Fermi highlights of the γ-ray sky

Isabelle Grenier Université Paris Diderot & CEA Saclay & the Fermi LAT collaboration

Saclay SPP 17/12/12





# the y-ray sky above 1 GeV



4 years with Fermi Large Area Telescope

whole sky every 3 h

> 1870 sources + interstellar CRay emission + extragalactic background







lundi 17 décembre 12

s.ermi

# **2FGL source catalogue**





lundi 17 décembre 12

s.crm

accelerator 1: accretion + jet propulsion









# constraining blazars SEDs



low synchrotron peaked



## constraining blazars SEDs



intermediate synchrotron peaked







left for the synchrotron peaked left high syn

#### suggestions of blazar sequences







#### **SED** modelling difficulties



SSC models fail to explain most LAT blazars



Solution of the few GeV breaks ???

•  $(X_{disc} + BLR_{lines}) + e_{jet} \rightarrow \gamma$ with KN cutoff?

 $\gamma + \gamma_{\text{BLR lines}} \rightarrow e^{\pm}$ 

 Gamma-ray Space Telescope ne models cannot explain 8 blazars
 ex: AP Librae (LAT + HESS)



lundi 17 décembre 12

S. CTW

#### γ-ray source location?



location outside the broad-line region?

PKS1510-089: intense radio +  $\gamma$  flare in Oct. 2011  $\Rightarrow$  D  $\approx$  7 - 17 pc outside BLR

(Orienti+ '12, arXiv:1210.4319)

4C+21.35:

10 mn flare up to 400 GeV (MAGIC+LAT)  $\Rightarrow \gamma + \gamma \rightarrow e^{\pm}$  absorption if inside BLR

(Aleksic+ 2011)

rapid variability far from the black hole?

- jet recollimation
- jet B reconnection
- neutron transport
- ???





#### blazar variability



Solutions the brighter in γ rays, the softer, the more variable & larger amplitude of variations





# γ-ray radiogalaxies: misaligned agn



 15 radiogal. detected by Fermi
 the γ-ray luminosity scales with that of the radio core



Sen A lobes: electron IC losses ⇒ in-situ (re)acceleration



# Loop I & Fermi bubbles



Fermi LAT 3 years
 residuals above
 gas, IC, isotropic,
 & point-sources

S. CTW



Casandjian et al. 2009 eConf Proceedings C091122 Su et al. 2010, ApJ 724, 1044







4 years Fermi > 10 GeV and Planck haze

cosmic rays in Galactic winds? from a nearby bubble? jets from the central black hole?









4 years Fermi > 10 GeV and Planck haze

cosmic rays in Galactic winds? from a nearby bubble? jets from the central black hole?









4 years Fermi > 10 GeV and Planck haze

cosmic rays in Galactic winds? from a nearby bubble? jets from the central black hole?





#### cosmological impacts





#### y-ray attenuation by ancient starlight

Franceschini et al. 2008

G difficult measurement because of intrinsic spectral breaks & variability in sources

- absorption compatible with minimal starlight based on resolved galaxy counts peak SFR at z > 10 and  $< 0.5 M_{\odot} yr^{-1} Mpc^{-3}$
- incompatible with high formation rate of pop III stars



# Accelerator 2: pulsar dynamo



# the twinkling y-ray sky

- 117 pulsars with 1.6 ms to 0.46 s periods
- 1/3 radio + γ emitters, < Myr-old isolated pulsars</li>
- 1/3 γ only emitters, < Myr-old isolated pulsars</li>
- 1/3 radio + γ Gyr-old ms pulsars (many binaries)

Fermi LAT  $\gamma$  -ray pulsars



originally discovered in  $\gamma$  rays O, radio  $\Delta$ , X rays  $\Xi$ 



#### 40 new millisecond pulsars





Nançay (France)



GMRT (India)



GreenBank (USA)



Parkes (Asutralia)



Effelsberg (Germany)





# PSR J1311-3430







Pletsch+'2012 Science 25/10/12



# accelerator in the outer magnetosphere



10 TeV accelerator in the outer magnetosphere, maybe over a single pole



#### evolutionary trends

 $L_{\gamma}\left[erg.s^{-1}\right]$ 









S. CTW

Accelerator 3: diffusive shock acceleration



# gallery of GeV supernova remnants



- spatial correlations of multi-GeV electrons and γ rays inside remnants ?
- electron ageing inside remnants









lundi 17 décembre 12

S. CTW

#### **collective properties**





5.6770



lundi 17 décembre 12



### mini-supernova shock waves



nova V 407 Cyg
 10<sup>37</sup> J, 44 Mkm/h shock
 1 to 2 novae per year





Feb. 19 to March 9, 2010



March 10 to 29, 2010

cosmic-ray matters



# the total ISM

AIM

LAT counts minus sources and isotropic



Fermi LAT diffuse model

# HI emissivity spectrum < 1 kpc





# Image: sector of the sector

local arm

Iittle arm/interarm contrast
 => loose coupling with the kpc-scale surface
 density of gas or star formation



#### shallow CR gradient in the outer Galaxy



15,000 ly

- Iat emissivity gradient beyond the Solar circle
  - large uncertainty due to HI gas mass
    100 ≤ T<sub>spin</sub>(HI) ≤ 400 K
- CR source distribution too steep with uniform diffusion if pulsar-like or SNR-like source distributions, even if large halo size
  - large amounts of missing gas ?
  - non-uniform diffusion?





# a little tour of Cygnus X

Cyg OB2



γ Cyg

most active star-forming region at 1.4 kpc
 CGPS/IRAS 74 cm 21 cm 60 µ 25 µ



Ackermann+'2011 Science, 334, 1103

#### an extended y-ray excess



Solution between the set of the

#### a γ-ray superbubble



#### lounded by PDRs

- extension >> SNR or cluster sizes, smooth radial profile, spectral uniformity
- worse fit with discrete point sources
- left turbulent superbubble



#### cocoon of freshly accelerated cosmic rays





## an active "airlock" between sources & ISM



- ✓ diffusion D ≈ D<sub>ISM</sub> / 100 => trapping
  ✓ what leaks out?
  - hard reaccelerated particles
  - or soft exhausted ones?
- HII & dark gas flooded with young CRays
  - but "normal" CR flux averaged over the whole complex

H.E.S.S.

lionization rate in all the PDRs?







W49A

0.5

0

-0.5



# 30 Dor in LMC



Solution Study: Lelectrons ≈ 100-140 pc at ~3 GeV and Lnuclei ≈ 200-320 pc at ~20 GeV if accelerated in 30 Doradus (Murphy et al. 2012)



#### stellar vs. cosmic-ray activity





s.crm

# Science Support Center: http://fermi.gsfc.nasa.gov/ssc/

http://www.nasa.gov/ mission\_pages/GLAST/ main/index.html

Fermi Sky on iphone