Measurement of
B(B⁰_(s)
$$\rightarrow \mu^{+}\mu^{-}$$
) at LHC(b)

Mathieu Perrin-Terrin*

Seminar at CEA Saclay Monday, January 6th 2014

*CERN

Outlines

- Motivations to search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$
- Searching for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb
- Combination with CMS
- Conclusions

Outlines

- Motivations to search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$
- Searching for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb
- Combination with CMS
- Conclusions

Searching for NP with Flavour Physics

Decay amplitude sums SM and NP (if any) contributions

• Depending on the decay, several scenarios possible for A:

Golden channel = rare decay in SM, precisely predicted

The $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ Case: Rare & Precise

- Flavour Changing Neutral Current:
 - No SM tree diagram, only higher order
 - Suppressed in SM
- Spin 0 weakly decaying into $\mu^+\mu^-$:
 - Helicity suppression in SM $BR_{SM} \propto m_{\mu}$

- Main source of uncertainties: QCD
 - Here, leptonic final state and...
 - ...initial state decay constant F_B well known:
 - F_B uncertainty strongly improved recently $20 \rightarrow 1.3\%^*$

Golden channel = rare decay in SM, precisely predicted

*HPQCD, PRL 110, 222003, 2013

The
$$B_{(s)}^0 \rightarrow \mu^+ \mu^-$$
 Observables

Simplest obs.: untagged time-integrated branching fraction:

$$BF = \frac{1}{2} \int dt \left[\Gamma \left(\frac{B_{(s)}^0}{(s)}(t) \to \mu^+ \mu^- \right) + \Gamma \left(\overline{B}_{(s)}^0(t) \to \mu^+ \mu^- \right) \right]$$

• Neutral *B* mesons oscillate in admixture of mass eigenstates: $\left\langle \Gamma(B_{(s)}^{0}(t) \to \mu^{+}\mu^{-}) \right\rangle = R_{H}e^{-\Gamma_{H}^{(s)}t} + R_{L}e^{-\Gamma_{L}^{(s)}t}$

• For $B^0 \rightarrow \mu^+ \mu^-$ the decay widths are similar, $\Gamma_H \sim \Gamma_L$ so: $BF(B^0 \rightarrow \mu^+ \mu^-) = BF(B^0(t) \rightarrow \mu^+ \mu^-)_{t=0}$ $= \frac{\tau_{B^0}}{2}(R_H + R_L)$ $BF(B^0 \rightarrow \mu^+ \mu^-) \stackrel{\text{SM}}{=} \mathbf{1.07} \pm \mathbf{0.10} \times \mathbf{10^{-10}}$

Updated from Buras et al. EPJ 2012

• For $B_s^0 \to \mu^+ \mu^-$ the decay widths are different, $\Gamma_H^S \neq \Gamma_L^S$, hence: $BF(B_s^0 \to \mu^+ \mu^-) = \frac{\tau_{B_s^0}}{2} (R_H + R_L) \times \frac{1 + A_{\Delta\Gamma} y_s}{1 - y_s^2}$ $BF(B_s^0(t) \to \mu^+ \mu^-)_{t=0}$

with:

$$A_{\Delta\Gamma} = \frac{R_H - R_L}{R_H + R_L} \in [-1; 1] \qquad y_s = \frac{\Gamma_L - \Gamma_H}{\Gamma_L + \Gamma_H} \stackrel{\text{coss}}{=} 0.0613 \pm 0.0059$$

• SM predictions $A_{\Delta\Gamma} \stackrel{\text{SM}}{=} 1$ $BF(B_s^0 \rightarrow \mu^+\mu^-) \stackrel{\text{SM}}{=} 3.57 \pm 0.30 \times 10^{-9}$

 Uncertainty Budget

 F_{Bs} 72.5%

 $|V_{tb}^*V_{ts}|$ 22.8%

 m_t 3.7%

 τ_{Bs} and y_s 1.1%

7

Updated from Buras et al. EPJ 2012

What About New Physics?

Model Independent Approach

- **Recall:** virtual particles are off-shell: $E^2 p^2 \neq m_{shell}^2$
- Uncertainty principle, $\Delta t \propto 1 / \Delta E$:
- QCD energy scale << EW energy scale, hence:

Energy scales separate in amplitude expression:

$$A(I \rightarrow F) \propto \sum_{i} \langle F | Q_i | I \rangle \times C_i$$

Matrix elements:
• encode **low energy**
Main source of uncertainty

$$Main source of uncertainty$$

Model Independent Approach

- **Recall:** virtual particles are off-shell: $E^2 p^2 \neq m_{shell}^2$
- Uncertainty principle, $\Delta t \propto 1 / \Delta E$:
- QCD energy scale << EW energy scale, hence:

Energy scales separate in amplitude expression.

 $A(I \to F) \propto \sum_{i} \langle F | Q_i | I \rangle \times C_i$ <u>Matrix elements:</u>

- encode low energy
- Main source of uncertainty

Vilson coefficents:

- 10 universal coefficients
- Encode high energy

New Physics in
$$BF(B^0_{(s)} \rightarrow \mu^+ \mu^-)_{t=0}$$

Sensitive to (Pseudo-)Scalar NP

- Not affected by helicity supp.
- Scalar adds up with SM
- Pseudo-scalar can interfere destructively with SM

 $^*A_{\Delta\Gamma}$ phenomenology not accounted for

SM contributions:

Which Models are Probed?

• $BF(B_s^0 \to \mu^+\mu^-)$:

- Models with extended Higgs sector, e.g SuperSymmetry with large $\tan \beta$ as $C_{S,P} \propto \tan^3 \beta$
- Lepto-quarks
- Z' models
- $BF(B^0 \rightarrow \mu^+\mu^-)$:
 - MFV hypothesis
 - Fourth generation

Experimental Picture

...before the first evidence!

Nov 2012 LHCb: First evidence with 1 (7 TeV) + 1 (8 TeV) fb⁻¹
 PRL 110, 021801, 2013

- Today: update with the full dataset: 1 (7 TeV) + 2 (8 TeV) fb⁻¹
- All data consistently reprocessed
- Data in $m(B^0_{(s)}) \pm 60$ MeV/c² are blind til analysis completion.

Outlines

- Motivations to search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$
- Searching for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb
- Combination with CMS
- Conclusions

2 Key Points for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ with LHCb

- 1. Production of $B_{(s)}^0$ mesons: (x-section and trigger)
- 2. Separation Signal/Background (detector performance)
 - Combinatorial background: $b\overline{b} \rightarrow \mu\mu X$

Physical backgrounds:

e.g. $B \rightarrow K\pi, KK, \pi\pi$ where K, π decay in flight to μ

Key Point 1: $B_{(s)}^0$ production

- LHCb: a single arm forward spectrometer: $b\overline{b}$ are produced forward
- Instantaneous luminosity $4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Exp.	Accept.	$\sigma_{b\overline{b}}$	<i>bb</i> pairs
ATLAS CMS	$ \eta < 2.2$	~ 75µb	$\sim 4 \times 10^{11}$
LHCb	$2 < \eta < 6$	$\sim 94 \mu b$	$\sim 9 \times 10^{10}$
	A lla na		

Albrecht, arXiv:1207.4287

- Not all $p\bar{p}$ interactions produce *B*: $\sigma_{b\bar{b}} \approx 1\% \sigma_{tot}$
- Record only interesting events with a trigger system

Trigger

Trigger is a 2-level system:

- L0 Trigger:
 - Made with custom electronics
 - Use fast available sub-detectors information
 - Rate reduction: 40 MHz \rightarrow 1 MHz
- HLT Trigger
 - Software trigger
 - Refine selection based on partial reconstructions
 - Rate reduction : 1 MHz \rightarrow 2-6 kHz
- Trigger Efficiency for $B_s^0 \rightarrow \mu^+ \mu^-$: 90%

Key Point 2: Separation Sig/Bkg

Signal separated from combinatorial Bkg thanks to: Mass and momentum resolution (magnet, tracking) $\frac{\delta p}{p} \sim 0.4 \rightarrow 0.6\%$ for $p = 5 \rightarrow 500 \ GeV/c$ $\Delta m_{\mu\mu} \sim 25 \text{MeV/c}^2$ (2 [3-4] times better than CMS [ATLAS]) ECAL HCAL SPD/PS M4 M5 M3 M2 Magnet RICH2 M1 T2RICH oc⁄ato

Key Point 2: Separation Sig/Bkg

Signal separated from combinatorial Bkg thanks to: Secondary vertex resolution: (high boost and tracking) *B* average flight distance 10 mm $\sigma_{IP} = 25 \mu m$ at $p_t = 2 \text{GeV/c}$

Key Point 2: Separation Sig/Bkg

Signal separated from physical Bkg thanks to: Particle identification info (RICH – muons chambers)

LHCb Analysis

Analysis Overview

Answering the question:

Which *BF* is (in-)compatible with the observed data?

- Observed data = $N(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} + Bkg)$
- 1. Increasing sensitivity:
 - Events Selection and Classification in categories
- 2. Derive Signal and Bkg expectations from control channels
- 3. Compare expectations with observation and infer about BF
 - CLs method and Fitting procedure if signal evidence

•	Data	Set:
---	------	------

2011	1.0 fb^{-1}	7TeV	
2012	$+1.1 \text{ fb}^{-1}$	8TeV	PRL 110, 021801, 2013
2012	$+0.9 \text{ fb}^{-1}$	8TeV	PRL 111, 101805, 2013

Analysis Overview

Answering the question:

Which *BF* is (in-)compatible with the observed data?

- Observed data = $N(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} + Bkg)$
- 1. Increasing sensitivity:
 - Events <u>Selection and Classification</u> in categories
- 2. Derive Signal and Bkg expectations from control channels
- 3. Compare expectations with observation and infer about BF
 - CLs method and Fitting procedure if signal evidence

•	Data	Set:
---	------	------

2011	1.0 fb^{-1}	7TeV	
2012	$+1.1 \text{ fb}^{-1}$	8TeV	PRL 110, 021801, 2013
2012	$+0.9 \text{ fb}^{-1}$	8TeV	PRL 111, 101805, 2013

Selection and Classification

- After loose selection, classify evt based on $m_{\mu\mu}$ and geometry
- Train Boosted Decision Tree (BDT) to recognize signal from combinatorial background based on 12 geometrical variables

B candidate:

- proper time
- impact parameter
- transverse momentum
- B isolation
- Angle between \vec{p}_B and \vec{p}_{thrust}
- Angle in *B* rest frame between p_{μ^+} and \vec{p}_{thrust}

Muons:

- min IP significance
- distance of closest approach
- muon isolation
- polarisation angle
- |η(μ₁)-η(μ₂)|
- |φ(μ₁)- φ(μ₂)|

 \vec{p}_{thrust} is the sum of momenta of all tracks consistent with originating from the decay of the other b hadron

Selection and Classification

- After loose selection, classify evt based on $m_{\mu\mu}$ and geometry
- Train Boosted Decision Tree (BDT) to recognize signal from combinatorial background based on 12 geometrical variables

BDI

BDT

Analysis Overview

Answering the question:

Which *BF* is (in-)compatible with the observed data?

- Observed data = $N(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} + Bkg)$
- 1. Increasing sensitivity:
 - Events Selection and Classification in categories
- 2. Derive <u>Signal and Bkg expectations</u> from control channels
- 3. Compare expectations with observation and infer about BF
 - CLs method and Fitting procedure if signal evidence

• Da	ta	Set:
------	----	------

2011	1.0 fb^{-1}	7TeV	
2012	$+1.1 \text{ fb}^{-1}$	8TeV	PRL 110, 021801, 2013
2012	$+0.9 \text{ fb}^{-1}$	8TeV	PRL 111, 101805, 2013

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B_s^0
 ightarrow h^+ h^{\prime -} \ B^0
 ightarrow \pi, K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$
 - $\Lambda_{\rm b}^0 o p \mu^- \overline{
 u}_\mu$
 - Total

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B_s^0
 ightarrow h^+ h^{\prime -} \ B^0
 ightarrow \pi, K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$
 - $\Lambda_{
 m b}^0 o p \mu^- \overline{
 u}_\mu$
 - Total

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B_s^0
 ightarrow h^+ h^{\prime -} \ B^0
 ightarrow \pi, K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$
 - $\Lambda_{
 m b}^0 o p \mu^- \overline{
 u}_\mu$
 - Total

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B_s^0
 ightarrow h^+ h^{\prime -}$ $B^0
 ightarrow \pi, K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$
 - $\Lambda^0_{
 m b} o p \mu^- \overline{
 u}_\mu$
 - Total

Bkg Expectations (20 Extrapolate Bkg from side-bands Fit components: • Combinatorial 10

- Extrapolate Bkg from side-bands
- Fit components:

 - MisId
 - $B^0_s
 ightarrow h^+ h'^ B^0 o \pi$, $K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$
 - $\Lambda_{\rm b}^0 o p \mu^- \overline{
 u}_\mu$
 - Total

Bkg Expectations (1-to Bkg from

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B^0_s
 ightarrow h^+ h'^ B^0 o \pi$, $K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$

BD

- $\Lambda_{\rm b}^0
 ightarrow p \mu^- \overline{
 u}_\mu$
- Total

Bkg Expectations

- Extrapolate Bkg from side-bands
- Fit components:
 - Combinatorial
 - MisId
 - $B_s^0
 ightarrow h^+ h'^ B^0
 ightarrow \pi, K^+ \mu^- \overline{
 u}_\mu$
 - Partially Reco $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$

BD

 $\Lambda_b^0 o p \mu^- \overline{
u}_\mu$

Total

Misidentified Backgrounds - $B_{(s)}^0 \rightarrow h^+ h'^-$

- 1. MisID probabilities measured on data in bins of p and p_T
 - $\pi \to \mu$ and $K \to \mu$ measured with $D^0 \to K^+\pi^-$ from $D^{*+} \to D^0\pi^+$,
 - $p \rightarrow \mu$ measured with $\Lambda \rightarrow p \pi^-$
- 2. Probabilities then convoluted with $B_{(s)}^0 \rightarrow h^+ h'^- MC$ spectra to get the average double misID efficiency $\epsilon_{\mu\mu \rightarrow hh}$ (~10⁻⁵)
- 3. Rate obtained applying $\varepsilon_{\mu\mu \to hh}$ to the $B^0_{(s)} \to h^+ h'^-$ yield
- 4. Mass shape is evaluated from MC
- 5. $B_{(s)}^{0} \rightarrow h^{+}h'^{-}$ included as fit component with rate constrained to expected yield

Other exclusive backgrounds

• Yields obtained by normalising to $B^+ \rightarrow J/\psi K^+$

	Yield in full BDT range	Fraction with $BDT > 0.7$ [%]
$B^0_{(s)} \rightarrow h^+ h'^-$	15 ± 1	28
$B^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}$	115 ± 6	15
$B_s^0 \to K^- \mu^+ \nu_\mu$	10 ± 4	21
$B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$	28 ± 8	15
$\Lambda_b^0 \to p \mu^- \bar{\nu}_\mu$	$70{\pm}30$	11

Expected background yield in [4.9-6] GeV/c²

- $B^0 \rightarrow \pi, K^+ \mu^- \overline{\nu}_{\mu}, B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^-$: included in fit
 - Mass PDF in each BDT bin determined from MC
 - normalization fixed to expected yield
- $\Lambda_b^0 \rightarrow p \mu^- \overline{\nu}_{\mu}$: treated as a systematic

Signal Expectations - PDF

BDT PDF:

• $B_{(s)}^{0} \rightarrow h^{+}h'^{-}$ same geometry as signal • PDF by extracting yields with a $m_{\mu\mu}$ fit in each bin

Mass PDF, Crystal Ball

- Mean $B^0_{(s)}$ mass, from $B^0_{(s)} \rightarrow h^+ h'^-$
- Mass resolution, from J/ψ , $\psi(2S)$, $\Upsilon(1,2,3S)$ and $B^0_{(s)} \rightarrow h^+ h'^-$
- Radiative tail from MC

 $\sigma_{B^0} = 22.8 \pm 0.4 \text{ MeV}$ $m_{B_s} - m_{B_d} \sim 3.5 \sigma_{B^0}$

Signal Expectations - Yields

• Number of signal events corresponding to a *BF*:

$$N_{B_{(s)}^{0} \to \mu^{+} \mu^{-}} \propto BF(B_{(s)}^{0} \to \mu^{+} \mu^{-}) \times N_{B_{s}}$$

• N_{B_s} obtained by normalising to channels of known BF:

 $B^+ \to J/\psi K^+$ and $B^0 \to K\pi$

Correcting for efficiencies and hadronisation probability:

$$N_{B_{(s)}^{0} \to \mu^{+} \mu^{-}} = BF(B_{(s)}^{0} \to \mu^{+} \mu^{-}) \times \frac{N_{norm}}{BF_{norm}}$$

$$\times \frac{f_{B_{(s)}^{0}}}{f_{norm}} \qquad \text{Ratio of probability for a } b \text{ quark to hadronise} \text{ into a } B_{(s)}^{0} \text{ or into the normalisation initial state}$$

$$\times \frac{\epsilon_{sig}}{\epsilon_{norm}}$$

Normalisation Ingredients

$$N_{B_{(s)}^{0} \to \mu^{+} \mu^{-}} = BF(B_{(s)}^{0} \to \mu^{+} \mu^{-})$$

$$\times \frac{N_{norm}}{BF_{norm}} \longleftarrow \qquad \text{Obtained by fitting control channels invariant mass}$$

$$\times \frac{f_{B_{(s)}^{0}}}{f_{norm}} \longleftarrow \qquad \text{Measured in LHCb}^{*}$$

$$\times \frac{\epsilon_{sig}}{\epsilon_{norm}} \longleftarrow \qquad \text{Measured with simulations}$$

Averaging the results from the two control channels:

SM expectations in signal mass windows: $40 \pm 4 \ B_s^0 \rightarrow \mu^+\mu^-$ and $4.5 \pm 0.4 \ B^0 \rightarrow \mu^+\mu^-$

*LHCb-CONF-2013-011

Time Acceptance Correction - 1

• Recall, decay rate depends on $A_{\Delta\Gamma}$:

$$\left\langle \Gamma(B_{(s)}^{0}(t) \rightarrow \ell^{+}\ell^{-}) \right\rangle = R_{H}e^{-\Gamma_{\rm H}^{(s)}t} + R_{L}e^{-\Gamma_{\rm L}^{(s)}t} \text{ and } A_{\Delta\Gamma} = \frac{R_{H}-R_{L}}{R_{H}+R_{L}}$$

- So $B_s^0 \to \mu^+ \mu^-$ signal efficiency ϵ_{sig} depend on $A_{\Delta\Gamma}$: $\epsilon_{sig}(A_{\Delta\Gamma}) = \frac{\int \Gamma(A_{\Delta\Gamma}, t) \times \epsilon(t) dt}{\int \Gamma(A_{\Delta\Gamma}, t) dt}$
- Signal efficiency used in normalisation...

$$BF_{sig} = BF_{norm} \times \frac{N_{sig}}{N_{norm}} \times \frac{f_{sig}}{f_{norm}} \times \frac{\epsilon_{sig}(A_{\Delta\Gamma})}{\epsilon_{norm}}$$

... is obtained form MC and must be corrected to match latest y_s and $\tau_{B_s^0}$ values:

$$\left. \epsilon_{B_s^0 \to \mu\mu}^{SM} \right|_{\epsilon^{MC}} = 1.0457$$

$$\left. \epsilon_{B^0 \to \mu\mu}^{SM} \right|_{\epsilon^{MC}} = 1.015$$

Time Acceptance Correction - 2

- BDT uses decay-time as input variable
- BDT PDF obtained with mainly $B^0 \rightarrow h^+ h'^-$
- $B^0 \rightarrow h^+ h'^-$ and $B_s^0 \rightarrow \mu^+ \mu^-$ have different lifetime distributions
- Need corrections:

$$\frac{PDF_{corr}^{i}}{PDF_{raw}^{i}} = \delta_{PDF}^{i}$$

• Nota: all these corrections depend on the value assumed for $A_{\Delta_{\Gamma}}$

Bin	PDF Correction
	$\delta^i_{PDF} - 1~(\%)$
1	-3.1061 ± 0.0196
2	-1.3778 ± 0.0290
3	-0.3887 ± 0.0392
4	$+0.2701 \pm 0.0423$
5	$+0.7193 \pm 0.0447$
6	$+1.3650\pm 0.0457$
7	$+2.5423 \pm 0.0463$
8	$+4.7365 \pm 0.0433$

Analysis Overview

Answering the question:

Which *BF* is (in-)compatible with the observed data?

- Observed data = $N(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} + Bkg)$
- 1. Increasing sensitivity:
 - Events Selection and Classification in categories
- 2. Derive Signal and Bkg expectations from control channels
- 3. Compare expectations with observation and infer about BF
 - <u>CLs method and Fitting</u> procedure if signal evidence

Data Set		1		
	2011	1.0 fb^{-1}	7TeV	
	2012	$+1.1 \text{ fb}^{-1}$	8TeV	PRL 110, 021801, 2013
	2012	$+0.9 \text{ fb}^{-1}$	8TeV	PRL 111, 101805, 2013

Sensitivity Expectations (CLs method)

Invariant mass $[MeV/c^2]$		BDT							
		0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
	Exp. comb. bkg	6138^{+114}_{-112}	$121.6_{-4.7}^{+4.8}$	$28.2^{+2.2}_{-2.1}$	$11.9^{+1.5}_{-1.4}$	$4.77_{-0.95}^{+1.11}$	$2.17_{-0.65}^{+0.79}$	$0.79_{-0.34}^{+0.48}$	$0.29_{-0.18}^{+0.32}$
5311 - 5431	Exp. peak. bkg	$0.330\substack{+0.105\\-0.089}$	$0.210\substack{+0.068\\-0.058}$	$0.140\substack{+0.045\\-0.038}$	$0.148\substack{+0.048\\-0.040}$	$0.147\substack{+0.047\\-0.040}$	$0.140\substack{+0.045\\-0.038}$	$0.130\substack{+0.042\\-0.035}$	$0.111\substack{+0.035\\-0.030}$
0401	Exp. signal	$8.78\substack{+1.09 \\ -0.99}$	$5.40^{+0.75}_{-0.67}$	$3.52\substack{+0.46 \\ -0.41}$	$3.75\substack{+0.47 \\ -0.43}$	$3.76\substack{+0.47\\-0.43}$	$3.61\substack{+0.46\\-0.42}$	$3.68^{+0.46}_{-0.42}$	$3.79_{-0.42}^{+0.46}$

Expected significance for a $B_s^0 \rightarrow \mu^+ \mu^-$ SM signal : 5.0 σ

Invariant mass $[MeV/c^2]$		BDT							
		0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
	Exp. comb. bkg	6520^{+119}_{-117}	$127.0^{+5.2}_{-5.0}$	$29.4^{+2.4}_{-2.3}$	$12.8^{+1.7}_{-1.5}$	$4.9^{+1.2}_{-1.1}$	$2.14\substack{+0.88 \\ -0.70}$	$0.82^{+0.53}_{-0.37}$	$0.29\substack{+0.35 \\ -0.19}$
	Exp. peak. bkg	$1.97\substack{+0.64 \\ -0.47}$	$1.25_{-0.31}^{+0.41}$	$0.83\substack{+0.27 \\ -0.20}$	$0.88\substack{+0.29\\-0.21}$	$0.88\substack{+0.28\\-0.21}$	$0.83\substack{+0.27 \\ -0.20}$	$0.77\substack{+0.25 \\ -0.18}$	$0.66\substack{+0.21\\-0.16}$
5224 - 5344	Exp. Cross-feed	$1.38\substack{+0.18\\-0.16}$	$0.85\substack{+0.12 \\ -0.11}$	$0.554\substack{+0.075\\-0.067}$	$0.590\substack{+0.078\\-0.070}$	$0.591\substack{+0.076\\-0.070}$	$0.567\substack{+0.077\\-0.069}$	$0.579^{+0.076}_{-0.069}$	$0.595\substack{+0.077\\-0.069}$
	Exp. signal	$0.99\substack{+0.12 \\ -0.11}$	$0.610\substack{+0.081\\-0.075}$	$0.398\substack{+0.049\\-0.046}$	$0.424\substack{+0.050\\-0.047}$	$0.425\substack{+0.050\\-0.047}$	$0.408\substack{+0.050\\-0.047}$	$0.416\substack{+0.049\\-0.046}$	$0.428\substack{+0.050\\-0.046}$
									•

No significant $B^0 \rightarrow \mu^+\mu^-$ SM signal expected: $B(B^0 \rightarrow \mu^+\mu^-) < 5.4 \times 10^{-10}$ at 95% CL

Open the box

Fit Projection $B_s^0 \rightarrow \mu^+ \mu^ B^0 \rightarrow \mu^+ \mu^ B^0 o \pi$, $K^+ \mu^- \overline{ u}_\mu$ $B^{0,+} \rightarrow \pi^{0,+} \mu^+ \mu^ B^0_{(s)} \rightarrow h^+ h'^-$ **Total**

Fit Projection

 $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ $B^{0} \rightarrow \mu^{+}\mu^{-}$ $B^{0} \rightarrow \pi, K^{+}\mu^{-}\overline{\nu}_{\mu}$ $B^{0,+} \rightarrow \pi^{0,+}\mu^{+}\mu^{-}$ $B_{(s)}^{0} \rightarrow h^{+}h'^{-}$ Total

Fit Projection

 $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ $B^{0} \rightarrow \mu^{+}\mu^{-}$ $B^{0} \rightarrow \pi, K^{+}\mu^{-}\overline{\nu}_{\mu}$ $B^{0,+} \rightarrow \pi^{0,+}\mu^{+}\mu^{-}$ $B_{(s)}^{0} \rightarrow h^{+}h'^{-}$ Total

Fit Result

arXiv:1307.5024, Phys.Rev. Lett.111(2013) 101805

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = (2.9_{-1.0}^{+1.1} (stat)_{-0.1}^{+0.3} (syst)) \times 10^{-9}$$

Significance: 4.0
$$\sigma$$
 expected 5.0 σ (median)

$$B(B^{0} \rightarrow \mu^{+}\mu^{-}) = (3.7^{+2.4}_{-2.1}(stat)^{+0.6}_{-0.4}(syst)) \times 10^{-10}$$

Significance: 2.0 σ

Correlation between BR(B⁰ \rightarrow µ⁺µ⁻) and BR(B_s \rightarrow µ⁺µ⁻) : 3.3%

Profile Likelihood: All parameters except $B(B_s^0 \rightarrow \mu^+ \mu^-)$ are floated within their errors.

 $B^0 \rightarrow \mu^+ \mu^-$ upper limit

Obtained with the CLs method

Outlines

- Motivations to search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$
- Searching for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb
- Combination with CMS
- Conclusions

CMS Analysis in Brief

- Dataset: 5 (7 TeV) + 20 (8 TeV) fb⁻¹
- Trigger requirement :
 - (sub-)leading muon pT> 3 (4) GeV, dimuon pT>4.9 GeV for $|\eta_{\mu\mu}|$ <1.8
 - (sub-)leading muon pT> 4 (4) GeV, dimuon pT>7 GeV for $|\eta_{\mu\mu}|$ >1.8
 - 4.8<m_{µµ}<6 GeV
 - Vertex fit p(χ²) >0.5%
- Discriminant variables: $m_{\mu\mu}$ and BDT
- Two categories and 2011 and 2012 data kept separated:
 - Both muons in barrel : $\sigma_{\mu\mu} \sim 40 \text{ MeV}$
 - At least one muon in endcap: more events but $\sigma_{\mu\mu} \sim 60 \text{ MeV}$

BDT

- Training on MC signal and data sidebands:
 - To avoid biases, use 3 separate samples: train on 1st, test on 2^{nd} and apply on $3rd \Rightarrow 3$ BDT per categories
- 12 variables used, independent of pile-up conditions
- Signal BDT distribution taken from MC, systematics evaluated using control sample
- Then, 2 possible methods:
 - Simple cut on BDT output, optimised for each sample: limit computation
 - Analysis in 3 bins of BDT vs mass (higher expected sensitivity): simultaneous maximum likelihood fit

8 TeV data

Combination CMS LHCb

- Simple average technique (arXiv:physics/0406120)
- Treat correlated systematic uncertainty: f_s/f_d
- Update CMS results with latest $f_s/_{f_d}$ *

$$B(B_s^0 \to \mu^+ \mu^-) = 2.96^{+0.97}_{-0.85} \pm 0.17_{f_s/f_d}$$
 CMS

$$B(B_s^0 \to \mu^+ \mu^-) = 2.87^{+1.09}_{-0.95} \pm 0.17_{f_s/f_d}$$
 LHCb

Combined result:

 $B(B_{s}^{0} \to \mu^{+}\mu^{-}) = (2.9 \pm 0.7) \times 10^{-9} \quad \text{Signifiance} > 5\sigma$ $B(B^{0} \to \mu^{+}\mu^{-}) = (3.6^{+1.6}_{-1.4}) \times 10^{-10} \quad \text{Signifiance} < 3\sigma$

*LHCb-CONF-2013-011

Outlines

- Motivations to search for $B^0_{(s)} \rightarrow \mu^+ \mu^-$
- Searching for $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb
- Combination with CMS
- Conclusions

From 1984 to now...

Summary

CMS 25 fb⁻¹

$$B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (3.0_{-0.9}^{+1.0}) \times 10^{-9}$$
 4.3 σ

$$B(B^{0} \rightarrow \mu^{+}\mu^{-}) = 3.5^{+2.1}_{-1.8} \times 10^{-10}$$
 2.0 σ

 $B(B^{0} \rightarrow \mu^{+}\mu^{-}) < 1.1 \times 10^{-9} @95\%$ CL

LHCb 3 fb⁻¹

$$B (B_{s}^{0} \rightarrow \mu^{+} \mu^{-}) = (2.9_{-1.0}^{+1.1}) \times 10^{-9} \quad 4.0 \sigma$$
$$B (B^{0} \rightarrow \mu^{+} \mu^{-}) = 3.7_{-2.1}^{+2.4} \times 10^{-10} \quad 2.0 \sigma$$
$$B (B^{0} \rightarrow \mu^{+} \mu^{-}) < 7.4 \times 10^{-10} \quad @95\%$$
CL

CMS + LHCb : First observation of BR($B_s \rightarrow \mu^+ \mu^-$) !! $B(B_s^0 \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$

Some projections

• From LHCB-TDR-012:

Obs.	End 2018	LHCb upgrade $50fb^{-1}$
$B(B^0_s \to \mu^+ \mu^-)$	0.5×10^{-9}	0.15×10^{-9}
$\frac{B(\mathrm{B}^0_\mathrm{s}\to\mu^+\mu^-)}{B(\mathrm{B}^0\to\mu^+\mu^-)}$	100%	35%

$A_{\Delta\Gamma}$ Dependency

- BR results valid only if $A_{\Delta\Gamma} = 1$
- In NP $A_{\Delta\Gamma}$ can take any value between -1 and +1
- Results depend on $A_{\Delta\Gamma}$:

Exploiting $A_{\Delta\Gamma}$ Dependency

- New Physics can enter both $BF_{t=0}$ and $A_{\Delta\Gamma}$
- The experi. *BF* dependency on $A_{\Delta\Gamma}$ must be accounted for
- The constraints are more accurate and more stringent

Different NP scenarios feature different non-trivial $A_{\Delta\Gamma} - BF$ correlations

* Modified from De Bruyn et al. PRL 109, 041801, 2012
Exploiting $A_{\Delta\Gamma}$ Dependency

- New Physics can enter both $BF_{t=0}$ and $A_{\Delta\Gamma}$
- The experi. *BF* dependency on $A_{\Delta\Gamma}$ must be accounted for
- The constraints are more accurate and more stringent

* Modified from De Bruyn et al. PRL 109, 041801, 2012 ** Altmannshofer, arXiv:1306.0022

Exploiting $A_{\Delta\Gamma}$ Dependency

- New Physics can enter both $BF_{t=0}$ and $A_{\Delta\Gamma}$
- The expe. *BF* dependency on $A_{\Delta\Gamma}$ must be accounted for
- The constraints are more accurate and more stringent

Constraints on scalar are 30% more stringent

Sensitivity Projection on $A_{\Delta\Gamma}$

• $A_{\Delta\Gamma}$ can be obtained from effective lifetime, $\tau_{eff} = \frac{\int \langle \Gamma(B_s^0(t) \to \mu^+ \mu^-) \rangle \times t \, dt}{\int \langle \Gamma(B_s^0(t) \to \mu^+ \mu^-) \rangle \, dt} = \frac{\tau_{B_s}}{1 - y_s^2} \times \frac{1 + 2A_{\Delta\Gamma} \, y_s + y_s^2}{1 + A_{\Delta\Gamma} \, y_s}$ • LHCb measured $\tau_{eff}(B_s^0 \to K^+K^-)$ at 7% precision with 552

signal events which give an uncertainty on $A_{\Delta\Gamma}$ of 100%

Uncertainty with new lattice F_B

- Recent works in Lattice QCD claims uncertainties at 1.3%
- Results still discussed
- 'Conservative' approach:

Central value from weighted average + uncertainty of 8 MeV

If results confirmed:

 $BF(B_s^0 \to \mu^+ \mu^-) = 3.57 \pm 0.18 \times 10^{-9}$

• Dominant uncertainty $|V_{tb}^*V_{ts}|$

Hadronisation Probablility f_s/f_d

- f_s/f_d is measured at LHCb by comparing abundances of:
 - $B_s^0 \to D_s^- \pi^+$, $B^0 \to D^- K^+$ and $B^0 \to D^- \pi^+$ arXiv:111.2357 aka PRD85 032008 (2012)
 - $B^0_s \to D^-_s \mu^+ X$ and $B^0 \to D^- \mu^+ X$ LHCb-paper-2012-037 in preparation
- Use $B(D_s^- \to K^+ K^- \pi^-)$ and τ_B
- at 7 TeV: $f_s/f_d = 0.259 \pm 0.015$
- *p_T* dependency small enough to be negligible
- \sqrt{s} dependency checked with $B^+ \rightarrow J/\psi K^+$ and $B_s^0 \rightarrow J/\psi \phi$: stable within 1σ

Exclusive Backgrounds : $B_s^0 \to K^+ \mu^- \bar{\nu}_\mu$ and $B^0 \to \pi^+ \mu^- \bar{\nu}_\mu$

- Lower contribution from $B_s^0 \to K^+ \mu^- \bar{\nu}_{\mu}$ explained by:
 - $f_s/f_d = 0.26$
 - $B(B_s^0 \to K^+ \mu^- \bar{\nu}_{\mu}) / B(B^0 \to \pi^+ \mu^- \bar{\nu}_{\mu}) = 0.88$
 - $\epsilon_{K \to \mu} / \epsilon_{\pi \to \mu} = 0.28$ (RICH efficiency and $B(K^- \to \mu^- \bar{\nu_{\mu}}) / B(\pi^- \to \mu^- \bar{\nu_{\mu}})$)

BDT Variables

Muon isolation: number of other tracks with which the muon can make a good vertex

Other tracks requierement:

- Long track
- Impact Param Significance with PV > 3

Vertex requirement:

- Angle track-muon<0.27rad
- Distance of Closest Approach < 130 µm
- Distance to PV: 0.5cm<d<4cm
- Distance to SV: -0.15cm<d<30cm

• $\frac{\left|\overrightarrow{p_{\mu}}+\overrightarrow{p_{track}}\right|\sin\alpha}{\left|\overrightarrow{p_{\mu}}+\overrightarrow{p_{track}}\right|\sin\alpha+p_{T,\mu}+p_{T,track}} < 0.6$

BDT Variables

Polarisation Angle:

angle between the muon momentum in the *B* rest frame and the vector perpendicular to the *B* momentum and the beam axis

B Isolation:

$$I = \frac{p_{T,B}}{p_{T,B} + \sum_{tracks} p_{T,track}}$$

sum running on the tracks such that $\delta \eta^2 + \delta \phi^2 < 1.0$

MVA Selection Variables

- B Candidate
 - impact parameter*
 - impact parameter χ^2
 - χ^2 of the vertex
 - pointing angle
 - distance of closest approach*
- Muons
 - min IP

*common with BDT