much less aggressive (potential very nice and clever experimental reason)
Not much in D0 data and not clear what to expect at LHC

Check:
$W(\rightarrow e v)+2 j$ vs $W(\rightarrow \mu v)+2 j$ there is really something in the di-jet mass spectrum. LPII speaker presented a full battery of tests but one, shown at Higgs Hunting Workshop (also by CDF speaker)

CDF W+2jets saga

Bump confirmed by CDF at EPSII and LPII ($\sim 4 \sigma$)
In the meanwhile at Higgs Hunting: CDF speaker was much less aggressive (potential very nice and clever experimental reason)
Not much in D0 data and not clear what to expect at LHC

CDF W+2jets saga

Z-Jet Balancing: Jet QG Value

Best agreement found when :

- Quark jet energy scale left alone
- Gluon jet energy scale shifted down in MC by 2 Sigma

Also, explains why $\mathrm{W}+\mathrm{jets}$ and Z+jets do not have mismodeling when b -tag is applied (due to quark enhancement)

■"Workhorse" of SUSY search - ATLAS:
\rightarrow Cut on MET and $m_{\text {eff }}$

- CMS explores various techniques:
$\rightarrow \alpha_{T}=2^{\text {nd }}$ jet $E_{T} /$ Trans. Mass

SUSY: Jet e up to \sim I TeV for m (squark) $=m$ (gluino)

cMSSM basically ruled out, will need to look for more evolved models (NMSSM, gMSSM...)

Search for Heavy Resonance: dilepton channel

- Randall-Sundrum KK graviton excitation
- Neutral heavy gauge boson
- Technihadron

CMS-EXO-II-019

Search

Randall-Sundrum KK graviton excitation

Neutral heavy gauge boson Technihadron

Sequential SM:

$$
m\left(Z^{\prime}\right)>1.9 \mathrm{TeV} \text { at 95\% C.L. }
$$

RS graviton $\left(\mathrm{k} / \mathrm{M}_{\mathrm{PI}}=0.1\right)$:

$$
\mathrm{m}(\mathrm{G})>\mathrm{I} .8 \mathrm{TeV} \text { at } 95 \% \text { C.L. }
$$

Search for Heavy Resonance: Díjet

- Excited quarks, strong gravity, contact interaction
- Look for resonance above phenomenological fit of the data Probing the quark structure beyond $4 \mathbf{T e V}$

Search for Heavy Resonance: Díjet

$m($ jet-jet) $=4.0 \mathrm{TeV}$

Missing $\mathrm{E}_{\mathrm{T}}=100 \mathrm{GeV}$

Search for Heavy Resonance: Dijet

Model	95\% CL Limits (TeV)	
ATL-CONF-201 I-095	Expected	Observed
Excited Quark q^{*}	2.77	2.91
Axigluon	3.02	3.21
Color Octet Scalar	1.71	1.91

Model	Excluded Mass (TeV)	
CMS arXiv. I I07.477।	Observed	Expected
String Resonances	4.00	3.90
E6 Diquarks	3.52	3.28
Excited Quarks	2.49	2.68
Axigluons/Colorons	2.47	2.66
W' Bosons	1.51	1.40

\square Also providing model-independent limits:

Top-antitop Resonance

Top-antitop Resonance

- Entering the era of top-tagging!

CMS Preliminary, $490 \mathrm{pb}^{-1}$ at $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$

Summer'II

A word on EW precision measurements

EW \& QCD measurements

Precision EW and QCD measurements not covered in the talk by lack of time and competence, but:

- LHC is re-establishing (quickly) the SM: measure all $\sigma(\mathrm{V})$ and $\sigma\left(\mathrm{VV}^{\prime}\right)$

$$
\begin{gathered}
\sigma(W) \cdot B(W \rightarrow e \nu) \sim 10 \mathrm{nb} \\
\sigma(W W) \cdot B(W \rightarrow l \nu)^{2} \sim 100 \mathrm{fb}
\end{gathered}
$$

$$
\sigma(Z) \cdot B\left(Z \rightarrow e^{+} e^{-}\right) \sim 1 \mathrm{nb}
$$

$$
\sigma(Z Z) \cdot B\left(W \rightarrow l^{+} l^{-}\right)^{2} \sim 10 \mathrm{fb}
$$

EW \& QCD measurements

Precision EW and QCD measurements not covered in the talk by lack of time and competence, but:

- LHC is re-establishing (quickly) the SM: measure all $\sigma(\mathrm{V})$ and $\sigma\left(\mathrm{VV}^{\prime}\right)$
- Differential V Pt distributions: sensitive to PDF, high order QCD correction. Establish ground base for searches (main background).

EW \& QCD measurements

Precision EW and QCD measurements not covered in the talk by lack of time and competence, but:

- LHC is re-establishing (quickly) the SM: measure all $\sigma(\mathrm{V})$ and $\sigma\left(\mathrm{VV}^{\prime}\right)$
- Differential V Pt distributions: sensitive to PDF, high order QCD correction. Establish ground base for searches (main background).
- W charge asymmetry at LHC and Tevatron: important pdfs inputs...

Precision EW and QCD measurements not covered in the talk by lack of time and competence, but:

- LHC is re-establishing (quickly) the SM: measure all $\sigma(\mathrm{V})$ and $\sigma\left(\mathrm{VV}^{\prime}\right)$
- Differential V Pt distributions: sensitive to PDF, high order QCD correction. Establish ground base for searches (main background).
- W charge asymmetry at LHC and Tevatron: important pdfs inputs...
- no new W mass measurement from Tevatron, winter conferences?

backup

Higgs results

