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Effective Field Theory 
approach to BSM physics 



Several approaches to new physics searches 

Model specific E.g. 2HDM, MSSM, NMSSM, NNMSSM, ..., 
composite Higgs, minimal walking technicolor

Simplified models

Model independent

E.g. singlet scalar, gluino+neutralino, heavy 
top quark, vector triplet, 

Effective field theory

pick one well-defined, motivated,
often UV complete model

pick simple well-defined model 
that captures some aspects of phenomenology 

of  large class of specific models

parametrize low-energy effects
large class of models as higher-dimensional 

contact interaction of light particles



SM is probably a correct theory the weak scale, at 
least as the lowest order term in an effective theory 
expansion 

If new particles are heavy, their effects can be 
parametrized by higher-dimensional operators added to 
the SM Lagrangian 

EFT framework offers a systematic expansion around 
the SM organized in terms of operator dimensions, with 
higher dimensional operator suppressed by the mass 
scale Λ of new physics 

Premise



Effective Theory Approach to BSM

New physics scale Λ separated from EW scale v, Λ >> v 

Linearly realized SU(3)xSU(2)xU(1) local symmetry spontaneously broken by VEV 
of Higgs doublet field

Basic assumptions

EFT Lagrangian beyond the SM  expanded in operator dimension D 

Alternatively, 
non-linear Lagrangians

with derivative expansion

Appear when starting from BSM theory,
and integrating out heavy particles with m≈Λ Cutoff scale of EFT



Effective Theory Approach to BSM

New physics scale Λ separated from EW scale v, Λ >> v 

Linearly realized SU(3)xSU(2)xU(1) local symmetry spontaneously broken by VEV 
of Higgs doublet field

Basic assumptions

EFT Lagrangian beyond the SM  expanded in operator dimension D 

X X X
Lepton number or B-L violating, 

hence too small to probed at LHC

By assumption, 
subleading

to D=6



First attempts to classify dimension-6 
operators back in 1986

First complete and  non-redundant set of 
operators explicitly written down only in 2010

Operators can be traded for other operators 
using integration by parts, field redefinition, 
equations of motion, Fierz transformation, etc

Because of that, one can choose many 
different bases == non-redundant sets of 
operators 

EFT approach to BSM
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D=6 BasisFor D=6 Lagrangian several 
complete non-redundant set 

of operators 
(so-called basis) 

proposed in the literature 

Grządkowski et al. 1008.4884
Warsaw 
Basis

SILH
basis

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

Higgs
basis

Gupta et al 1405.0181 

HISZ
basis

Primary
basis

LHCHXSWG-INT-2015-001 

All bases are equivalent, but some may be more 
equivalent convenient for specific applications

Physics description  (EWPT, Higgs, RG running) in any of 
these bases contains the same information, provided all 
operators contributing to that process are taken into 
account

Hagiwara et al (1993) 

One Rosetta 
to rule them all
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The operators in the Warsaw basis are listed in Tables 2.2, 2.3, and 2.4. My

choice of operators here di↵ers slightly from the one in Ref. [15] in that the operator

|H†DµH|2 is replaced by OT = (H† !DµH)2, where the anti-symmetrized derivative is

defined in Eq. (2.12). Furthermore, for Yukawa-type operators H|H|2f̄f I subtracted

v2 from |H|2 in the definition, so that they do not contribute to fermion mass terms.6

Finally, the notation and normalizations also di↵er from that in the original reference.

In order to illustrate the freedom of choosing a basis of operators, I will now

describe how to go from the Warsaw to the SILH basis. The bosonic operators in the

6This way one avoids tedious rotations of the fermion fields to bring them back to the mass
eigenstate basis. Starting with the Yukawa couplings �Hf̄ 0

R(Y
0
f + c0fH

†H/v2)f 0
L we can bring them

to the form in Eq. (2.2) and Table 2.3 by defining f 0
L,R = UL,RfL,R,

p
mimj [cf ]ij/v = [U†

Rc
0
fUL]ij ,

Yf = U†
R(Y

0
f + c0f/2)UL, where UL,R are unitary rotations to the mass eigenstate basis.

Yukawa

[Oe]IJ �(H†H � v2

2 )
p
mImJ

v ecIH
†`J

[Ou]IJ �(H†H � v2

2 )
p
mImJ

v ucI
eH†qJ

[Od]IJ �(H†H � v2

2 )
p
mImJ

v dcIH
†qJ

Vertex

[OH`]IJ i¯̀I �̄µ`JH† !DµH

[O0
H`]IJ i¯̀I�i�̄µ`JH†�i !DµH

[OHe]IJ iecI�µē
c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
c
JH

† !DµH

[OHd]IJ idcI�µd̄
c
JH

† !DµH

[OHud]IJ iucI�µd̄
c
JH̃

†DµH

Dipole

[OeW ]IJ
p
mImJ

v ecI�µ⌫H
†�i`JW i

µ⌫

[OeB]IJ
p
mImJ

v ecI�µ⌫H
†`JBµ⌫

[OuG]IJ
p
mImJ

v ucI�µ⌫T
a eH†qJ Ga

µ⌫

[OuW ]IJ
p
mImJ

v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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Example: Warsaw Basis
59 different

 kinds of operators,
of which 17 are complex  

Grządkowski et al.
 1008.4884

2499 distinct operators, 
including flavor structure

 and CP conjugates
Alonso et al 1312.2014

Note that construction of one complete basis is a qualitative tour de force, as

now any other basis can be systematically derived by transforming operators from

the Warsaw basis. Another popular choice of operators is the so-called SILH ba-

sis5 which was proposed in Ref. [36] and completed in Ref. [37]. Finally, Ref. [38]

proposed a slightly di↵erent (but fully equivalent) way to parametrize the space of

D=6 operators using a subset of couplings characterizing the interactions of mass

eigenstates in the e↵ective Lagrangian. It should be stressed that any complete ba-

sis leads to equivalent predictions concerning possible new contributions to physics

observables. Nevertheless, working with di↵erent basis may be more convenient for

specific applications.

In the following we first introduce the Warsaw basis ofD=6 operators, and then we

discuss the transformation from the Warsaw to the SILH basis. Later in Section 2.4

I will discuss another basis choice which, in my opinion, is particularly convenient for

calculating EFT predictions for collider observables.

Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H �(H†H)3

OGG H†H Ga
µ⌫G

a
µ⌫

OWW H†HW i
µ⌫W

i
µ⌫

OBB H†H Bµ⌫Bµ⌫

OWB H†�iHW i
µ⌫Bµ⌫

O3W ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

O3G fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
H†H eGa

µ⌫G
a
µ⌫

O]WW
H†H fW i

µ⌫W
i
µ⌫

OgBB
H†H eBµ⌫Bµ⌫

OgWB
H†�iH fW i

µ⌫Bµ⌫

Og3W ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

Of3G fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic d = 6 operators in the Warsaw basis.

5SILH stands for Strongly Interacting Light Higgs, because this operator basis is more convenient
to describe BSM theories strongly interacting sectors from which the Higgs double emerges as a light
composite state.
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+4 fermion 
operators

http://arxiv.org/abs/1303.3876
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|H†DµH|2 is replaced by OT = (H† !DµH)2, where the anti-symmetrized derivative is

defined in Eq. (2.12). Furthermore, for Yukawa-type operators H|H|2f̄f I subtracted

v2 from |H|2 in the definition, so that they do not contribute to fermion mass terms.6

Finally, the notation and normalizations also di↵er from that in the original reference.
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c
JH

† !DµH

[OHq]IJ iq̄I �̄µqJH† !DµH

[O0
Hq]IJ iq̄I�i�̄µqJH†�i !DµH

[OHu]IJ iucI�µū
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v ucI�µ⌫T
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v ucI�µ⌫
eH†�iqJ W i
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[OuB]IJ
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mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
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v dcI�µ⌫T
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Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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Example: SILH Basis

+4 fermion 
operators

Giudice et al  hep-ph/0703164
Contino et al 1303.3876 

bosonic operators OWW , O]WW
, OWB, OgWB, 2 vertex operators [OH`]11, [O0

H`]11, and

3 four-fermion operators [O``]1221, [O``]1122, [O0
uu]3333.

8 The remaining operators are

the same as in the Warsaw basis.

One can derive the translation between the two bases by transforming the opera-

tors in Eq. (2.19) using integration by parts, Fierz transformations, and field redefini-

tions, until one arrives at a set contained in the Warsaw basis. This way, one obtains

8In Ref. [37] flavor indices of the absent operators are not specified. The somewhat arbitrary
choice of these indices made here follows Ref. [26].

Bosonic CP-even

OH

⇥
@µ(H†H)

⇤2

OT

⇣
H† !DµH

⌘2

O6H (H†H)3

OGG H†H Ga
µ⌫G

a
µ⌫

OBB H†H Bµ⌫Bµ⌫

OW
i
2

⇣
H†�i !DµH

⌘
D⌫W i

µ⌫

OB
i
2

⇣
H† !DµH

⌘
@⌫Bµ⌫

OHW i
�
DµH†�iD⌫H

�
W i

µ⌫

OHB i
�
DµH†D⌫H

�
Bµ⌫

O2W
1
g2L
DµW i

µ⌫D⇢W i
⇢⌫

O2B
1
g2Y

@µBµ⌫@⇢B⇢⌫

O2G
1
g2s
DµGa

µ⌫D⇢Ga
⇢⌫

O3W ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

O3G fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

OgGG
H†H eGa

µ⌫G
a
µ⌫

OgBB
H†H eBµ⌫Bµ⌫

OgHW
i
�
DµH†�iD⌫H

�fW i
µ⌫

OgHB
i
�
DµH†D⌫H

� eBµ⌫

Og3W ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

Of3G fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.5: Bosonic D=6 operators in the SILH basis.
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More bosonic operators, 
at the expense of some 2-fermion 

and 4-fermion operators
Total still adds up to 2499 

http://arxiv.org/abs/hep-ph/0703164
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Operators to Observables
Less obvious effects of D=6 operators

Affect relations between couplings and 
input observables

Change normalization of kinetic terms 

Introduce non-standard higher-
derivative kinetic terms

Introduce kinetic mixing between 
photon and Z boson

e.g.

e.g.

e.g.

To simplify calculating physical predictions, one can map the theory with dimension-6 
operators onto the phenomenological effective Lagrangian

e.g.

11



Phenomenological effective Lagrangian is defined using mass 
eigenstates after electroweak symmetry breaking (photon,W,Z,Higgs 
boson, top). SU(3)xSU(2)xU(1) is not manifest but hidden in relations 
between different couplings  

Feature #1: In the tree-level Lagrangian, all kinetic terms are 
canonically normalized, and there’s no kinetic mixing between mass 
eigenstates. In particular, all oblique corrections from new physics 
are zero, except for a correction to the W boson mass 

Feature #2: Tree-level relation between the couplings in the 
Lagrangian and SM input observables is the same as in the SM.

Feature #3: Photon and gluon couple to matter as in the SM

Features #1-3 can always be obtained without any loss of 
generality, starting from any Lagrangian with D=6 operators, using 
integration by parts, fields and couplings  redefinition

Phenomenological effective Lagrangian
LHCHXSWG-INT-2015-001 



By construction, photon and gluon couplings as in the SM. 
Only W and Z couplings are affected 

Effects of dimension-6 operators are parametrized by a set of vertex corrections

Effective Lagrangian: Z and W couplings to fermions 



Z and W couplings to fermions 

Observation: vertex correction obtained from Warsaw basis are not 
independent. Corrections to W vertices are determined by corrections to Z 
vertices

shift the W and Z couplings to fermions away from the SM Lagrangian of Eq. (2.4):243

�Lvertex =
gp
2

⇣
W+

µ ⌫̄L�µ�g
W `
L eL +W+

µ ū�µ�g
Wq
L dL +W+

µ ūR�µ�g
Wq
R dR + h.c.

⌘

+
p
g2 + g02Zµ

"
X

f2u,d,e,⌫

f̄L�µ�g
Zf
L fL +

X

f2u,d,e

f̄R�µ�g
Zf
R fR

#
, (4.12)

where all the �g are 3⇥ 3 Hermitian matrices in the generation space, except for �gWq
R244

which is a general 3 ⇥ 3 complex matrix. The vertex corrections to W and Z boson245

couplings to fermions are expressed by the Wilson coe�cients in the Warsaw basis as246

�gW `
L = c0H` + f(1/2, 0)� f(�1/2,�1),

�gZ⌫
L =

1

2
c0H` �

1

2
cH` + f(1/2, 0),

�gZe
L = �1

2
c0H` �

1

2
cH` + f(�1/2,�1),

�gZe
R = �1

2
cHe + f(0,�1), (4.13)

247

�gWq
L = c0HqVCKM + f(1/2, 2/3)� f(�1/2,�1/3),

�gWq
R = �1

2
cHud,

�gZu
L =

1

2
c0Hq �

1

2
cHq + f(1/2, 2/3),

�gZd
L = �1

2
V †
CKMc

0
HqVCKM � 1

2
V †
CKMcHqVCKM + f(�1/2,�1/3),

�gZu
R = �1

2
cHu + f(0, 2/3),

�gZd
R = �1

2
cHd + f(0,�1/3), (4.14)

where248

f(T 3, Q) = I3


�QcWB

g2g02

g2 � g02
+ (cT � �v)

✓
T 3 +Q

g02

g2 � g02

◆�
, (4.15)
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add and subtract the following Lagrangian term:221

�L =

✓
2
h

v
+

h2

v2

◆
[Ladd � Ladd, eom]

Ladd =
gp
2

g2

g2 � g02
�
cT � �v � g02cWB

� �
W+

µ j�µ + h.c.
�

+
p
g2 + g02

1

g2 � g02
�
(cT � �v)(g2j3µ + g02jYµ )� g2g02cWB(j

3
µ + jYµ )

�
Zµ

(4.8)

where Ladd, eom is Ladd with the fermionic currents jµ eliminated in favor of bosonic222

terms using the equations of motion in Eq. (2.2). This step ensures the the coe�cients223

of the vertex-like Higgs contact interactions hV ff and h2V ff in the Lagrangian are224

proportional to the vertex correction to the SM V ff interactions.225

After all these transformations, the conditions #1-#4 are satisfied. We can proceed226

to listing the corrections to the SM in �Ld=6 in this representation. We will focus on227

interaction terms that are relevant for LHC phenomenology. Coe�cients of all interac-228

tion terms in �Ld=6 are O(1/⇤2) in the EFT expansion, and will ignore all O(1/⇤4)229

and higher contributions. To facilitate presentation, we split �Ld=6 into the following230

parts,231

�Ld=6 = �Lmass+�Lvertex+Ldipole+�Ltgc+�Lqgc+�Lh+Lhvff+Lhdvff+�Lh,self+�Lh2+Lother.
(4.9)

Below we define each term in order of appearance. In this section we give the Lagrangian232

in the unitary gauge when the Goldstone bosons eaten by W and Z are set to zero; see233

Appendix B for a generalization to the R⇠ gauge.234

4.1 Quadratic terms235

By construction, there are no corrections to quadratic terms of the SM mass eigenstates236

with the exception of the shift of the W boson mass in Eq. (2.3):237

�Lmass = 2�m
g2v2

4
W+

µ W�
µ . (4.10)

The relation between �m and the Wilson coe�cients in the Warsaw and SILH bases is238

given by239

�m =
1

g2 � g02
⇥�g2g02cWB + g2cT � g02�v

⇤

= � g2g02

4(g2 � g02)

✓
sW + sB + s2W + s2B � 4

g02
sT +

2

g2
[s0H`]22

◆
. (4.11)

4.2 Gauge boson interactions with fermions240

Two types of corrections to the SM gauge boson interactions with fermions may be241

introduced by dimension-6 operators. One is the so-called vertex corrections, which242
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The operators in the Warsaw basis are listed in Tables 2.2, 2.3, and 2.4. My
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v ucI�µ⌫
eH†�iqJ W i

µ⌫

[OuB]IJ
p
mImJ

v ucI�µ⌫
eH†qJ Bµ⌫

[OdG]IJ
p
mImJ

v dcI�µ⌫T
aH†qJ Ga

µ⌫

[OdW ]IJ
p
mImJ

v dcI�µ⌫H̄
†�iqJ W i

µ⌫

[OdB]IJ
p
mImJ

v dcI�µ⌫H
†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. Here, I, J are the
flavor indices. For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is included as well.
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D=6 EFT with linearly realized 
SU(3)xSU(2)xU(1) enforces 
relations between Higgs 
couplings to gauge bosons 
(otherwise, more parameters) 

Corrections to Higgs Yukawa 
couplings to fermions are also 
unconstrained by EWPT

Apart from δm and δg, 
additional 6+3x3x3 CP-even 
and 4+3x3x3 CP-odd 
parameters to parametrize
LHC Higgs physics

Effective Lagrangian: Higgs couplings to matter

relative correction to W mass

LHCHXSWG-INT-2015-001 



Corrections to Higgs couplings in phenomenological effective Lagrangian can be 
related by linear transformation to Wilson coefficients of any basis of D=6 
operators

Unexpected dependence of fermionic operators due to rescaling of SM couplings

Corrections to Higgs and other SM couplings are O(1/Λ^2) in  EFT expansion. They 
can be used to define (perhaps more convenient) basis of D=6 operators

Higgs couplings to matter

Example:
from Warsaw Basis
to Higgs couplings

Grządkowski et al.
 1008.4884

Gupta et al 1405.0181 

See 
LHCHXSWG-INT-2015-001

for full dictionary and other bases 

http://arxiv.org/abs/1303.3876
http://arxiv.org/abs/1303.3876


Effective Lagrangian: Triple Gauge Couplings
SM predicts TGCs in terms of gauge couplings 

as consequence of SM gauge symmetry and renormalizability:

In EFT with D=6 operators, new “anomalous”contributions to TGCs arise

These depend on previously introduced parameters 
describing Higgs couplings to electroweak gauge 

bosons, and on 2 new parameters 



Connection between operators and observables a bit obscured in Warsaw or SILH 
basis. Also, in Warsaw basis EW precision constraints look complicated. 

Higgs basis proposed  by LHCHXSWG2 uses subset of couplings in phenomenological 
effective Lagrangian to span D=6 basis.  Effectively, a rotation of any other D=6 basis

 By construction, one isolates combination of parameters strongly constrained by 
precision tests, and also the ones affecting Higgs observables and  not constrained 
severely by precision  tests

LHCHXSWG-INT-2015-001 Similar “EFT Primaries” of Gupta et al 1405.0181 

2499x2499 dimensional
transformation matrix

Linear 
transformation

2499 dimensional
vector of 

Wilson coefficients

2499 parameters
defining Higgs Basis

Relevant
for LHC Higgs

Very constrained
parameters

Irrelevant
for LHC Higgs

Higgs Basis



Higgs Basis - parameters
Instead of Wilson coefficients in some basis, use directly a subset of 

eigenstates couplings to parametrize the D=6 EFT space 

Higgs couplings to 
gauge bosons

Higgs couplings to
fermions

Triple gauge 
couplings

Vertex and mass 
Corrections

...........



In the rest of the talk I will discuss 
constraints on the parameters 

in the  Higgs basis 

For more details and the rest of the 
Lagrangian, see LHCHXSWG-INT-2015-001



Model-independent
precision constraints

on dimension 6 operators 



Analysis Assumptions
Working at order 1/Λ^2 in EFT expansion. Taking into account 
corrections from D=6 operators, and neglecting D=8 and higher 
operators. (Only taking into account corrections to observables that 
are linear in Higgs basis parameters, that is to say, only interference 
terms between SM and new physics. Quadratic corrections are 
formally of order 1/Λ^4, much as D=8 operators that are neglected.)

Working at tree-level in EFT parameters (SM predictions taken at NLO 
or NNLO, but only interference of tree-level BSM corrections with 
tree-level SM amplitude taken into account)

Allowing all dimension-6 operators to be present simultaneously with 
arbitrary coefficients (within EFT validity range). Constraints are 
obtained on all parameters affecting EWPT and Higgs at tree level, 
and  correlations matrix is computed.

Unless otherwise noted, dimension-6 operators are allowed with 
arbitrary flavor structure

Goal: give you full likelihood in D=6 space, that can be reused for any 
specific model predicting any particular patter of D=6 operators 

Han,Skiba
hep-ph/0412166

Efrati,AA,Soreq
1503.07782



Constraints 
on Vertex Corrections 
from Pole Observables 



For observables with Z or W bosons on-shell, interference between SM amplitudes and 
4-fermion operators is suppressed by Γ/m and can be neglected

Observables can be expressed by Z and W partial widths, and then D=6 corrections 
can be expressed just by vertex corrections δg

I will not assume anything about δg: they are allowed to be arbitrary, flavor 
dependent, and all can be simultaneously present

Pole observables (LEP-1 et al)



Z-pole observables 
Observable Experimental value Ref. SM prediction Definition

�Z [GeV] 2.4952± 0.0023 [21] 2.4950
P

f �(Z ! ff̄)

�had [nb] 41.541± 0.037 [21] 41.484 12⇡
m2

Z

�(Z!e+e�)�(Z!qq̄)
�2
Z

Re 20.804± 0.050 [21] 20.743
P

q �(Z!qq̄)

�(Z!e+e�)

Rµ 20.785± 0.033 [21] 20.743
P

q �(Z!qq̄)

�(Z!µ+µ�)

R⌧ 20.764± 0.045 [21] 20.743
P

q �(Z!qq̄)

�(Z!⌧+⌧�)

A0,e
FB 0.0145± 0.0025 [21] 0.0163 3

4
A2

e

A0,µ
FB 0.0169± 0.0013 [21] 0.0163 3

4
AeAµ

A0,⌧
FB 0.0188± 0.0017 [21] 0.0163 3

4
AeA⌧

Rb 0.21629± 0.00066 [21] 0.21578 �(Z!bb̄)P
q �(Z!qq̄)

Rc 0.1721± 0.0030 [21] 0.17226 �(Z!cc̄)P
q �(Z!qq̄)

AFB
b 0.0992± 0.0016 [21] 0.1032 3

4
AeAb

AFB
c 0.0707± 0.0035 [21] 0.0738 3

4
AeAc

Ae 0.1516± 0.0021 [21] 0.1472
�(Z!e+Le�L )��(Z!e+Re�R)

�(Z!e+e�)

Aµ 0.142± 0.015 [21] 0.1472
�(Z!µ+

Lµ�
L )��(Z!e+µ µ�

R)

�(Z!µ+µ�)

A⌧ 0.136± 0.015 [21] 0.1472
�(Z!⌧+L ⌧�L )��(Z!⌧+R ⌧�R )

�(Z!⌧+⌧�)

Ab 0.923± 0.020 [21] 0.935 �(Z!bLb̄L)��(Z!bRb̄R)

�(Z!bb̄)

Ac 0.670± 0.027 [21] 0.668 �(Z!cLc̄L)��(Z!cRc̄R)
�(Z!cc̄)

As 0.895± 0.091 [22] 0.935 �(Z!sLs̄L)��(Z!sRs̄R)
�(Z!ss̄)

Ruc 0.166± 0.009 [23] 0.1724 �(Z!uū)+�(Z!cc̄)
2
P

q �(Z!qq̄)

µttZ 0.81± 0.24 [24,25] 1.00
(gZt

L )2+(gZt
R )2

(gZu
L,SM)2+(gZu

R,SM)2

Table 1: Z boson pole observables. The experimental errors of the observables between the
double lines are correlated, which is taken into account in the fit. The results for Ae,µ,⌧ listed above
come from the combination of leptonic polarization and left-right asymmetry measurements at the
SLD; we also include the results A⌧ = 0.1439± 0.0043, Ae = 0.1498± 0.0049 from tau polarization
measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from
GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings
to light quarks in D0 [26].
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W-pole observables 

Observable Experimental value Ref. SM prediction Definition

mW [GeV] 80.385± 0.015 [27] 80.364 gLv
2

(1 + �m)

�W [GeV] 2.085± 0.042 [23] 2.091
P

f �(W ! ff 0)

Br(W ! e⌫) 0.1071± 0.0016 [28] 0.1083 �(W!e⌫)P
f �(W!ff 0)

Br(W ! µ⌫) 0.1063± 0.0015 [28] 0.1083 �(W!µ⌫)P
f �(W!ff 0)

Br(W ! ⌧⌫) 0.1138± 0.0021 [28] 0.1083 �(W!⌧⌫)P
f �(W!ff 0)

RWc 0.49± 0.04 [23] 0.50 �(W!cs)
�(W!ud)+�(W!cs)

R� 0.998± 0.041 [29] 1.000 gWq3
L /gWq3

L,SM

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are
correlated. For the theoretical predictions of mW and �W , we use the best fit SM values from
GFitter [20], while for the leptonic branching fractions we take the value quoted in [28].

where ��2
ij = [�Oi⇢ij,exp�Oj]�1 is calculated from the known experimental errors �Oi and their

correlations ⇢ij,exp (whenever they are quoted). Minimizing �2 with respect to �g we obtain the
following central values and 1 � errors:

[�gWe
L ]ii =

0

@
�1.01± 0.64
�1.37± 0.59
1.95± 0.79

1

A·10�2, [�gZe
L ]ii =

0

@
�0.22± 0.28
0.1± 1.2
0.18± 0.58

1

A·10�3, [�gZe
R ]ii =

0

@
�0.33± 0.27
0.0± 1.4
0.42± 0.62

1

A·10�3,

(3.4)

[�gZu
L ]ii =

0

@
�0.8± 3.1
�0.17± 0.31
�0.3± 3.8

1

A · 10�2, [�gZu
R ]ii =

0

@
1.3± 5.1

�0.37± 0.52
8± 14

1

A · 10�2, (3.5)

[�gZd
L ]ii =

0

@
�1.0± 4.4
0.9± 2.8
0.33± 0.17

1

A · 10�2, [�gZd
R ]ii =

0

@
2± 16

3.4± 4.9
2.30± 0.87

1

A · 10�2. (3.6)

The 21⇥ 21 correlation matrix ⇢ is shown in Fig 1.
Using these central values �g0, uncertainties �g� and the correlation matrix ⇢ one can re-

construct the dependence of the global �2 function on the vertex corrections: �2 =
P

ij[�g �
�g0]i�

�2
ij [�g � �g0]j, where ��2

ij = [[�g�]i⇢ij[�g�]j]�1. In concrete extensions of the SM, the vertex
corrections will be functions of a (typically smaller) number of the model parameters. In this case
the global �2 function can be minimized with respect to the new parameters, and thus limits on
this particular model can be obtained.

From Eq. (3.4), corrections to the Z boson couplings to charged leptons are constrained at the
level of O(10�3). We stress that these stringent constraints are completely model independent, in
particular they are independent on whether or not flavor universality is assumed. On the other
hand, W couplings to leptons are somewhat less tightly constrained - at the level of O(10�2)
- than in the flavor universal case. Due to the relation in Eq. (2.4), the Z boson couplings to
neutrinos are constrained with the same precision. For the Z boson couplings to quarks the
situation is more complicated. Some of these couplings, specifically the ones to charm and bottom,
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Z coupling to charged leptons constrained at 0.1% level

W couplings to leptons constrained at 1% level

Some couplings to quarks (bottom, charm) also constrained at 1% level 

Some couplings very weakly constrained in a model-independent way, in particular 
Z couplings to light quarks (though their combination affecting *total* hadronic Z-
width is strongly constrained) 

Some off-diagonal vertex corrections can also be constrained

Pole observables - constraints
All diagonal vertex corrections except for δgWqR and δgZtR 

 simultaneously constrained in a completely  model-independent way

Efrati,AA,Soreq
1503.07872Next, we derive the constraints on the δg’s when all of them are simultaneously present and

a-priori unrelated by the UV theory. Minimizing our χ2 function with respect to δg we obtain the
following central values and 1σ errors:

[δgWe
L ]ii =




−1.00± 0.64
−1.36± 0.59
1.95± 0.79



× 10−2, (4.5)

[δgZe
L ]ii =




−0.26± 0.28
0.1± 1.1
0.16± 0.58



× 10−3, [δgZe
R ]ii =




−0.37± 0.27
0.0± 1.3
0.39± 0.62



× 10−3, (4.6)

[δgZu
L ]ii =




−0.8± 3.1
−0.16± 0.36
−0.28± 3.8



× 10−2, [δgZu
R ]ii =




1.3± 5.1
−0.38± 0.51

×



× 10−2, (4.7)

[δgZd
L ]ii =




−1.0± 4.4
0.9± 2.8
0.33± 0.16



× 10−2, [δgZd
R ]ii =




2.9± 16
3.5± 5.0
2.30± 0.82



× 10−2. (4.8)

The corresponding 20× 20 correlation matrix is given in Appendix B.
As for the off diagonal couplings, we find:

√
|[δgZe

L ]12|2 + |[δgZe
R ]12|2 < 1.2× 10−3,

√
|[δgZe

L ]13|2 + |[δgZe
R ]13|2 < 4.3× 10−3,

√
|[δgZe

L ]23|2 + |[δgZe
R ]23|2 < 4.8× 10−3, (4.9)

where the measured central value of the Z width is used and

√
|[δgZu

L ]13|2 + |[δgZu
R ]13|2 + |[δgZu

L ]23|2 + |[δgZu
R ]23|2 < 1.6× 10−2

(
Γt

1.35GeV

)1/2

, (4.10)

at the 95% CL. Here we take ΓSM
t # 1.35GeV for mt = 173 GeV [53].

Using the above central values δg0, uncertainties δgσ and the correlation matrix ρ one can
reconstruct the dependence of the global χ2 function on the vertex corrections:

χ2 =
∑

ij

[δg − δg0]iσ
−2
ij [δg − δg0]j , (4.11)

where σ−2
ij = [[δgσ]iρij [δgσ]j]−1. In specific extensions of the SM, the vertex corrections will be

functions of a (typically smaller) number of the model parameters. In this case, the global χ2

function can be minimized with respect to the new parameters, and thus limits on this particular
model can be obtained. This way our results can be used to obtain the constraints on any specific
UV model.

From our results for the vertex corrections, Eq. (4.5)–Eq. (4.8), we learn the following:

• Globally, the fit is in a very good agreement with the SM, corresponding to the p-value of
order 40%.
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Full correlation matrix is also derived

From that, one can reproduce full likelihood 
function as function of 21 parameters  
δg and δm  

If dictionary from  Higgs basis to other bases 
exists, results can be easily recast to another 
form

Similarly, when mapping to d=6 basis from 
(fewer) parameters of particular BSM models is 
given, results can be easily recast as constraints 
on that model 

Pole constraints - correlations

1σ 
Errors

Correlation
Matrix

Central
Values



Pole constraints - recast to Warsaw basis

DictionaryResults

measurements in hadron collider, and Fabio Maltoni for a comment on the model dependence of
constraints from the ttZ production at the LHC. AF is supported by the ERC Advanced Grant
Higgs@LHC.

A Warsaw basis

In this appendix we discuss the relation between the vertex and mass corrections in our effective
Lagrangian, and the Wilson coefficients of SU(3) × SU(2) × U(1) D = 6 operators. We consider
the effective Lagrangian LWB

eff = LSM + 1
v2

∑
i ciOWB

6,i , where a complete non-redundant basis of
D = 6 operators OWB

6,i is given in Table 4. This basis is, up to small modifications, the same as in
Ref. [2,18], often referred to as the Warsaw basis.2 In order to relate the two descriptions, we need
to bring LWB

eff to the same form as the effective Lagrangian considered in Section 2. In particular,
we need to get rid of the kinetic mixing and non-canonical normalization induced by OWB

6,i . This is
achieved by application of equations of motion, and field and coupling redefinitions, as described
in Ref. [20]. When the dust settles, the shift of the W boson mass is given by

δm =
1

g2L − g2Y

[
−g2Lg2Y cWB + g2LcT − g2Y δv

]
, (A.1)

where δv = ([c′H!]11 + [c′H!]22)/2 − c′!!, and c′!! is defined as the coefficient of the 4-fermion term
−4c′!!(ν̄µσ̄ρµ)(ēσ̄ρνe) in the effective Lagrangian that arises from a linear combination of D = 6
operators O!!. The leptonic vertex corrections are given by

δgW !
L = c′H! + f(1/2, 0)− f(−1/2,−1),

δgZν
L =

1

2
(c′H! − cH!) + f(1/2, 0),

δgZe
L = −

1

2
(c′H! + cH!) + f(−1/2,−1),

δgZe
R = −

1

2
cHe + f(0,−1), (A.2)

where

f(T 3, Q) = I

[
−QcWB

g2Lg
2
Y

g2L − g2Y
+ (cT − δv)

(
T 3 +Q

g2Y
g2L − g2Y

)]
. (A.3)

2The normalization of operators and notation are different than in the original references. We replaced the
operator |H†DµH |2 by (H†DµH − DµH†H)2. For Yukawa-type operators Of we subtracted v2 so that these
operators do not contribute to off-diagonal mass terms. This way we avoid tedious rotations of the fermion fields
to bring them back to the mass eigenstate basis. Starting with the Yukawa couplings −Hf̄ ′

R(Y
′
f + c′fH

†H/v2)f ′
L we

can bring them to the form in Table 4 by defining f ′
L,R = UL,RfL,R, cf = U †

Rc
′
fUL, Yf = U †

R(Y
′
f + c′f/2)UL, where

UL,R are unitary rotations to the mass eigenstate basis.
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −

1

2
V †
(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −

1

2
cHu + f(0, 2/3),

δgZd
R = −

1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on the Wilson
coefficients in the Warsaw basis. Clearly, the vertex corrections constrained by pole observables
map to a combination of a larger number of the Wilson coefficients ci. Therefore, only certain
combinations of the latter can be constrained by the pole observables. We define

[ĉ′H!]ij = [c′HL]ij +

(
g2LcWB −

g2L
g2Y

cT

)
δij ,

[ĉH!]ij = [cHL]ij − cT δij,

[ĉHe]ij = [cHE ]ij − 2cT δij,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB −

g2L
g2Y

cT

)
δij,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
For these combinations, we obtain the following central values and 1-sigma errors:

[ĉ′H!]ii =




−1.09± 0.64
−1.45± 0.59
1.87± 0.79



× 10−2, [ĉH!]ii =




1.03± 0.63
1.32± 0.62
−2.01± 0.80



× 10−2, (A.6)

[ĉHe]ii =




0.22± 0.66
−0.6± 2.6
−1.4± 1.3



× 10−3, c′!! = (−1.21± 0.41)× 10−2, (A.7)

[
ĉ′Hq

]
ii
=




0.1± 2.7
−1.2± 2.8
−0.7± 3.8



× 10−2, [ĉHq]ii =




1.8± 7.0
−0.8 ± 2.9
0.0± 3.8



× 10−2, (A.8)
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −

1

2
V †
(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −

1

2
cHu + f(0, 2/3),

δgZd
R = −

1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on the Wilson
coefficients in the Warsaw basis. Clearly, the vertex corrections constrained by pole observables
map to a combination of a larger number of the Wilson coefficients ci. Therefore, only certain
combinations of the latter can be constrained by the pole observables. We define

[ĉ′H!]ij = [c′HL]ij +

(
g2LcWB −

g2L
g2Y

cT

)
δij ,

[ĉH!]ij = [cHL]ij − cT δij,

[ĉHe]ij = [cHE ]ij − 2cT δij,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB −

g2L
g2Y

cT

)
δij,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
For these combinations, we obtain the following central values and 1-sigma errors:

[ĉ′H!]ii =




−1.09± 0.64
−1.45± 0.59
1.87± 0.79



× 10−2, [ĉH!]ii =




1.03± 0.63
1.32± 0.62
−2.01± 0.80



× 10−2, (A.6)

[ĉHe]ii =




0.22± 0.66
−0.6± 2.6
−1.4± 1.3



× 10−3, c′!! = (−1.21± 0.41)× 10−2, (A.7)

[
ĉ′Hq

]
ii
=




0.1± 2.7
−1.2± 2.8
−0.7± 3.8



× 10−2, [ĉHq]ii =




1.8± 7.0
−0.8 ± 2.9
0.0± 3.8



× 10−2, (A.8)

18[ĉHu]ii =




−3 ± 10
0.8± 1.0
×



× 10−2, [ĉHd]ii =




−6 ± 32
−7 ± 10
−4.6± 1.6



× 10−2. (A.9)

We stress that only the combinations in Eq. (A.5) are constrained by the pole observables. Con-
versely, the pole observables calculated in the Warsaw basis are completely independent on the
Wilson coefficients along the flat directions defined by [ĉHf ]ij = 0. Therefore, individually, cHf ,
cWB, and cT cannot be constrained by the pole observables alone. To this end, the input from
off-pole and/or Higgs observables has to be included. For example, including the LEP-2 WW
production data breaks the degeneracy and allows one to separately constrain cHf , cWB, and
cT [7, 16].

B Correlation matrix

Here we quote the various correlation matrices described in Sec. 4.
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Finally, the shifts of the SM W and Z boson couplings to quarks are given by

δgWq
L = c′HqV + f(1/2, 2/3)V − f(−1/2,−1/3)V,

δgWq
R = cHud,

δgZu
L =

1

2

(
c′Hq − cHq

)
+ f(1/2, 2/3),

δgZd
L = −

1

2
V †
(
c′Hq + cHq

)
V + f(−1/2,−1/3),

δgZu
R = −

1

2
cHu + f(0, 2/3),

δgZd
R = −

1

2
cHd + f(0,−1/3). (A.4)

We can insert these relation into the global χ2 functions, so as to obtain constraints on the Wilson
coefficients in the Warsaw basis. Clearly, the vertex corrections constrained by pole observables
map to a combination of a larger number of the Wilson coefficients ci. Therefore, only certain
combinations of the latter can be constrained by the pole observables. We define

[ĉ′H!]ij = [c′HL]ij +

(
g2LcWB −

g2L
g2Y

cT

)
δij ,

[ĉH!]ij = [cHL]ij − cT δij,

[ĉHe]ij = [cHE ]ij − 2cT δij,

[
ĉ′Hq

]
ij

=
[
c′HQ

]
ij
+

(
g2LcWB −

g2L
g2Y

cT

)
δij,

[ĉHq]ij = [cHQ]ij +
1

3
cT δij ,

[ĉHu]ij = [cHU ]ij +
4

3
cT δij ,

[ĉHd]ij = [cHD]ij −
2

3
cT δij . (A.5)

The pole observable constrain all diagonal elements of ĉ except for [ĉHU ]33.
For these combinations, we obtain the following central values and 1-sigma errors:

[ĉ′H!]ii =




−1.09± 0.64
−1.45± 0.59
1.87± 0.79



× 10−2, [ĉH!]ii =




1.03± 0.63
1.32± 0.62
−2.01± 0.80



× 10−2, (A.6)

[ĉHe]ii =




0.22± 0.66
−0.6± 2.6
−1.4± 1.3



× 10−3, c′!! = (−1.21± 0.41)× 10−2, (A.7)

[
ĉ′Hq

]
ii
=




0.1± 2.7
−1.2± 2.8
−0.7± 3.8



× 10−2, [ĉHq]ii =




1.8± 7.0
−0.8 ± 2.9
0.0± 3.8



× 10−2, (A.8)
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Note in Warsaw basis only 
combinations of Wilson coefficients 
are constrained by pole observables



All leptonic couplings constrained at per-
mille level, all quark couplings constrained at 
1% level or better 

Pole constraints - flavor blind



Constraints 
on 4-lepton operators

from off-pole observables



There’s 27 lepton-flavor conserving 4-lepton operators, 3 of which are complex, 
however not all are currently probed by experiment

Using e+e- -> ll scattering in LEP-2, low-energy neutrino scattering on electrons, 
W mass measurement, low-energy parity violating Moller scattering, and muon 
and tau decays 

All these observables depend also on leptonic vertex corrections, so combination 
with previous pole constraints is necessary

Off-Pole constraints on 4-lepton observables
One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)

[O``]IIII =
1
2(
¯̀
I �̄µ`I)(¯̀I �̄µ`I) [O``]IIJJ = (¯̀I �̄µ`I)(¯̀J �̄µ`J)

[O``]IJJI = (¯̀I �̄µ`J)(¯̀J �̄µ`I)
[O`e]IIII = (¯̀I �̄µ`I)(ecI�µēcI) [O`e]IIJJ = (¯̀I �̄µ`I)(ecJ�µēcJ)

[O`e]JJII = (¯̀J �̄µ`J)(ecI�µēcI)
[O`e]IJJI = (¯̀I �̄µ`J)(ecJ�µēcI)

[Oee]IIII =
1
2(e

c
I�µēcI)(e

c
I�µēcI) [Oee]IIJJ = (ecI�µēcI)(e

c
J�µēcJ)

Table 1: The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, �m parametrizes the relative correction to the W boson mass that may arise in the presence
of D=6 operators. By construction, there is no correction to the Z boson mass: a possible shift
due to D=6 operators has been absorbed into the definition of the electroweak parameters gL, gY
and v. For the sake of our analysis we need to define the interactions of leptons with the SM gauge
fields in the e↵ective Lagrangian:

Lv``
e↵ = �eAµ(ēI �̄µeI + ecI�µē

c
I) +

gLp
2

⇥

W+
µ ⌫̄I �̄µ(1 + �gWeI

L )eI + h.c.
⇤

+
q

g2L + g2YZµ

⇥


⌫̄I �̄µ

✓

1

2
+ �gZeI

L + �gW `I
L

◆

⌫I + ēI �̄µ

✓

�1

2
+ s2✓ + �gZeI

L

◆

eI + ecI�µ

�

s2✓ + �gZeI
R

�

ēcI

�

,

(3)

Here, the e↵ects of D = 6 operators are parameterized by the vertex corrections �g. All �g’s
in Eq. (3) are independent parameters, which in general may depend on the lepton flavor. By
construction, there is no vertex corrections to photon interactions. The parameters �g can be
related by a linear transformation to Wilson coe�cients of D=6 operators in any particular basis,
see Ref. [31] for a map to popular bases used in the literature. Therefore, �g’s are O(⇤�2) in the
EFT expansion. Note that the vertex corrections to neutrino interactions with Z in Eq. (3) are
expressed by the other vertex corrections: �gZ⌫I

L = �gZeI
L + �gWeI

L . This relation is a consequence
of the linearly realized SM gauge symmetry and the absence of operators with D > 6 in the
Lagrangian, and holds independently of the basis of D=6 operators employed in Eq. (1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in Eq. (1)
summarized in Table 2. Overall, there is 3 ⇥ 3 + 3 ⇥ 6 = 27 such operators. Three of those,
denoted [O`e]IJJI , are complex, in which case the corresponding Wilson coe�cient is complex,
and the Hermitian conjugate operator is included in Eq. (1). The goal of this paper is to derive
simultaneous constraints on the Wilson coe�cients of (as many as possible) 4-lepton operators and
the leptonic vertex corrections in Eq. (3). In our framework, the remaining parameter introduced
above - the W mass correction �m in Eq. (2) - is related to the leptonic vertex corrections and one
4-lepton operators [31]:

�m =
�gWe

L + �gWµ
L

2
� [c``]1221

4
. (4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and the absence
of operators with dimensions greater than 6. It also ensures that the Fermi constant GF measured
in muon decays is given at tree-level by GF = 1/

p
2v2. This way, the tree-level relations between
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Example: LEP-2 constraints on 4-electron operators

1-by-1

The first line is the s-channel, and the second is the t-channel. For the photon we have
gV e
L = gV e

R = �e andmV = 0. For the Z boson we have gV e
L =

p
g2L + g2Y

�
�1/2 + s2✓ + �gZe

L

�
,

gV f
R =

p
g2L + g2Y

�
s2✓ + �gZe

R

�
. Here I’m interested in o↵-pole scattering and I ignore the

Z width in the propagator.
The scattering amplitudes for helicity eigenstates:

MV (+,+;+,+) = �
�
gV e
R

�
2

s (1 + cos ✓)


1

s�m2

V

+
1

t�m2

V

�

MV (+,+;�,�) = �gV e
R gV e

L

s

s�m2

V

(1� cos ✓) e2i�

MV (+,�; +,�) = �2gV e
L gV e

R

s

t�m2

V

MV (�,�; +,+) = �gV e
L gV e

R

s

s�m2

V

(1� cos ✓) e�2i�

MV (�,+;�,+) = �2gV e
L gV e

R

s

t�m2

V

MV (�,�;�,�) = �
�
gV e
L

�
2

s (1 + cos ✓)


1

s�m2

V

+
1

t�m2

V

�
(2.2)

2.2 4-fermion contributions

For electron scattering, only 3 D=6 4-fermion operators are relevant at tree level

[O``]1111 = (¯̀
1

�̄µ`1)(¯̀1�̄µ`1),

[O`e]1111 = (¯̀
1

�̄µ`1)(e
c
1

�µē
c
1

),

[Oee]1111 = (ec
1

�µē
c
1

)(ec
1

�µē
c
1

). (2.3)

Their contribution to the amplitude is

M
4e = [c``]1111 ([ȳ(p2)�̄µx(p1)] [x̄(k1)�̄µy(k2)]� [x̄(k

1

)�̄µx(p1)] [ȳ(p2)�̄µy(k2)])

+ [cee]1111 ([x(p2)�µȳ(p1)] [y(k1)�µx̄(k2)]� [y(k
1

)�µȳ(p1)] [x(p2)�µx̄(k2)])

+ [c`e]1111 ([ȳ(p2)�̄µx(p1)] [y(k1)�µx̄(k2)]� [x̄(k
1

)�̄µx(p1)] [x(p2)�µx̄(k2)])

+ [c`e]1111 ([x(p2)�µȳ(p1)] [x̄(k1)�̄µy(k2)]� [y(k
1

)�µȳ(p1)] [ȳ(p2)�̄µy(k2)])

(2.4)

The resulting helicity amplitudes are:

M
4e(+,+;+,+) = �4[cee]1111

s

v2
(1 + cos ✓)

M
4e(+,+;�,�) = �[c`e]1111

s

v2
(1� cos ✓) e2i�

M
4e(+,�; +,�) = �2[c`e]1111

s

v2

M
4e(�,�; +,+) = �[c`e]1111

s

v2
(1� cos ✓) e�2i�

M
4e(�,+;�,+) = �2[c`e]1111

s

v2

M
4e(�,�;�,�) = �4[c``]1111

s

v2
(1 + cos ✓) (2.5)
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Figure 3.6: LEP averaged differential cross-sections for e+e− → e+e− at energies of 189–207
GeV. The SM predictions, shown as solid histograms, are computed with BHWIDE.

56One needs other observables
 to break degeneracy



Off-Pole constraints on 4-lepton observables

are linear in Wilson coe�cients of D=6 operators. These are formally O(v2/⇤2) in the EFT
counting, and come from interference between tree-level SM and D=6 contributions to the relevant
amplitudes. We also ignore loop-suppressed e↵ects proportional to D=6 Wilson coe�cients. We
use the experimental results, the SM predictions, and the analytic expression forD=6 contributions
discussed in Section 3 to construct a global Gaussian likelihood in the space of the relevant Wilson
coe�cients. With this procedure, we get the following global constraints:
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with the correlation matrix written down in Eq. (51).
A few general comments are in order:

• In the global fit, the constraints on the leptonic vertex corrections are the same as the ones in
Eq. (5) determined from on-shell Z and W data. The additional experimental input consid-
ered in this analysis constrains 4-lepton operators without a↵ecting the limits on the vertex
corrections in an appreciable way. Nevertheless, the correlations between vertex corrections
and 4-lepton operators are non-negligible in some cases, as can be observed in Eq. (51).

• Not all 4-lepton operators can be constrained by the current data. In particular, we are not
aware of any experiments probing four-muon or four-tau interactions. On the other hand,
most of the Wilson coe�cients of 4-lepton operators involving electrons are constrained, in
a model-independent way, at a percent level accuracy.

• In Eq. (17), the limits on the electron-tau 4-fermion operators [O``]1133 and [Oee]1133 are
very weak. Actually, the combination [O``]1133 + [Oee]1133 is constrained at a percent level.
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d

Full correlation matrix also calculated

Typical constraints at 1% level

Flat directions for electron-tau 
operators: no additional observables 
to break LEP-2 degeneracy
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Four-lepton operators: one by one
Off-Pole constraints on 4-lepton observables

One-by-one constraints are stronger, 
especially for electron-muon operators.
Experiment probes scales suppressing 

4-fermion operators up to 5 TeV



Pole constraints - universal theories
 Oblique corrections:
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Constraints from
LHC Higgs data



Higgs signal strength observables

4

they are allowed to be much bigger than their SM values
is more complicated (see e.g. Refs. [25–27]). Notice that
large values are not incompatible with the EFT frame-
work (as long as no flavor symmetry is assumed), which
in principle predicts natural values of order v2/⇤2 that
easily exceed the small Yukawas. Remarkably, even when
light Yukawa couplings are as large as the bottom Yukawa
(which would almost double the total Higgs width), our
TGC bounds given in Eq. (2) qualitatively hold.

As a final comment, we note that the tight bounds
we obtain via the combination of LEP-2 WW and LHC
Higgs data strongly constrain deviations in the h ! 4`
distributions, which will be investigated in the LHC
Run-2. These decays can be described experimentally
through a set of pseudo-observables [28], which can then
be matched to the D=6 operators in the EFT at tree-
level [29]. The strong bounds we obtain on the pseudo-
observables from our fit, see Eq. (A.12), are very similar
to those presented in Ref. [29] using only LEP2 data with
�z = 0. Therefore, to a good approximation, the analysis
performed in that work for such specific case holds now
in full generality. In particular, the very strong bounds
on the contact terms ✏Z`L,R imply small deviations in the
h ! 4` spectrum [29].

To conclude, by working atO(⇤�2) in the EFT and un-
der the MFV assumption, we obtained strong and model-
independent bounds on the aTGCs via the combination
of LEP-2 WW and LHC Higgs signal-strength data. The
combination of the two datasets lifts the flat direction
a↵ecting each of them taken separately, thus showing
the importance of performing global analysis in the EFT
framework. Combined with the W - and Z-pole observ-
ables analysis of Ref. [12], the results of this work can be
used to set strong constraints on a wide class of possible
new physics scenarios.
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Appendix A: Fit results

In the SM extended by D=6 operators, assuming
MFV, there are 9 combinations of Wilson coe�cients
that a↵ect the Higgs signal strength measured at the
LHC and are weakly constrained by electroweak preci-
sion tests. Furthermore, to describe electroweak gauge
bosons pair production, one more independent combina-
tion is needed. In the Higgs basis [30] these 10 parameters
are [13]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (A.1)

The relation of these parameters to the interaction terms
in the e↵ective Lagrangian can be found in Ref. [30].
We constrain these parameters using the available LHC
Higgs data and WW data, as described above Eq. (2).

Channel µ Production Ref.

�� 1.16+0.20
�0.18 2D [31]

1.0+1.6
�1.6 Wh [34]

0.1+3.7
�0.1 Zh [34]

0.58+0.93
�0.81 Vh [33]

1.30+2.62
�1.75 & 2.7+2.4

�1.7 tth [33, 34]

Z� 2.7+4.5
�4.3 & �0.2+4.9

�4.9 total [34, 35]

ZZ⇤ 1.31+0.27
�0.14 2D [31]

WW ⇤ 1.11+0.18
�0.17 2D [31]

2.1+1.9
�1.6 Wh [36]

5.1+4.3
�3.1 Zh [36]

0.80+1.09
�0.93 Vh [33]

⌧⌧ 1.12+0.25
�0.23 2D [31]

0.87+1.00
�0.88 Vh [33]

bb 1.11+0.65
�0.61 Wh [32]

0.05+0.52
�0.49 Zh [32]

0.89+0.47
�0.44 Vh [33]

2.8+1.6
�1.4 VBF [37]

1.5+1.1
�1.1 & 1.2+1.6

�1.5 tth [38, 39]

µµ �0.7+3.7
�3.7 & 0.8+3.5

�3.4 total [34, 40]

multi-` 2.1+1.4
�1.2 & 3.8+1.4

�1.4 tth [41, 42]

TABLE I. The LHC Higgs results used in the fit. 2D
stands for the likelihood functions in the plane µggh+tth-
µVBF+Vh, whereas in the diphoton channel (cats.) we use the
five-dimensional likelihood function in the space spanned by
(µggh, µtth, µVBF, µWh, µZh). Notice that in these two cases
µ is quoted for illustration only, since more information is
included in the analysis. Correlations among di↵erent pro-
duction classes in this table are ignored. See Ref. [13] for a
more detailed discussion of our Higgs dataset.

In the Gaussian approximation near the best fit point
we find the following constraints:

0

BBBBBBBBBBBBB@

�cz
czz
cz⇤
c��
cz�
cgg
�yu
�yd
�ye
�z

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

�0.02± 0.17
0.69± 0.42
�0.32± 0.19
0.009± 0.015
0.002± 0.098

�0.0052± 0.0027
0.57± 0.30
�0.24± 0.35
�0.12± 0.20
�0.162± 0.073

1

CCCCCCCCCCCCCA

, (A.2)

where the uncertainties correspond to 1�. The correla-

Including 2D likelihoods from 
recent ATLAS+CMS combination

ATLAS-CONF-2015-044
CMS-PAS-HIG-15-002



In Higgs basis, Higgs 
couplings to gauge bosons 
are described  by 10 
parameters

These parameters are 
observables probed by 
multiple Higgs production 
(ggF, VBF, VH) and Higgs 
decay (γγ, Zγ, VV^*→4f) 
processes  

Linearly realized 
SU(3)xSU(2)xU(1) with D=6 
operators enforces relations 
between Higgs couplings to 
gauge bosons (otherwise, 5 
more parameters) 

Higgs Basis: Higgs couplings to gauge bosons



In Higgs basis, Higgs couplings 
to fermions are described by 3 
general complex 3x3 matrices

Here I will assume MFV 
couplings, thus reducing number 
of parameters to 2x3  

Without that assumption, 
couplings to light fermions are 
unconstrained, leading to flat 
directions; their effect on other 
parameters is similar to adding 
additional invisible width

Higgs Basis: Higgs couplings to fermions

of 2-derivative Higgs couplings to gauge bosons. In the Higgs basis, these effects are parametrized
by the following independent couplings:

δcz, czz, cz!, cγγ , czγ, cgg, c̃gg, c̃zz, c̃γγ, c̃zγ,

δyu, δyd, δye, sinφu, sinφd, sinφ". (3.2)

The couplings in the first line are defined via the Higgs boson couplings to gauge bosons:

∆LD=6
hvv =

h

v

[
2δcwm

2
WW+

µ W−
µ + δczm

2
ZZµZµ

+cww
g2L
2
W+

µνW
−
µν + c̃ww

g2L
2
W+

µνW̃
−
µν + cw!g

2
L

(
W−

µ ∂νW
+
µν + h.c.

)

+cgg
g2s
4
Ga

µνG
a
µν + cγγ

e2

4
AµνAµν + czγ

egL
2cθ

ZµνAµν + czz
g2L
4c2θ

ZµνZµν

+cz!g
2
LZµ∂νZµν + cγ!gLgYZµ∂νAµν

+c̃gg
g2s
4
Ga

µνG̃
a
µν + c̃γγ

e2

4
AµνÃµν + c̃zγ

egL
2cθ

ZµνÃµν + c̃zz
g2L
4c2θ

ZµνZ̃µν

]
,

(3.3)

where the dependent couplings δcw, cww, c̃ww, cw!, and cγ! can be expressed by the independent
couplings as

δcw = δcz + 4δm,

cww = czz + 2s2θczγ + s4θcγγ ,

c̃ww = c̃zz + 2s2θc̃zγ + s4θc̃γγ ,

cw! =
1

g2L − g2Y

[
g2Lcz! + g2Y czz − e2s2θcγγ − (g2L − g2Y )s

2
θczγ

]
,

cγ! =
1

g2L − g2Y

[
2g2Lcz! + (g2L + g2Y )czz − e2cγγ − (g2L − g2Y )czγ

]
. (3.4)

The coupling in the second line of Eq. (3.2) are defined via the Higgs boson couplings to fermions:

∆LD=6
hff = −

h

v

∑

f∈u,d,e

δyf e
iφf mff

cf + h.c.. (3.5)

Following my assumption of flavor universal coefficients of dimension-6 operators, each δyf and
φf is a real number. Moreover, the couplings in Eq. (3.5) are diagonal in the generation space,
therefore flavor violating Higgs decays are absent (see Refs. [33,34] for a discussion of such decays
in the EFT language).

The complete Higgs interaction Lagrangian relevant for this review is given by LSM
h + LSM

vff +
∆LD=6

hvv +∆LD=6
hff and is parametrized by the independent couplings in Eq. (3.2). The effect of these

couplings on the LHC Higgs observables will be discussed in the following sections. But before
that, a comment is in order on other effects of D = 6 operators that could, a priori, be relevant.
First, in the Higgs basis there are corrections to the Z and W boson interactions in Eq. (2.14),
parametrized by vertex corrections δg. These would feed indirectly into Higgs observables, such as,
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Other Higgs couplings to fermions (vertex-like, or 
dipole-like) are constrained to be small by precision 

observables and cannot affect LHC Higgs observables 
given the current level of precision



Higgs signal strength observables at  linear level are 
only sensitive to CP even parameter (CP odd enter 
only quadratically and are ignored)

Only couplings unconstrained by precision tests can be 
relevant at the LHC 

Thus, assuming MFV couplings to fermions, only 9 EFT 
parameter affect Higgs signal strength measured at 
LHC

Higgs observables in the Higgs basis



• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg

∣∣∣∣
2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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Higgs production in the Higgs basis

Production

For the relevant partonic processes of Higgs production at the LHC, the cross section relative
to the SM one depends on the effective theory parameters as follows:

• Gluon fusion (ggh), gg → h:
σggh

σSM
ggh

"
∣∣∣∣1 +

ĉgg
cSMgg
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2

, (4.2)

where

ĉgg " cgg +
1

12π2

[
δyuAf

(
m2

h

4m2
t

)
+ δydAf

(
m2

h

4m2
b

)]
,

cSMgg "
1

12π2

[
Af

(
m2

h

4m2
t

)
+ Af

(
m2

h

4m2
b

)]
,

Af(τ) ≡
3

2τ 2
[(τ − 1)f(τ) + τ ] ,

f(τ) ≡

{
arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√
1−τ−1

− iπ
]2

τ > 1
. (4.3)

As discussed in Ref. [88], in this case it is appropriate to calculate cSMgg at the leading order
in QCD because then the large k-factors, approximately common for cgg and δyu, cancel in
the ratio.7 Numerically,

ĉgg " cgg + (8.7δyu − (0.3− 0.3i)δyd)× 10−3, cSMgg " (8.4 + 0.3i)× 10−3, (4.4)

σggh

σSM
ggh

" 1 + 237cgg + 2.06δyu − 0.06δyd. (4.5)

• Vector boson fusion (VBF), qq → hqq:

σV BF

σSM
V BF

" 1 + 1.49δcw + 0.51δcz −




1.08
1.11
1.23



 cw! − 0.10cww −




0.35
0.35
0.40



 cz!

−0.04czz − 0.10cγ! − 0.02czγ
→ 1 + 2δcz − 2.25cz! − 0.83czz + 0.30czγ + 0.12cγγ. (4.6)

The numbers in the columns multiplying cw! and cz! refer to the LHC collision energy of√
s =7, 8, and 13 TeV; for other parameters the dependence is weaker. The expression

after the arrow arises due to replacing the dependent couplings by the independent ones in
Eq. (3.2). Each LHC Higgs analysis uses somewhat different cuts to isolate the VBF signal,
and the relative cross section slightly depends on these cuts. The result in Eq. (4) has been
computed numerically by simulating the parton-level process in MadGraph5 [90] at the tree
level with the cuts pT,q > 20 GeV, |ηq| < 5 and mqq > 250 GeV. Replacing the last cut by
mqq > 500 GeV affects the numbers at the level of 5%.

7Accidentally, with the SM parameters used in this review, the dependence on δyd is also captured with a decent
accuracy by this procedure. One can compare Eq. (4.5) to NLO QCD results in Ref. [89], where the coefficient in
front of δyd is found to be −0.06 for

√
s = 8 TeV, and −0.05 for

√
s = 14 TeV.
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Higgs decay in the Higgs basis

• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,
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→ 1 + 2δcz +




7.61
7.77
8.24
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3.31
3.35
3.47



 czz −




0.58
0.60
0.65
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0.27
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0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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while ĉgg and cSMgg are defined in Eq. (4.3). Note that contributions to Γγγ and Γzγ arising
due to corrections to the SM Higgs couplings to the W bosons and fermions are not included
in Eq. (4.11), unlike in Eq. (4.3). The reason is that, for these processes, corrections from
D = 6 operators are included at the tree level only. If these particular one-loop corrections
were included, one should also consistently include all one-loop corrections to this process
arising at the D = 6 level, some of which are divergent and require renormalization. The net
result would be to redefine ĉγγ = cren.γγ − 0.11δcw + 0.02δyu + . . . , and ĉzγ = cren.zγ − 0.06δcw +
0.003δyt + . . . . Here ”ren.” stands for “renormalized” and the dots stand for a dependence
on other Lagrangian parameters (cww, cw!, and corrections to triple gauge couplings). A
full next-to-leading order computation of these processes have not been yet attempted in the
literature.

• h → 4f . The decay process h → 2"2ν (where " here stands for charged leptons) proceeds via
intermediate W bosons. The relative width is given by

Γ2"2ν

ΓSM
2"2ν

# 1 + 2δcw + 0.46cw! − 0.15cww

→ 1 + 2δcz + 0.67cz! + 0.05czz − 0.17czγ − 0.05cγγ. (4.12)

In the SM, the decay process h → 4" proceeds at the tree-level via intermediate Z bosons. In
the presence D = 6 operators, intermediate photon contributions may also arise at the tree
level. If that is the case, the decay width diverges due to the photon pole. Below I quote
the relative width Γ̄(h → 4") regulated by imposing the cut m"" > 12 GeV on the invariant
mass of same-flavor lepton pairs:

Γ̄4"

Γ̄SM
4"

# 1 + 2δcz +

(
0.41
0.39

)
cz! −

(
0.15
0.14

)
czz +

(
0.07
0.05

)
czγ −

(
0.02
0.02

)
cγ! +

(
< 0.01
0.03

)
cγγ

→ 1 + 2δcz +

(
0.35
0.32

)
cz! −

(
0.19
0.19

)
czz +

(
0.09
0.08

)
czγ +

(
0.01
0.02

)
cγγ . (4.13)

The numbers in the columns correspond to the 2e2µ and 4e/µ final states, respectively.
The difference between these two is numerically irrelevant in the total width, but may be
important for differential distributions, especially regarding the cγγ dependence [91]. The
dependence on the m"" cut is weak; very similar numbers are obtained if m"" > 4 GeV is
imposed instead.

Given the partial widths, the branching fractions can be computed as BrY = ΓY /Γ(h → all),
where the total decay width is given by

Γ(h → all)

Γ(h → all)
#

Γbb

ΓSM
bb

BrSMbb +
Γcc

ΓSM
cc

BrSMcc +
Γττ

ΓSM
ττ

BrSMττ +
ΓWW ∗

ΓSM
WW ∗

BrSMWW ∗ +
ΓZZ∗

ΓSM
ZZ∗

BrSMZZ∗ +
Γgg

ΓSM
gg

BrSMgg . (4.14)

Note that, in line with the basic assumption of no new light particles, there is no additional
contributions to the Higgs width other than from the SM decay channels. In particular, the
invisible Higgs width is absent in this EFT framework (except for the small SM contribution
arising via h → ZZ∗ → 4ν).
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The difference between these two is numerically irrelevant in the total width, but may be
important for differential distributions, especially regarding the cγγ dependence [91]. The
dependence on the m"" cut is weak; very similar numbers are obtained if m"" > 4 GeV is
imposed instead.

Given the partial widths, the branching fractions can be computed as BrY = ΓY /Γ(h → all),
where the total decay width is given by

Γ(h → all)

Γ(h → all)
#

Γbb

ΓSM
bb

BrSMbb +
Γcc

ΓSM
cc

BrSMcc +
Γττ

ΓSM
ττ

BrSMττ +
ΓWW ∗

ΓSM
WW ∗

BrSMWW ∗ +
ΓZZ∗

ΓSM
ZZ∗

BrSMZZ∗ +
Γgg

ΓSM
gg

BrSMgg . (4.14)

Note that, in line with the basic assumption of no new light particles, there is no additional
contributions to the Higgs width other than from the SM decay channels. In particular, the
invisible Higgs width is absent in this EFT framework (except for the small SM contribution
arising via h → ZZ∗ → 4ν).
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• Vector boson associated production (Vh), qq̄ → V h, where V = W,Z,

σWh

σSM
Wh

" 1 + 2δcw +




6.39
6.51
6.96



 cw! +




1.49
1.49
1.50



 cww

→ 1 + 2δcz +




9.26
9.43
10.08



 cz! +




4.35
4.41
4.63



 czz −




0.81
0.84
0.93



 czγ −




0.43
0.44
0.48



 cγγ

σZh

σSM
Zh

" 1 + 2δcz +




5.30
5.40
5.72



 cz! +




1.79
1.80
1.82



 czz +




0.80
0.82
0.87



 cγ! +




0.22
0.22
0.22



 czγ,

→ 1 + 2δcz +




7.61
7.77
8.24



 cz! +




3.31
3.35
3.47



 czz −




0.58
0.60
0.65



 czγ +




0.27
0.28
0.30



 cγγ.

(4.7)

The numbers in the columns refer to the LHC collision energy of
√
s =7, 8, and 13 TeV.

• Top pair associated production, gg → htt̄:

σtth

σSM
tth

" 1 + 2δyu. (4.8)

Decay

• h → f f̄ . Higgs boson decays into 2 fermions occur at the tree level in the SM via the
Yukawa couplings in Eq. (2.17). In the presence of D = 6 operators they are affected via the
corrections to the Yukawa couplings in Eq. (3.5):

Γcc

ΓSM
cc

" 1 + 2δyu,
Γbb

ΓSM
bb

" 1 + 2δyd,
Γττ

ΓSM
ττ

" 1 + 2δye, (4.9)

where I abbreviate Γ(h → Y ) ≡ ΓY .

• h → VV. In the SM, Higgs decays into on-shell gauge bosons: gluon pairs gg, photon pairs
γγ, and Zγ occur only at the one-loop level. In the presence of D = 6 operators these decays
are corrected already at the tree level by the 2-derivative contact interactions of the Higgs
boson with two vector bosons in Eq. (3.3). The relative decay widths are given by

ΓV V

ΓSM
V V

"
∣∣∣∣1 +

ĉvv
cSMvv

∣∣∣∣
2

, vv ∈ {gg, γγ, zγ}, (4.10)

where

ĉγγ = cγγ , cSMγγ " −8.3× 10−2,

ĉzγ = czγ, cSMzγ " −5.9× 10−2, (4.11)
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Decays to 2 fermions

Decays to 4 fermions

Decays to 2 gauge bosons

 2e2μ
4e(  ) 



independent couplings in Eq. (3.2) arise from D = 6 operators, they are formally of order v2/Λ2.
The rule of thumb is that the EFT approach to Higgs physics is valid if Λ ! v, which translates
to |ci| " 1 and δyf " v/mf for the independent couplings. However, a detailed analysis of this
issue is much more tricky and depends on the kinematic region probed by a given observable.
For example, for observables probing the high

√
s or high pT tail of differential distributions the

validity range will be different than for inclusive observables. See Ref. [42] for a more in-depth
discussion of these issues. In this review I restrict to the Higgs signal strength observables in
various production modes, which are typically dominated by

√
s ∼ mh. Moreover, I am dodging

the question of the validity range because it is assumed from the onset that higher-dimensional
operators provide small corrections on top of SM contributions. Consequently, I will only take
into account corrections to the observables that are linear in the parameters in Eq. (3.2), which
corresponds to retaining only O(Λ−2) effects in the EFT expansion.5 Incidentally, the LHC so far
confirms that the SM is a decent first approximation of the Higgs sector, and deviations due to
new physics are small.

4 Observables

Consider the Higgs boson produced at the LHC via the process X , and subsequently decaying
to the final state Y . It is possible, to an extent, to isolate experimentally different Higgs boson
production modes and decays channels. The LHC collaborations typically quote the Higgs signal
strength relative to the SM one in a given channel, here denoted as µX;Y . Thanks to the narrow
width of the Higgs boson, the production and decay can be separated:6

µX;Y =
σ(pp → X)

σ(pp → X)SM

Γ(h → Y )

Γ(h → Y )SM

Γ(h → all)SM
Γ(h → all)

. (4.1)

Below I summarize how the Higgs production and decays depend on the parameters in the
effective Lagrangian. These formulas allow one to derive experimental constraints on the EFT pa-
rameters. This kind of approach to LHC Higgs data was pioneered in Refs. [48, 49] and perfected
in Refs. [50–87]. As discussed at the end of Section 3, only linear corrections in the independent
couplings are kept, while quadratic corrections are ignored. For this reason only CP-even cou-
plings appear in these formulas (the CP-odd ones enter inclusive observables only at the quadratic
level). Moreover, I only include D = 6 corrections at the tree level and I ignore new physics effects
suppressed by a loop factor. The exception is the gluon fusion production process which is com-
puted at the next-to-leading order in the D = 6 parameters. Unless noted otherwise, I give the
inclusive production and decay rates. Note that the signal strength quoted by experiments may
depend on analysis-specific cuts, which may slightly change the dependence on the effective theory
parameters.

5Typically, O(Λ−4) effects should be neglected in the context of D = 6 effective Lagrangian, as they may receive
contributions from D = 8 operators. The exception is the observables where the SM contribution is suppressed or
vanishes, in which case D = 6 operators contribute at O(Λ−4), while contributions of higher-order operators are
suppressed by more powers of Λ. One example is the lepton-flavor violating Higgs decays into 2 fermions where the
SM contribution is exactly zero. In this review I focus on the observables where the SM contribution is dominant.

6Except in off-shell Higgs processes [43]. However, given the current precision, these processes do not impose
any meaningful constraints within the EFT framework [44–47].
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Higgs observables in the Higgs basis

Signal  strength

In EFT, assuming no other degrees of freedom,
 so total width is just sum of partial width into SM particle

no invisible width in this analysis

One can express all measured signal strength in 
terms of the 9 EFT parameters  

Using available LHC signal strength data one can 
obtain constraints on most of these parameters 



Higgs constraints on EFT

2 Higgs limits

2.1 The e↵ect of quadratic terms on the fit

In Ref. [1] the fit to the Higgs data is done at the linear level, that is only leading
order D = 6 corrections are kept. This is because quadratic and higher corrections
are formally equivalent to contributions of D > 6 operators, and should be consistently
neglected in the D = 6 EFT approach. Unfortunately, this assumption is currently
not fully consistent because the Higgs data by itself cannot yet constrain the D = 6
operators to be small in a model independent way. This shows itself as a sensitivity
to the corrections to the Higgs observable that are quadratic in the D = 6 parameters.
Below is a comparison of the limits in the linearized (L) and non-linear (NL) case1

L (x0 ± 1 �) NL (x0 ± 1 �) NL (95% CL range)
�cz �0.12± 0.20 �0.10+0.14

�0.10 [-0.42, 0.15]
czz 0.6± 1.9 �0.4+1.6

�0.5 [-1.0, 1.7]
cz2 �0.25± 0.83 �0.07+0.65

�0.76 [-2.5, 0.7]
c�� 0.015± 0.029 �0.41+1.56

�0.45

cz� 0.01± 0.10
cgg �0.0056± 0.0028
�yu 0.55± 0.30
�yd �0.42± 0.45 �0.36+0.24

�0.20 [-0.74, 0.28]
�ye �0.18± 0.36

(I haven’t computed all the NL limits, but clearly there’s a large sensitivity to the
non-linear terms.)

The situation changes for the better when Higgs and WW data are combined. Here’s
my results (the numerics is a bit unstable in some cases so i don’t vouchsafe for the 2nd
significant digit, but it should be approximately ok).

L (x0 ± 1 �) NL (x0 ± 1 �) L (95% CL range) NL (95% CL range)
�cz �0.15± 0.19 �0.13+0.12

�0.10 [-0.52, 0.22] [-0.33,0.13]
c�� 0.017± 0.016 0.016+0.012

�0.016 [-0.014, 0.048] [-0.016,0.037]
cz� 0.007± 0.098 0.003+0.157

�0.054 [-0.19, 0.20] [-0.09,0.20]
cgg �0.0056± 0.0027 �0.0048+0.0020

�0.0019 [-0.011, 0.000] [-0.009, -0.001]
�yu 0.55± 0.30 0.49+0.29

�0.24 [-0.04, 1.14] [-0.01, 1.32]
�yd �0.48± 0.39 �0.39+0.25

�0.20 [-1.24, 0.28] [-0.75, 0.15]
�ye �0.21± 0.21 �0.200.21�0.19 [-0.63, 0.20] [-0.52, 0.19]
�g1,z 0.028± 0.033 0.030+0.049

�0.036 [-0.04, 0.09] [-0.03, 0.13]
�� 0.137± 0.084 0.099+0.079

�0.100 [-0.03, 0.30] [-0.07, 0.27]
�z �0.146± 0.074 �0.098+0.058

�0.065 [-0.29,0.00] [-0.22,0.02]
Although both Higgs and WW data separately are very sensitive to the quadratic

terms, together they force the D=6 parameters to be small, such that the linearized
approximation works much better. This is first of all due to breaking up the flat direction
between czz and cz2 by the WW data; however other D = 6 parameters also profit
from that and their errors shrink. We can see that most of the constraints are pretty

1In the non-linear case, one also has higher than quadratic terms entering in the analysis because
the signal strength µ depends on the total Higgs width entering in the denominator. In my analysis,
the denominator is expanded in the linearized case, and kept unexpanded in the non-linear case.
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 Not all parameters yet constrained enough that EFT approach is valid 

Results sensitive to including corrections to Higgs observables quadratic in EFT 
parameters which are formally O(1/Λ^4). Thus, in general, results may be 
sensitive to including dimension-8 operators  

Flat direction

Needs more data
on  differential distributions

in h->4f decays

AA
1505.00046

http://arxiv.org/abs/1505.00046
http://arxiv.org/abs/1505.00046
http://arxiv.org/abs/1505.00046
http://arxiv.org/abs/1505.00046


Combined Constraints 
from

LEP-2 WW and LHC Higgs

Previously
Corbett et al 1304.1151
Dumont et al 1304.3369
Pomarol Riva 1308.2803

Masso 1406.6377
Ellis et al 1410.7703

Now
AA,Gonzalez-Alonso,Greljo,Marzocca  1508.00581

Consistent EFT analysis
at O(1/Λ^2)



In Higgs basis formalism, all but 2 TGCs are dependent couplings and can be expressed 
by Higgs couplings to gauge bosons 

Therefore constraints on δg1z and δκγ imply constraints on Higgs couplings 

But for that, all TGCs have to be simultaneously constrained in multi-dimensional fit, 
and correlation matrix should be given

Note that c_zγ c_zz and c_zBox are difficult to access experimentally in Higgs physics

Important to combine Higgs and TGC data! 

TGC - Higgs Synergy

Linearly realized SU(3)xSU(2)xU(1) at D=6 level enforces relations
 between TGC and Higgs couplings in the Higgs basis

HiggsTGC



Higgs constraints on EFT

Flat direction  between c_zz and c_zBox lifted to large extent by WW data! 

Much better constraints on some parameters. 
Most parameters (marginally) within the EFT regime

Lower sensitivity to the quadratic terms (though still not completely negligible, 
especially  for δcz and δyd)  
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they are allowed to be much bigger than their SM values
is more complicated (see e.g. Refs. [25–27]). Notice that
large values are not incompatible with the EFT frame-
work (as long as no flavor symmetry is assumed), which
in principle predicts natural values of order v2/⇤2 that
easily exceed the small Yukawas. Remarkably, even when
light Yukawa couplings are as large as the bottom Yukawa
(which would almost double the total Higgs width), our
TGC bounds given in Eq. (2) qualitatively hold.

As a final comment, we note that the tight bounds
we obtain via the combination of LEP-2 WW and LHC
Higgs data strongly constrain deviations in the h ! 4`
distributions, which will be investigated in the LHC
Run-2. These decays can be described experimentally
through a set of pseudo-observables [28], which can then
be matched to the D=6 operators in the EFT at tree-
level [29]. The strong bounds we obtain on the pseudo-
observables from our fit, see Eq. (A.12), are very similar
to those presented in Ref. [29] using only LEP2 data with
�z = 0. Therefore, to a good approximation, the analysis
performed in that work for such specific case holds now
in full generality. In particular, the very strong bounds
on the contact terms ✏Z`L,R imply small deviations in the
h ! 4` spectrum [29].

To conclude, by working atO(⇤�2) in the EFT and un-
der the MFV assumption, we obtained strong and model-
independent bounds on the aTGCs via the combination
of LEP-2 WW and LHC Higgs signal-strength data. The
combination of the two datasets lifts the flat direction
a↵ecting each of them taken separately, thus showing
the importance of performing global analysis in the EFT
framework. Combined with the W - and Z-pole observ-
ables analysis of Ref. [12], the results of this work can be
used to set strong constraints on a wide class of possible
new physics scenarios.
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Appendix A: Fit results

In the SM extended by D=6 operators, assuming
MFV, there are 9 combinations of Wilson coe�cients
that a↵ect the Higgs signal strength measured at the
LHC and are weakly constrained by electroweak preci-
sion tests. Furthermore, to describe electroweak gauge
bosons pair production, one more independent combina-
tion is needed. In the Higgs basis [30] these 10 parameters
are [13]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (A.1)

The relation of these parameters to the interaction terms
in the e↵ective Lagrangian can be found in Ref. [30].
We constrain these parameters using the available LHC
Higgs data and WW data, as described above Eq. (2).

Channel µ Production Ref.

�� 1.16+0.20
�0.18 2D [31]

1.0+1.6
�1.6 Wh [34]

0.1+3.7
�0.1 Zh [34]

0.58+0.93
�0.81 Vh [33]

1.30+2.62
�1.75 & 2.7+2.4

�1.7 tth [33, 34]

Z� 2.7+4.5
�4.3 & �0.2+4.9

�4.9 total [34, 35]

ZZ⇤ 1.31+0.27
�0.14 2D [31]

WW ⇤ 1.11+0.18
�0.17 2D [31]

2.1+1.9
�1.6 Wh [36]

5.1+4.3
�3.1 Zh [36]

0.80+1.09
�0.93 Vh [33]

⌧⌧ 1.12+0.25
�0.23 2D [31]

0.87+1.00
�0.88 Vh [33]

bb 1.11+0.65
�0.61 Wh [32]

0.05+0.52
�0.49 Zh [32]

0.89+0.47
�0.44 Vh [33]

2.8+1.6
�1.4 VBF [37]

1.5+1.1
�1.1 & 1.2+1.6

�1.5 tth [38, 39]

µµ �0.7+3.7
�3.7 & 0.8+3.5

�3.4 total [34, 40]

multi-` 2.1+1.4
�1.2 & 3.8+1.4

�1.4 tth [41, 42]

TABLE I. The LHC Higgs results used in the fit. 2D
stands for the likelihood functions in the plane µggh+tth-
µVBF+Vh, whereas in the diphoton channel (cats.) we use the
five-dimensional likelihood function in the space spanned by
(µggh, µtth, µVBF, µWh, µZh). Notice that in these two cases
µ is quoted for illustration only, since more information is
included in the analysis. Correlations among di↵erent pro-
duction classes in this table are ignored. See Ref. [13] for a
more detailed discussion of our Higgs dataset.

In the Gaussian approximation near the best fit point
we find the following constraints:

0

BBBBBBBBBBBBB@

�cz
czz
cz⇤
c��
cz�
cgg
�yu
�yd
�ye
�z

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

�0.07± 0.14
0.65± 0.42
�0.29± 0.21
�0.005± 0.014
�0.005± 0.095

�0.0053± 0.0027
0.55± 0.30
�0.44± 0.24
�0.22± 0.18
�0.152± 0.080

1

CCCCCCCCCCCCCA

, (A.2)

where the uncertainties correspond to 1�. The correla-

Correlation matrix



Corollary: constraints on TGCs

LHC Higgs and LEP-2 WW data by itself do 
not constrain TGCs robustly due to each 
suffering from 1 flat direction in space of 
3 TGCs 

However, the flat directions are orthogonal 
and combined constraints lead to robust 
O(0.1) limits on aTGCs

2

and couplings to electrons. However, given the model-
independent electroweak precision constraints [12], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that cor-
respond to the aTGCs [5]. We use this dependence
to construct the 3D likelihood function �2

WW (�g1,z, �� ,
�z). For the LHC Higgs data, we use the signal strength
observables (µ) listed in Table I, separated according to
the final state and the production mode. The e↵ect of
D=6 operators on µ was calculated for each channel and
production mode in Ref. [13] and independently cross-
checked here. After imposing electroweak precision con-
straints, 9 linear combinations of D=6 operators can af-
fect µ in an observable way [8, 14]. The crucial point
is that 2 of these combinations correspond to the aT-
GCs �g1,z, �� . Therefore, the likelihood function con-
structed from LHC Higgs data, �2

h(�g1,z, �� , . . . ), may
lead to additional constraints on aTGCs. Indeed, com-
bining the likelihoods �2

comb. = �2
h + �2

WW we obtain
strong constraints on the aTGCs at the level of O(0.1).
After marginalizing over the remaining seven Wilson co-
e�cients, we find the following central values, 1 � errors,
and the correlation matrix for the aTGCs:

0

@
�g1,z
��

�z

1

A =

0

@
0.037± 0.041
0.133± 0.087
�0.152± 0.080

1

A ,

⇢ =

0

@
1 0.62 �0.84

0.62 1 �0.85
�0.84 �0.85 1

1

A .

(2)

These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.

Let us discuss here qualitatively the most important
elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [15]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (2).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino [3], as in Ref. [5]. That process probes mostly ��

but it also a↵ects limits on the remaining aTGCs due to
the highly correlated nature of the constraints from WW
and Higgs data. Indeed, we find that adding single W

TGC
Higgs
TGC+Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

FIG. 1. Allowed 68% and 95% CL region in the �g1,z-��

plane after considering LEP-II WW production data (TGC),
Higgs data, and the combination of both datasets.

data to the combined likelihood roughly halves the con-
fidence intervals for the aTGCs: �g1,z = 0.017 ± 0.023,
�� = 0.047± 0.034, �z = �0.089± 0.042. However, we
choose to highlight the more conservative result in Eq. (2)
as we consider it more robust. The reason is that the ex-
perimental extraction of the single W cross section from
fiducial measurements could be altered in a non-trivial
way in the presence of the aTGC �� , which a↵ects the
photon t-channel contribution to the production ampli-
tude. A more careful analysis is needed to render the
single W constraint more robust.

In the following we discuss whether the assumptions
employed in our analysis can be relaxed without conflict-
ing experimental data and, if yes, how this a↵ects our
results.

We begin by considering the possible impact of D=8
operators, contributing at O(⇤�4). Since the experimen-
tal precision at the LHC is currently moderate, O(20%)
at best, only higher-dimensional operators with ⇤ . few
hundred GeV can be constrained by Higgs physics. For
such a low ⇤ it is not a priori obvious that the D=8
operators are subleading. One way to estimate their ef-
fect is to include in the analysis corrections to Higgs and
WW observables that are quadratic in the Wilson coe�-
cients of D=6 operators, as they are also of O(⇤�4). If
the constraints on the aTGCs are severely a↵ected by
including the quadratic contributions, that would sig-
nal a potential sensitivity to D=8 operators [16]. In
fact, constraints from Higgs or from WW data alone
are completely changed after including the quadratic
terms. However, the combined data are only moder-
ately sensitive. Once the quadratic contributions are
included we find the constraints �g1,z = 0.032+0.043

�0.035,

LEP-2 (WW)
Higgs
LEP-2 + Higgs

-1.5 -1.0 -0.5 0.0
-1.0

-0.5

0.0

0.5

1.0

�g1,z

���



Non-trivial constraints at 
linear (1/Λ^2) level

Quadratic (1/Λ^4) terms not 
completely negligible yet, 
but they do not change fit 
qualitatively

Combined WW+Higgs: robustness



2 On the validity of EFT

2.1 Zh production

I study the modification of the Z–h invariant mass distribution in pp ! Zh at 8 TeV. I
choose 4 benchmark points along the flat direction cz⇤ = �0.45czz. See Fig. 2.

zz mZh

200 300 400 500 600 700 800 900

0.00

0.05

0.10

0.15

mZh

�
(p
b/
bi
n)

Figure 1: (a) The allowed 68% and 95% CL region in the czz–cz⇤ plane. (b) Zh invariant
mass distribution in pp ! Zh at 8 TeV for the benchmark points considering liner (dotted)
and linear + quadratic (solid) terms in the expansion in czz and cz⇤. (c) the same as (b)
in linear scale.
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Combined WW+Higgs: robustness

For VH production, quadratic (1/Λ^4) contributions are comparable to linear (1/Λ^2) 
ones

They are numerically important but don’t change fit significantly because they 
constrain similar direction in parameter space as linear ones 

Sensitivity to 1/Λ^4 terms greatly reduced if VH signal strength with cut 
mVH<400 GeV was quoted



Take away
There are strong constraints on certain combinations of dimension-6 operators from 
the pole observables measured at LEP-1 and other colliders. These can be 
conveniently presented as correlated constraints on vertex corrections and W mass 
corrections. 

Adding off-pole observables, one can also constrain 4-fermion operators

Constraints are given as likelihood in space of D=6 parameters, without assuming 
anything about flavor structure of higher dimensional operators 

Assuming MFV, these constraints allow one to describe LO EFT deformations of 
single Higgs signal strength LHC observables by just 9 parameters 

There are non-trivial constraints on all of these 9 parameters 
from Higgs and WW data  

Synergy of TGC and Higgs coupling measurements is crucial for deriving meaningful 
model-independent bounds 


