Winter conferences: cosmology

- CMB and inflation
- DE and GR tests
- neutrinos
- dark matter

Jean-Marc Le Goff

séminaire SPP, 27 avril 2012

CMB and inflation

CMB Temperature

ACT

• SPT: 2500 deg² 5-year survey finished Nov 2011

SPT

- Large scale structure potentials gravitationally deflect CMB photons by a lensing deflection angle $\mathbf{d}(\mathbf{n})$
- Measurement of the deflection field is a measurement of matter fluctuations AND the geometry of the universe -> very useful for cosmological constraints
- Can find lensing because it breaks Gaussianity: non-Gaussian part of lensed T 4-point function ~ deflection power spectrum

lensing P(k) detected

Spectral distortions

- P(k) unknown for k> 3 Mpc⁻¹
- spectral distortions wrt black body spectrum -> k ~ 10^4 Mpc⁻¹

CMB polarization

density fluctuation -> Scalar perturbation

-> E modes (parity even)

 $(\gamma e^- \rightarrow \gamma e^-) => polarization$

- gravitational waves -> Tensor perturbation
 -> E modes and B modes (parity odd)
- detecting B modes -> gravitational waves
- r = T/S current limit : r < 0.24 (95% CL)
- many projects : BICEP2, SPTPol, QUIET, ACTPol, PolarBear, QUBIC
- all aim at r = 0.01 0.02

Present status CMB polar

• combining all data : r < 0.2

Dark Energy and GR test

- Supernovae
- Redshift surveys
 - BAO
 - Redshift Space Distortion
- Clusters
 - SZ
 - optical
 - X-ray
- Weak lensing

BAO

- at z >> 1000 : baryon-e⁻ plasma coupled to photons
- Over-density (overpressure)
 - \Rightarrow acoustic waves
- Z ~ 1100 recombination : baryon-photon decoupling ⇒ pressure=0
 - \Rightarrow frozen wave has travelled
 - s = 150 Mpc (commoving)
- Peak at 150 Mpc in autocorrelation function at all z

 $\xi(\vec{r}) = \left\langle \rho(\vec{x})\rho(\vec{x}+\vec{r}) \right\rangle$ a 150 Mpc standard ruler

• Geometrical measurement, linear physics: low systematic

BAO

BOSS

- 2009-2014
- DR9: with 18% of data
- BAO BOSS alone : 5 σ BOSS + SDSSII: 7 σ
- $D_V(z) = [D_A^2(z)/H(z)]^{1/3}$

BOSS and Wiggle-Z

cluster detection

- X : hot gas (10⁷K)
 - T -> Mass relation for virialized clusters
 - luminosity $1/{\rm D_L^2}$
- Sunyaev-Zeldovich
 γe -> γe on hot gas
 distortion of CMB spectra
 - independent of z
 - M and z degenerate confirmation in optical -> z
- dN/dMdV(z) -> cosmology

cluster perspectives

- X:
- ROSAT
- SZ: Planck: already 189
 SPT: expect 500
 ACT: already 100

- studies about biases in M
- many results to come in next years

neutrinos and dark matter

$\Sigma m_{\!_{\rm V}}$ and P(k)

neutrinos "free stream" and spread out gravitational potential

results for $\Sigma m_{\!_{\rm V}}$

- direct experiments : $0.06 < \Sigma m_v < 6 \text{ eV}$
- $CMB : \Sigma m_v < 1.3 \text{ eV}$ (Komatsu 2010)
- CMB + SDSS : $\Sigma m_v < 0.62 \text{ eV}$ (Reid 2010)
- CMB + SDSS + Lyman α : $\Sigma m_v < 0.28 \text{ eV}$ (Seljak 2006) but ...
- Lyman α alone : Σm_{ν} < 0.9 eV (Viel 2010) NEW
- cluster (SPT): $\Sigma m_v < 0.28 \text{ eV}$ (de Putter 2011)
- Wiggle Z : $\Sigma m_v < 0.29 \text{ eV}$ (Riemer-Sorenson 2011) FUTURE
- BOSS Lyman α : $\Sigma m_v < 0. eV$
- Euclid : $\Sigma m_v < 0.1 \text{ eV}$
- SKA (radio) : $\Sigma m_v < 0.05 \text{ eV}$ -> measurement

Le CMB est polarisé à ~ 10%

★ Paramètres de Stokes :

$$\begin{split} I(\vec{n}) &= \left\langle \left| E_{\parallel}(\vec{n}) \right|^2 \right\rangle + \left\langle \left| E_{\perp}(\vec{n}) \right|^2 \right\rangle & \text{(scale)}\\ Q(\vec{n}) &= \left\langle \left| E_{\parallel}(\vec{n}) \right|^2 \right\rangle - \left\langle \left| E_{\perp}(\vec{n}) \right|^2 \right\rangle & \text{(space)}\\ U(\vec{n}) &= \left\langle E_{\parallel}(\vec{n}) E_{\perp}^{\star}(\vec{n}) \right\rangle + \left\langle E_{\perp}(\vec{n}) E_{\parallel}^{\star}(\vec{n}) \right\rangle & \text{(space)}\\ V(\vec{n}) &= i \left(\left\langle E_{\parallel}(\vec{n}) E_{\perp}^{\star}(\vec{n}) \right\rangle - \left\langle E_{\perp}(\vec{n}) E_{\parallel}^{\star}(\vec{n}) \right\rangle \right) & \text{(space)}\\ \end{split}$$

N. Ponthieu

★ Décomposition en harmoniques sphériques de spin +/- 2

$$Q(\vec{n}) + iU(\vec{n}) = \sum_{\ell m} a_{2,\ell m \ 2} Y_{\ell m}(\vec{n})$$
$$Q(\vec{n}) - iU(\vec{n}) = \sum_{\ell m} a_{-2,\ell m \ -2} Y_{\ell m}(\vec{n})$$

 ℓm

★ Tout champ de polarisation peut être décomposé en 2 champs scalaires E et B

$$a_{E,\ell m} = -\frac{a_{2,\ell m} + a_{-2,\ell m}}{2} \quad (\text{pair}) \quad \stackrel{\mathsf{E} \to \mathbf{0}}{\longrightarrow} \quad \stackrel{\mathsf{E} \to \mathbf{0}}{\longleftarrow} \quad \stackrel{\mathsf{E} \to \mathbf{0}}{ \quad \stackrel{\mathsf{E} \to \mathbf{0}}{\longleftarrow} \quad \stackrel{\mathsf{E} \to \mathbf{0}}{\to} \quad\stackrel{\mathsf{E} \to \mathbf{$$

$\boldsymbol{m}_{\!\scriptscriptstyle \rm V}$ and density fluctuations

- at high z, v are relativistic they "free stream" over all scales : $\delta_v \approx 0$
- when $z < z_{nr} = 1890 (m_v / 1eV) : v$ non relativistic free streaming length large scales $\delta_{CDM} \propto a$ small scales $\delta_{CDM} \propto a^{1-0.6f_v}$ $f_v = \frac{\Omega_v}{\Omega_m}$

Effect on different scales

Resulting P(k)

When m_{ν} increases :

shape z dependent

	1	

•

25