Direct Dark Matter Search with DarkSide-50

26/05/2014

Davide Franco APC - CNRS

Dark Matter

Dark matter has already been **indirectly** discovered through:

- Galaxy clusters
- Galactic rotation curves
- Weak lensing
- Strong lensing
- Hot gas in clusters
- Bullet Cluster
- Supernovae
- CMB

Dark Matter Candidate

It interacts through gravitational force It is electrically neutral

no other long range interaction is allowed, otherwise it would have formed "atoms" and , hence, stars etc.

It does not strongly interact otherwise it should have already been detected

It may weakly interact

WIMPs

Weakly Interacting Massive Particles

WIMP Direct Detection Ingredients

Large masses

• Low rate (~1 event/ton/yr @ 10⁻⁴⁷ cm² in noble liquids)

Low energy thresholds

• Low energy nuclear recoils (< 100 keV)

Background suppression

- Deep underground
- Passive/active shielding
- Low intrinsic radioactivity
- Gamma background discrimination

Direct Dark Matter Search

The WIMP Hunt

The WIMP Hunt

Noble Liquids

Relatively **inexpensive** and **dense**

Easy to **purify**

- most impurities freeze out
- low surface binding
- purification easiest for colder liquids

Ionization electrons and **scintillation** photons:

- complementarity on particle energy- 3D localization when used in TPC

High ionization ($W_{LAr} = 21.5 \text{ eV}$, $W_{LXe} = 15.6 \text{ eV}$)

Very high scintillation yield (~40,000 photons/MeV)

Transparent to their own scintillation

High electron mobility and low electron diffusion

Noble Liquids

		LAr	LKr	LXe
	Atomic number	18	36	54
Physical	Boiling point at 1 bar, $T_{\rm b}$ (K)	87.3	119.8	165.0
properties	Density at T_b (g/cm ³)	1.40	2.41	2.94
	W (eV) ¹	23.6 20.5	20.5	15.6
Ionisation	Fano factor	0.11	~0.06	0.041
	Drift velocity $(cm/\mu s)$ at 3 kV/cm	0.30	0.33	0.26
	Transversal diffusion coefficient			
	at 1 kV/cm (cm 2 /s)	~20		~80
	Decay time ² , fast (ns)	5	2.1	2.2
	slow (ns)	1000 80	80	27/45
Scintillation	Emission peak (nm)	127	150	175
	Light yield ² (phot./Mev)	40000	25000	42000
	Radiation length (cm)	14	4.7	2.8
	Moliere radius (cm)	10.0	6.6	5.7

Excellent discrimination power!

Radiopurity:

- LXe: excellent radio-purity
- Atmospheric LAr: contaminated by cosmogenic ³⁹Ar
- Underground LAr: ³⁹Ar depleted

Underground Argon

Depletion Factor > 150

The DarkSide program at LNGS

Double Phase Liquid Argon TPC

DarkSide-10 2011-2013

DarkSide-50 2013-201x

~10⁻⁴⁵ cm²

DarkSide-G2 2016-2020

~10⁻⁴⁷ cm²

The Dark Side Collaboration

Ukraine KINR, NAS Ukraine – Kiev **CHINA** IHEP – Beijing **POLAND** Jagiellonian University – Krakow

FRANCE

Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité – Paris IPHC, Université de Strasbourg, CNRS/IN2P3 – Strasbourg

USA

Augustana College – SD Black Hills State University – SD Fermilab – IL Princeton University – NJ SLAC National Accelerator Center – CA Temple University – PA University of Arkansan – AR University of California – Los Angeles, CA University of Chicago – IL University of Hawaii – HI University of Houston – TX University of Massachusetts – MA Virginia Tech – VA

ITALY

INFN Laboratori Nazionali del Gran Sasso – Assergi Università degli Studi and INFN – Genova Università degli Studi and INFN – Milano Università degli Studi Federico II and INFN – Napoli Università degli Studi and INFN – Perugia Università degli Studi Roma Tre and INFN – Roma

RUSSIA

Joint Institute for Nucelar Research – Dubna Lomonosov Moscow State University – Moscow National Research Centre Kurchatov Institute – Moscow Saint Petersburg Nuclear Physics Institute – Gatchina

DarkSide Guidelines

Background suppression

Ultra-low background materials

- Depleted liquid argon
- Low background photo-detectors
- Low background material components

Active shields

- Water Cherenkov against muons
- Borate scintillator against mu and n
- Multiple scattering with the TPC

Residual background identification

Background identification

- Pulse shape discrimination
- \$1/\$2 discrimination
- Neutron flux with borate scintillator
- Position reconstruction

Double Phase TPC

Liquid Argon Ionization and Scintillation

Light Emission via Excitation $e^- + Ar \rightarrow Ar^* + e^ Ar^* + Ar \rightarrow Ar_2^*$ $Ar_2^* \rightarrow Ar + Ar + photon$

Light Emission via Ionization $e^{-} + Ar \rightarrow Ar^{+} + 2e^{-}$ $Ar^{+} + Ar + Ar \rightarrow Ar_{2}^{+} + Ar$ $e^{-} + Ar_{2}^{+} \rightarrow Ar^{**} + Ar$ $Ar^{**} + Ar \rightarrow Ar^{*} + Ar + heat$ $Ar^{**} + Ar + Ar \rightarrow Ar_{2}^{*} + Ar + heat$ $Ar_{2}^{*} \rightarrow Ar + Ar + photon$

Background Discrimination: S1/S2

Benetti et al. (ICARUS) 1993; Benetti et al. (WARP) 2006

Background Discrimination: S1 Pulse Shape

Particle Discrimination in LAr

- S1/S2
- PSD
- Position Reconstruction
- TPC multi-site event

Expected BG discrimination > 10¹⁰

10 gamma source og10(S2/S1) 1 -10⁻¹ 0.1 0.2 0.3 0.5 0.6 0 7 0.8 0.9 1 F90 corrected for drift 10² 10 neutron source og10 (S2/S1) 1 0.3 0.4 0.5 0.6 0.1 0.2 0.7 0.8 0.9 1

Run 1282 - Log(S2/S1) vs F90

F90

The Veto's

Active neutron veto:

- 20 ton boron-loaded scintillator
- 50% PC + 50% TMB
- 2 m radius sphere
- 110 Low Background PMTs

Active muon veto (passive neutron veto):

- 1000 ton ultra pure water
- 10 m height, 11 m diameter
- 80 upwards oriented PMTs

Rejection efficiencies:

- >99.5% against radiogenic neutron
- >95% cosmogenic neutrons

Two phase argon TPC prototype at Princeton:

- 10 kg active mass of Atmospheric LAr
- Passive water veto
- 7 top + 7 bottom R11065 HQE 3'' PMTs
- Electric field: Edrift = 1 kV/cm, Egas ~ 3 kV /cm
- 20 cm diamater, 20 cm height
- 2 cm gas gap

Goals:

- High LY: 8.78 ± 0.01 p.e./keVee @ null field
- Stable HHV at 36 kV
- Good discrimination
- Good purity
- Electric field settings

- 50 kg active mass of UAr
- 19 top + 19 bottom R11065 HQE 3'' PMTs
- 36 cm height, 36 cm diameter
- Lateral walls covered by high reflectivity polycrystalline PTFE
- All inner surfaces coated with TPB
- Fused silica diving bell

 (top) and windows
 (bottom) in front of the
 PMT arrays, coated
 with ITO

	Outer GAr	
FieldRings	BellTop GAr LAr Quter LAr	

The DarkSide MonteCarlo

Developed at APC-IPHC

Full geometry description of:

- DarkSide-10
- DarkSide-50
- Multiple DarkSide-G2 designs
- Neutron Veto
- Muon Veto

Single photon tracking Full description of the optical properties

Several generators

Two energy response model

G4DS Single Photon Tracking

DarkSide-50 Optical Tuning

Tuning of the main 36 optical parameters

Few percent accuracy

The LAr Low Energy Response

NEST

Scintillation Models in LAr

LY per keV relative to the 122 keV line

MicroClean: PRC81, 045803 (2010) DarkSide: arXiv:1204.6218v2 Regenfus: arXiv:1203.0849v1

Electron Drift Lifetime

Achieved drift lifetime of

4733 +/- 90 μs

Maximum drift time of the TPC is ~370 µs at 200 V/cm drift field.

Demonstrates:

- high purity of argon
- Stable operation of electric fields

Outer Veto Commissioning

Light Yield:

liquid scintillator VETO LY of ~ 0.5 PE/keV_{ee}, satisfactory for VETO requirements.

Rate:

The background studies in the LS VETO evidenced a high rate due to 14C

- Identified 14C from TMB

Identified and assayed a new batch of TMB with low 14C content
TMB presently removed

TPC: ER calibration @ null field

Light yield: critical parameter for argon detector exploiting PSD

(10.0 PE) **39Ar End-point** 565 keVee 10-1 Events/livetime/ 277.8 / 324 χ^2 / ndf 0.9702 Prob 10⁻² Light Yield Mean [PE/keV] 7.992 ± 0.010 Baseline Variance [PE]^2 1953 ± 3574.8 10⁻³ Rel. LY Variance 0.003459 ± 0.000307 46.4 ± 0.1 Ar Event Rate [Hz] 0.0005192 ± 0.0000381 Constant 10-4 4000 5000 1000 2000 3000 6000 7000 0 S1 [PE]

Atmospheric LAr

39Ar rate: 46.4 Hz

Uniformly distributed in the volume

TPC: ER calibration @ null field

Light yield: critical parameter for argon detector exploiting PSD

Injected gaseous ^{83m}Kr

Two sequential decays producing IC electron, gammas or x-ray (154 ns)

Total energy 41.5 keVee

Half-life: 1.83 hr

TPC: ER calibration @ null field

Average Light Yield: 8.040 ± 0.006 (stat) pe / keVee

NR calibration @ 200 V/cm

SCENE

Scintillation Efficiency of Nuclear Recoils in Noble Elements

SCENE has collected extremely pure samples of single nuclear recoils in a small TPC resembling DS-50 TPC design. We opted to use SCENE data @ 200V/cm, which we have access to. We have extrapolated the quantities of interest to the present analysis and, equally important, the associated systematics.

To comparison: discrimination in Xe

Electron Recoil and Nuclear Recoil Bands

Tritium provides very high statistics electron recoil calibration (200 events/phe) Neutron calibration is consistent with NEST + simulations

UX Dark Matter Experiment / Sanford Lab

23

DS-50 projected sensitivity

Projected sensitivity evaluated assuming:

- the measured PSD performance;
- no rejection from S2/S1;
- fiducial volume along z axis-only;
- · zero neutron-induced events;
- NR quenching and F90 acceptance curves from SCENE @ 200V/cm

Present systematics on NR Quenching and F90 NR acceptance curves responsible of ~10% variation of the projected sensitivity around 100 GeV/c².

Scaled and improved inner detector, and cryogenic/purification systems.

Goal: high light yield and radio/chemical-purity

Radio-pure material selection ongoing Stainless steel (cryostat, PMT support) Copper field cage PTFE for segmented reflective cylinder Fused silica for windows/diving bell Wavelength shifter on reflective surfaces

PSD extrapolation in DS-G2

Model the statistical properties of the F90 discrimination parameter using statistical distributions of the underlying processes with parameters taken from data. The model accounts for macroscopic effects related to argon micro-physics, detector properties and reconstruction and noise effects.

110 PE < S1 <115 PE

Excellent agreement through several orders of magnitude

Simulated F90 distribution for DS-G2 5 years run, assuming the ER background in the fiducial volume will be dominated by ³⁹Ar @ its present upper limit.

PSD extrapolation in DS-G2

DS-G2 Sensitivity

Fiducial volume 3.6 ton LY=8.0 PE/keV_{ee} @ null field NR Quenching from SCENE F90 NR acceptance function of E_R

Assuming:

- Same LY as in DS-50;
- PSD as per F90 model based on DS-50;
- no rejection from S2/S1;
- fiducial volume along z axis-only;
- NR quenching and F90 acceptance curves from SCENE @ 200V/cm
- zero neutron-induced events according to present background MC study;

Conclusions

DS-50 detector is running @ LNGS since Oct. 13:

- LAr TPC successfully commissioned
- Vetoes (designed to host DS-G2) successfully commissioned
- Scheduled to use Borexino distillation plant to separate PC from TMB and insert the new TMB with low 14C content

Demonstrated PSD performance needed to reject the expected background from ³⁹Ar (at the level of present upper limit) in 2.6 years of DS-50

Plan to calibrate DS-50 and to further study PSD until June when we will switch to UAr and to WIMP search mode

DS-50 results extrapolated conservatively to DS-G2 indicate the possibility of running for 5 years ³⁹Ar-free

BackUp

LUX WIMP Search, 85 live-days, 118 kg

Double Phase TPC

The WIMP Hunt

