W and Z boson production at the LHC and the implications for the knowledge of the proton structure

Jan Kretzschmar

University of Liverpool

Seminar @ Saclay, 20.1.2014

W and Z measurements at LHC

- Why study W and Z at LHC?
 - Precision electroweak measurements $(m_W, \sin^2 \theta_W)$
 - Novel information on the proton structure (PDFs):
 - To improve knowledge PDFs and apply this in other measurements
 - To test and understand QCD
 - Main focus of this talk
- Why use W, Z to learn about PDFs?
 - High precision experiment matched by high precision theory compared to other interesting measurements with PDF constraints possible at LHC (W,Z+jets, jets, isolated photons, tt)
- Review of pre-LHC status and recent LHC results and their impact in PDF fits
- (For references see the end of talk)

LHC and ATLAS, CMS & LHCb

- Large Hadron Collider has successfully delivered luminosity since 2010
- Results shown here are typically high precision analyses and based on the 2010 or 2011 data set: 40 pb^{-1} and 5 fb^{-1} (1.8% lumi error for 2011)
- Personally involved in ATLAS, but reviewing some of the interesting recent results from CMS (and LHCb)

Some ATLAS events

LHC: A W and Z "Factory"

- Large production cross section and acceptance for W and Z in leptonic decay channels ($\ell = e \text{ or } \mu$)
- ATLAS collected $Z \rightarrow \ell \ell$ and $W^{\pm} \rightarrow \ell \nu$ at rates of ~ 2 Hz and 20 Hz in 2011

LHC: A W and Z "Factory"

- 2011 data set
 - ~ 1.5 million $Z \rightarrow \ell \ell$ events per channel and experiment
 - ~ 15 million $W \rightarrow \ell \nu$ events per channel and experiment
- For 2012 factor $\sim 5~{
 m more}$
- In run 2 the $W \rightarrow \ell \nu$ rate will be an issue for the trigger & data handling

LHC: A W and Z "Factory"

- 2011 data set
 - ~ 1.5 million $Z \rightarrow \ell \ell$ events per channel and experiment
 - ~ 15 million $W \rightarrow \ell \nu$ events per channel and experiment
- For 2012 factor $\sim 5~{\rm more}$
- In run 2 the $W \rightarrow \ell \nu$ rate will be an issue for the trigger & data handling

ATLAS: Lepton Performance

- Main issue for inclusive $W \to \ell \nu$ and $Z \to \ell \ell$ is quantitative understanding of lepton performance: selection efficiencies, energy and momentum scales
- With large $Z \to \ell \ell$ samples and sufficient efforts this can be understood to very high precision
- ... performance publications to come soon

Electroweak Precision at LHC: m_W

- A very precise m_W measurement remains an interesting test for the consistency of the SM
- Tevatron measurements with "just" $\sim 100,000~Z$ and $\sim 1~W$ million events
- Measurement at LHC will be completely systematics dominated, PDF uncertainties ($\sim 10\,{\rm MeV}$ at Tevatron) eventually a limiting factor

CDF m_W uncertainty in [MeV]

Source	Uncertainty
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton tower removal	2
Backgrounds	3
PDFs	10
$p_T(W)$ model	5
Photon radiation	4
Statistical	12
Total	19

Electroweak Precision at LHC: $\sin^2 \theta_W$

- Precision $\sin^2 \theta_W$ measurement statistical possible at LHC: current ATLAS analysis extrapolated to $\sim 100 \, {\rm fb}^{-1}$ can reach LEP/SLD precision
- PDF systematics needs large improvement to reach this goal

ATLAS preliminary 2011 $4.7 \,\mathrm{fb}^{-1}$ $\sin^2 \theta_W$ uncertainties

	CC electrons	CF electrons	Muons	Combined
Uncertainty source	(10 ⁻⁴)	(10^{-4})	(10^{-4})	(10^{-4})
PDF	9	5	9	7
MC statistics	9	5	9	4
Electron energy scale	4	6	_	4
Electron energy smearing	4	5	_	3
Muon energy scale	_	_	5	2
Higher-order corrections	3	1	3	2
Other sources	1	1	2	2
Data stat.	9	6	9	4

Electroweak Precision at LHC

- $e \mu$ lepton universality in W and Z decays primarily limited by lepton performance and statistics
- Precise ${\rm BR}(W \to \tau \nu)/{\rm BR}(W \to \ell \nu)$ measurement even more interesting, but more challenging

W and Z Production in Hadron Collisions

- Known at NNLO QCD (α_s^2): "Unlike other QCD processes the DY reaction seems to be one of the few cases where the calculation of the order α_s^2 corrections is feasible, a property it shares with deep inelastic lepton-hadron scattering." [Hamberg, van Neerven, Matsuura, 1991]
- NLO EWK corrections (beyond large QED FSR corrections) of similar size as NLO \rightarrow NNLO QCD
- Total theory uncertainty (excluding PDFs) $\leq 0.5 1.0\%$ absolute: benchmarking&combining tools, a lot of computation power

W and Z Production in Hadron Collisions

- Full prediction integral over parton distributions of the proton $f(x, Q^2)$
- Parton momentum fraction $x_{1,2} = m/\sqrt{s} e^{\pm y}$ related to boson rapidity, scale Q^2 given by boson mass²
- At LO cross sections determined by sum of different $q\bar{q}$ combinations
 - Weighted by different electro-weak couplings for Z ($v_q^2 + a_q^2$) and γ^* (e_q^2) + their interference
 - Weighted by CKM elements $V_{q\bar{q}}$ for W^{\pm}

Lepton-hadron deep inelastic scattering

• Inclusive NC cross section measured precisely over many orders of magnitude in x and Q^2 at HERA and fixed target experiments: constrains primarily $\sum e_q^2(q + \bar{q})$ and gluon through scaling violations H1 and ZEUS

Lepton-hadron deep inelastic scattering

- Inclusive CC cross sections and deuterons/isoscalar targets bring additional information on up/down quark decomposition
- Potentially problematic nuclear corrections for fixed target experiments
- Limited HERA CC statistics and reach
- Parametrise all PDFs at fixed starting scale $f(x, Q_0^2)$: DGLAP evolution at (N)NLO gives result for all $f(x, Q^2)$
- Fix parametrisation by fit to all sensitive data
- Full LHC W, Z production x range only covered by HERA NC data

Flavour decomposition in typical PDF Fit

• Heavy quarks c, b: contribution calculated perturbatively, different calculation on the market

• Flavour decomposition of light sea at low $x < 10^{-2}$ mostly an educated guess: $\bar{u} \sim \bar{d}$; $r_s = \bar{s}/\bar{d} < 1$?

Charm content of the proton

- HERA DIS + charm data has reached few % precision
- Can test the different heavy flavour calculations and constrain the model parameters (mainly charm mass M_c)

Effect of charm on W, Z @ LHC

- Treatment of charm contribution to DIS has a strong effect on predicted W and Z cross sections at $\sim 5\%$ level
- If charm treatment is optimised to match the DIS+charm data, the resulting W and Z cross sections at LHC move closer
- Reversing the argument: precise LHC data should be able to tell us about the heavy flavour treatment

Strange Content of Proton

- Some indication of suppressed strange (w.r.t. down sea) at higher x:
 - Neutrino di-muon data (the DIS "equivalent" of W+charm production, see later) give \sim MSTW2008, large spread
 - HERMES LO kaon multiplicities: new analysis reduced strange
- Low x essentially unconstrained

LHC Results on W and Z/γ^* Production

• High statistics, high precision measurements in novel (x, Q^2) range; different flavour sensitivity compared to (NC) DIS

- Z peak differential in y_Z (ATLAS, CMS, LHCb)
- Z/γ^* differential in $m_{\ell\ell}$ (ATLAS, CMS, LHCb prelim.)
- Z/γ^* double differential in $y_{\ell\ell} m_{\ell\ell}$ (CMS, LHCb prelim.)
- W^{\pm} differential in η_l (ATLAS, CMS, LHCb)
- W + charm (ATLAS prelim., CMS)

Z Peak vs. Rapidity

- Small backgrounds, high statistics: showcase for lepton performance
- ATLAS (and CMS) 2010 combine $Z \rightarrow ee$ (central+fwd) and $Z \rightarrow \mu\mu$ (~ 2-3%); CMS update 2011 $Z \rightarrow \mu\mu$ (~ 1-2%): absolute vs. normalised
- Comparison to NNLO PDFs: most sets show a slope vs. $y_{\ell\ell}$

Z Peak vs. Rapidity

- Small backgrounds, high statistics: showcase for lepton performance
- ATLAS (and CMS) 2010 combine $Z \rightarrow ee$ (central+fwd) and $Z \rightarrow \mu\mu$ (~ 2-3%); CMS update 2011 $Z \rightarrow \mu\mu$ (~ 1-2%): absolute vs. normalised
- Comparison to NNLO PDFs: most sets show a slope vs. $y_{\ell\ell}$

Z Peak vs. Rapidity

- LHCb extends the Zmeasurement to the full rapidity range using both $Z \rightarrow ee$ and $Z \rightarrow \mu \mu$ (~ 2-3% prelim.)
- Qualitative good comparison to **ATLAS**

da/dy [pb]

140F

120

100

80

60

40

20

0.5

do/dy [pb]

70

60

LHCb preliminary Data (stat)

Data (tot)

MSTW08 (NNLO)

CMS

Ldt = 4.8 fb⁻¹ ee, Ldt = 4.5 fb⁻¹ $\mu\mu$ at \sqrt{s} = 7 TeV

Z/γ^* vs. $m_{\ell\ell}$

• Moving away from Z peak: change in probed x, Q^2 , different quark couplings, important HO EWK corrections including photon-induced processes $\gamma \gamma \rightarrow \ell \ell$

10⁻¹

Limited PDF sensitivity (although) NNPDF2.3QED γ based on this)

Z/γ^* double-differentially

- Next step: double-differential Z/γ^* in $y_{\ell\ell} m_{\ell\ell}$
- Full exploitation of accessible x, Q^2 range and different quark couplings; experimental correlations: expect strong constraints on PDFs
- First preliminary results by LHCb, first CMS publication on full 2011 data using $\mu\mu$ final state \rightarrow next page; need to see how this will work in a QCD fit...

W^{\pm} results

- Challenges: background, single ℓ trigger, ℓ and $\not\!\!\!E_T$ performance
- "Asymmetry" $(W^+ W^-)/(W^+ + W^-)$ vs. separate W^+ and W^- with full correlations: robuster theory vs. more information
- ATLAS based on 2010 $e \mu$ combination; CMS 2011 $p_{T,\ell} > 25$ GeV based on muons: very precise

W^{\pm} results

- Challenges: background, single ℓ trigger, ℓ and $\not\!\!\!E_T$ performance
- "Asymmetry" $(W^+ W^-)/(W^+ + W^-)$ vs. separate W^+ and W^- with full correlations: robuster theory vs. more information
- ATLAS based on 2010 $e \mu$ combination; CMS 2011 $p_{T,\ell} > 25$ GeV based on muons: very precise CMS, L = 4.7 fb⁻¹ at \sqrt{s} = 7 TeV

W^{\pm} results

- LHCb able to extend the measurement to the full accessible region
- Qualitative good comparison to ATLAS
- Comparison to NNLO PDFs good

ATLAS PDF Fit to 2010 W^{\pm} and Z

- Actual impact of the data and compatibility with QCD is best gauged by doing a full PDF fit
- ATLAS fit to W^{\pm} and Z + HERA ep DIS cross sections (HERAFitter with MCFM+APPLGRID NLO QCD × NNLO k factors)
- Significant tension is observed, when strange quark fraction $r_s = 0.5 \cdot (xs(x) + x\bar{s}(x))/x\bar{d}(x)$ is fixed to $r_s = 0.5$ at $Q^2 = 1.9 \,\text{GeV}^2$
- ATLAS W, Z improves from $\chi^2/n.d.f. = 44.5/30$ to $\chi^2/n.d.f. = 33.9/30$ when releasing strange constraint

W, Z data sensitivity to strange sea

• Fit with free strange sea indicates no strange sea suppression at $Q^2 = 1.9 \,\text{GeV}^2$ and x = 0.023: $r_s = 1.00 \pm 0.20_{\text{exp}} \stackrel{+0.16}{_{-0.20 \text{ sys}}}$

epWZ free s

 $Q^2 = 1.9 \text{ GeV}^2$, x=0.023

experimental uncertainty

▲ ABKM09

NNPDF2.1 MSTW08

 CT10 (NLO) total uncertainty

0

ATLAS

Knock-on effect on the remaining light sea as HERA constrains $\sim \sum e_q^2(q+\bar{q})$

• $r_s = 1$ just luck?

W+charm

- A direct probe of the strange PDF: W+charm, $\sim 90\%$ of the cross section strange-induced
- Charm tagging methods:
 - \square $D^{(*)}$ reconstruction (CMS, ATLAS prel.)
 - $c \rightarrow \mu$ decays (CMS)
- Exploit charge correlation between $W^{\pm}(\rightarrow \ell^{\pm}\nu)$ and c/\bar{c} : signal is OS, background is OS/SS symmetric
- 0000000 Drawbacks: statistics, theory only NLO (5-10% unc.)

s, d

000000

g

s, d

g

Ē

С

С

С

W+charm Integrated

- Phase spaces different, numerical closeness of measured cross sections a coincidence
- Compare final measurements vs. common PDFs, e.g. CT10
- ATLAS result has a clear preference for high strange, while CMS is more "in between" — to be continued with more (precise) data

Jan Kretzschmar, 20.1.2014 - p.33

W+charm Charge Ratio

• Ratio
$$R_c^{\pm} = W^+ \bar{c}/W^- c$$
 sensitive to potential s/\bar{s} asymmetry
 $R_c^{\pm} \sim \frac{|V_{cs}|^2 \bar{s} + |V_{cd}|^2 \bar{d}}{|V_{cs}|^2 s + |V_{cd}|^2 d} \sim \frac{0.95 \bar{s} + 0.05 \bar{d}}{0.95 s + 0.05 d}$

• Too low statistics to decide between PDF set with $s = \overline{s}$ (e.g. CT10) and others with asymmetry (e.g. MSTW2008)

Jan Kretzschmar, 20.1.2014 - p.34

CMS QCD Fit to 2011 W and W+charm

- CMS has performed an NLO QCD fit to gauge the impact of the W production data (unfortunately not including Z/γ^*)
- Based on HERA 1 data and HERAFitter similar to ATLAS fit
- Inclusive W asymmetry has effect on valence quarks

Jan Kretzschmar, 20.1.2014 – p.35

CMS QCD Fit to 2011 W and W+charm

Similar to ATLAS fit leave the strange distributions free

CMS QCD Fit to 2011 W and W+charm

• Similar to ATLAS fit leave the strange distributions free

- CMS Strange enhanced, but not as much as in ATLAS fit; consistent
- More constraints in CMS fit at high x
- Note: Glossing over some details like NNLO vs. NLO, r_s vs. R_s

Conclusions

- After years of waiting, discussion and work the precision W and Z measurements from LHC are coming in
- 2010 results published since long: a few PDF fits clearly disfavoured, indication for large strange component
- 2011 results with $100 \times$ larger data set just published (CMS) and hopefully coming soon from ATLAS and LHCb
- LHC W and Z data have novel sensitivity compared to HERA at low $x \lesssim 10^{-2}$: will help to verify or improve previous conventional assumptions like strange content
- Improvements at higher $x \gtrsim 10^{-2}$ compared to pre-LHC data require interplay of highly precise W^{\pm} and Z/γ^* measurements

References I

- ATLAS $W^{\pm}, Z/\gamma^*$ 2010: Phys. Rev. D85 (2012) 072004
- ATLAS strange PDF fit 2010: Phys.Rev.Lett. 109 (2012) 012001
- ATLAS High mass DY 2011: Phys. Lett. B 725 (2013) pp. 223-242
- ATLAS *W*+charm 2011 (preliminary): ATLAS-CONF-2013-045
- ATLAS $A_{\rm FB}$ 2011 (preliminary): ATLAS-CONF-2013-043
- CMS $W \rightarrow \mu\nu$ Asymmetry & QCD Fit 2011: arXiv:1312.6283 (\rightarrow PRD)
- CMS 2D Drell-Yan 2011: JHEP12(2013)30
- CMS W+charm 2011: arXiv:1310.1138 (\rightarrow JHEP)
- LHCb W and Z 2010 & 2011: JHEP06(2012)058, JHEP02(2013)106, LHCb-CONF-2013-007, LHCb-CONF-2013-005, LHCb-CONF-2012-013
- HERMES Reevaluation of the Parton Distribution of Strange Quarks in the Nucleon: arXiv:1312.7028 (\rightarrow PRD)

References II

- Gfitter: Eur. Phys. J. C72 (2012) 2205
- PDF uncertainties in the determination of the W boson mass and of the effective lepton mixing angle at the LHC: PoS DIS2013 (2013) 280
- CDF, D0 m_W : arXiv:1311.0894, arXiv:1310.8628 (\rightarrow PRD)
- H1, ZEUS Inclusive DIS at HERA and QCD Fit: JHEP01(2010)109
- H1, ZEUS Inclusive DIS + Charm at HERA and QCD Fit: Eur. Phys. J. C73 (2013) 2311
- Progress in the Determination of the Partonic Structure of the Proton: Ann.Rev.Nucl.Part.Sci. 63 (2013) 291-328
- LHeC CDR: J.Phys. G39 (2012) 075001
- A complete calculation of the order α_s^2 correction to the Drell-Yan K-factor: Nucl. Phys. B 359 (1991) 343

PDF comparison

