Model Independent. Constraints
 on

Physics
 Beyond the Standard Model

Saclay, 14 December 2015

Based on my 1505.00046, on 1503.07872 with Aielet Efrati and Yotam Soreq, on 1411.0669 with Francesco Rivas, on 1508.00581 with Martin Gonzalez-Alonso, Admir Greljo, and David Marzocca, and on 1511.07434 with Kin. Mimouni

Effective Field Theory approach to BSM physics

Model specific

pick one well-defined, motivated, often UV complete model

Simplified models

E.g. singlet scalar, gluino+neutralino, heavy top quark, vector triplet,
pick simple well-defined model that captures some aspects of phenomenology of large class of specific models

Model independent

Effective field theory
parametrize low-energy effects
large class of models as higher-dimensional contact interaction of light particles

Premise

- SM is probably a correct theory the weak scale, at least as the lowest order term in an effective theory expansion
- If new particles are heavy, their effects can be parametrized by higher-dimensional operators added to the SM Lagrangian
- EFT framework offers a systematic expansion around the SM organized in terms of operator dimensions, with higher dimensional operator suppressed by the mass scale \wedge of new physics

Effective Theory Approach to BSM

Basic assumptions

- New physics scale Λ separated from EW scale $v, \Lambda \gg v$

$$
H=\frac{1}{\sqrt{2}}\binom{\ldots}{v+h+\ldots}
$$

- Linearly realized $\operatorname{SU}(3) \times S U(2) \times U(1)$ local symmetry spontaneously broken by VEV of Higgs doublet field

EFT Lagrangian beyond the SM expanded in operator dimension D

$$
\begin{array}{r}
\mathcal{L}_{\mathrm{EFT}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}^{D=5}+\frac{1}{\Lambda^{2}} \mathcal{L}^{D=6}+\frac{1}{\Lambda^{3}} \mathcal{L}^{D=7}+\frac{1}{\Lambda^{4}} \mathcal{L}^{D=8}+\ldots \\
\\
\text { and integrating out heavy particles with m m } \approx \wedge \text { Cutoff scale of EFT }
\end{array}
$$

Alternatively,

Effective Theory Approach to BSM

Basic assumptions

- New physics scale \wedge separated from EW scale $v, \wedge \gg v$
- Linearly realized $S U(3) \times S U(2) \times U(1)$ local symmetry spontaneously broken by VEV of Higgs doublet field

EFT Lagrangian beyond the SM expanded in operator dimension D

By assumption, subleading hence too small to probed at LHC to $D=6$

EFT approach to BSM

- First attempts to classify dimension-6 operators back in 1986
- First complete and non-redundant set of operators explicitly written down only in 2010
- Operators can be traded for other operators using integration by parts, field redefinition, equations of motion, Fierz transformation, etc
- Because of that, one can choose many different bases $==$ non-redundant sets of Giudice en al hep-phh0703364 Contino et al 1303.3876 operators

For $D=6$ Lagrangian several complete non-redundant set of operators
(so-called basis) proposed in the literature

Hagiwara et al (1993)

Grządkowski et al. 1008.4884

$\mathrm{D}=6$ Basis

SILH basis

Warsaw
Basis

Higgs basis

Primary basis

- All bases are equivalent, but some may be more equivalent convenient for specific applications
- Physics description (EWPT, Higgs, RG running) in any of these bases contains the same information, provided all operators contributing to that process are taken into account

Example: Warsaw Basis

Bosonic CP-even			Bosonic CP-odd	
O_{H}	$\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}$			
O_{T}	$\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}$			
$O_{6 H}$	$\lambda\left(H^{\dagger} H\right)^{3}$			
$O_{G G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{\widetilde{G G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{a} G_{\mu \nu}^{a}$
$O_{W W}$	$H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i}$		$O_{\widetilde{W W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{i} W_{\mu \nu}^{i}$
$O_{B B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{\widetilde{B B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
$O_{W B}$	$H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu}$		$O_{\widetilde{W B}}$	$H^{\dagger} \sigma^{i} H \widetilde{W_{\mu \nu}^{i} B_{\mu \nu}}$
$O_{3 W}$	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{3 W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{3 G}$	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{3 G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

59 different

kinds of operators, of which 17 are complex

2499 distinct operators,

 including flavor structure and CP conjugatesAlonso et al 1312.2014

+4 fermion operators

Dipole

$\left[O_{H \ell}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}^{\prime}\right]_{I J}$	$i{\overline{\ell_{I}} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H}_{\left[O_{H e}\right]_{I J}} \quad i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{i}{\overline{\sigma_{\mu}} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H}_{\left[O_{H u}\right]_{I J}} \quad i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$

Example: SILH Basis

Bosonic CP-even		Bosonic CP-odd		
O_{H}	$\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}$			
O_{T}	$\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2}$			
$O_{6 H}$	$\left(H^{\dagger} H\right)^{3}$			
$O_{G G}$	$H^{\dagger} H G_{\mu \nu}^{a} G_{\mu \nu}^{a}$		$O_{\widetilde{G G}}$	$H^{\dagger} H \widetilde{G_{\mu \nu}^{a}} G_{\mu \nu}^{a}$
$O_{B B}$	$H^{\dagger} H B_{\mu \nu} B_{\mu \nu}$		$O_{\widetilde{B B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B_{\mu \nu}$
O_{W}	$\frac{i}{2}\left(H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H\right) D_{\nu} W_{\mu \nu}^{i}$			
O_{B}	$\frac{i}{2}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right) \partial_{\nu} B_{\mu \nu}$			
$O_{H W}$	$i\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) W_{\mu \nu}^{i}$		$O_{\widetilde{H W}}$	$i\left(D_{\mu} H^{\dagger} \sigma^{i} D_{\nu} H\right) \widetilde{W_{\mu \nu}}{ }_{\mu \nu}$
$O_{H B}$	$i\left(D_{\mu} H^{\dagger} D_{\nu} H\right) B_{\mu \nu}$		$O_{\widetilde{H B}}$	$i\left(D_{\mu} H^{\dagger} D_{\nu} H\right) \widetilde{B}_{\mu \nu}$
$O_{2 W}$	$\frac{1}{g_{L}^{2}} D_{\mu} W_{\mu \nu}^{i} D_{\rho} W_{\rho \nu}^{i}$			
$O_{2 B}$	$\frac{1}{g_{Y}^{2}} \partial_{\mu} B_{\mu \nu} \partial_{\rho} B_{\rho \nu}$			
$O_{2 G}$	$\frac{1}{g_{s}^{2}} D_{\mu} G_{\mu \nu}^{a} D_{\rho} G_{\rho \nu}^{a}$			
$O_{3 W}$	$\epsilon^{i j k} W_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$		$O_{\widetilde{3 W}}$	$\epsilon^{i j k} \widetilde{W}_{\mu \nu}^{i} W_{\nu \rho}^{j} W_{\rho \mu}^{k}$
$O_{3 G}$	$f^{a b c} G_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$		$O_{\widetilde{3 G}}$	$f^{a b c} \widetilde{G}_{\mu \nu}^{a} G_{\nu \rho}^{b} G_{\rho \mu}^{c}$

+4 fermion operators

$\left[O_{H \ell}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H \ell}^{\prime}\right]_{I J}$	$i \bar{\ell}_{I} \sigma^{i} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H e}\right]_{I J}$	$i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{i} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$

Giudice et al hep-ph/0703164 Contino et al 1303.3876

More bosonic operators, at the expense of some 2-fermion and 4 -fermion operators Total still adds up to 2499

Operators to Observables

Less obvious effects of $D=6$ operators

- Affect relations between couplings and input observables
- Change normalization of kinetic terms

$$
\begin{aligned}
& \frac{c_{T}}{v^{2}} O_{T}=\frac{c_{T}}{v^{2}}\left(H^{\dagger} \overleftrightarrow{D_{\mu}} H\right)^{2} \\
& \rightarrow-c_{T} \frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4} Z_{\mu} Z_{\mu} \\
& \Rightarrow m_{Z}^{2}=\frac{\left(g_{L}^{2}+g_{Y}^{2}\right) v^{2}}{4}\left(1-2 c_{T}\right) \\
& \frac{c_{W W}}{v^{2}} O_{W W}=\frac{c_{W W}}{v^{2}} g_{L}^{2} H^{\dagger} H W_{\mu \nu}^{i} W_{\mu \nu}^{i} \\
& \text { e.g. } \quad \rightarrow \frac{c_{W W} g_{L}^{2}}{2} W_{\mu \nu}^{i} W_{\mu \nu}^{i}
\end{aligned}
$$

- Introduce non-standard higherderivative kinetic terms
- Introduce kinetic mixing between photon and Z boson

$$
\begin{aligned}
& \frac{c_{W B}}{v^{2}} O_{W B}=\frac{c_{W B}}{v^{2}} g_{L} g_{Y} H^{\dagger} \sigma^{i} H W_{\mu \nu}^{i} B_{\mu \nu} \\
& \text { e.g. } \quad \rightarrow-c_{W B} \frac{g_{L} g_{Y}}{2} W_{\mu \nu}^{3} B_{\mu \nu}
\end{aligned}
$$

To simplify calculating physical predictions, one can map the theory with dimension-6 operators onto the phenomenological effective Lagrangian

Phenomenological effective Lagrangian

- Phenomenological effective Lagrangian is defined using mass eigenstates after electroweak symmetry breaking (photon,W,Z,Higgs boson, top). $\mathrm{SU}(3) \times S U(2) \times U(1)$ is not manifest but hidden in relations between different couplings
- Feature \#1: In the tree-level Lagrangian, all kinetic terms are canonically normalized, and there's no kinetic mixing between mass eigenstates. In particular, all oblique corrections from new physics are zero, except for a correction to the W boson mass

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}-\frac{1}{4} Z_{\mu \nu} Z_{\mu \nu}-\frac{1}{4} A_{\mu \nu} A_{\mu \nu}+(1+2 \delta m) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\frac{m_{Z}^{2}}{2} Z_{\mu} Z_{\mu}
$$

- Feature \#2: Tree-level relation between the couplings in the Lagrangian and SM input observables is the same as in the SM.

- Features \#1-3 can always be obtained without any loss of generality, starting from any Lagrangian with $D=6$ operators, using integration by parts, fields and couplings redefinition

Effective Lagrangian: Z and W couplings to fermions

- By construction, photon and gluon couplings as in the SM. Only W and Z couplings are affected

$$
\begin{aligned}
& \mathcal{L} \supset \frac{g_{L} g_{Y}}{\sqrt{g_{L}^{2}+g_{Y}^{2}}} Q_{f} A_{\mu} \bar{f} \gamma_{\mu} f \\
& \quad+g_{s} G_{\mu}^{a} \bar{q} \gamma_{\mu} T^{a} q
\end{aligned}
$$

- Effects of dimension-6 operators are parametrized by a set of vertex corrections

$$
\begin{aligned}
\mathcal{L}_{v f f} & =\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\mathrm{CKM}}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right) \\
& +\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
\end{aligned}
$$

Z and W couplings to fermions

Yukawa	
$\left[O_{e}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} c_{I}^{c} H^{\dagger} \ell_{J}$
$\left[O_{u}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} c_{I}^{c} \widetilde{H}^{\dagger} q_{J}$
$\left[O_{d}\right]_{I J}$	$-\left(H^{\dagger} H-\frac{v^{2}}{2}\right) \frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} H^{\dagger} q_{J}$

Vertex			Dipole	
$\left[O_{H \ell}\right]_{I J}$	$i \bar{\ell}_{I} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{e W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \sigma^{i} \ell_{J} W_{\mu \nu}^{i}$
$\left[O_{H e}^{\prime}\right]_{I J}$	$i \bar{\ell}_{I} \sigma^{\sigma} \bar{\sigma}_{\mu} \ell_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$		$\left[O_{e B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} e_{I}^{c} \sigma_{\mu \nu} H^{\dagger} \ell_{J} B_{\mu \nu}$
$\left[O_{H e}\right]_{I J}$	$i e_{I}^{c} \sigma_{\mu} \bar{e}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u G}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} T^{a} \widetilde{H}^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H q}\right]_{I J}$	$i \bar{q}_{I} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left[O_{H q}^{\prime}\right]_{I J}$	$i \bar{q}_{I} \sigma^{\sigma} \bar{\sigma}_{\mu} q_{J} H^{\dagger} \sigma^{i} \overleftrightarrow{D_{\mu}} H$		$\left[O_{u B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} u_{I}^{c} \sigma_{\mu \nu} \widetilde{H}^{\dagger} q_{J} B_{\mu \nu}$
$\left[O_{H u}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{u}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{d G}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} T^{a} H^{\dagger} q_{J} G_{\mu \nu}^{a}$
$\left[O_{H d}\right]_{I J}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$\left[O_{d W}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} \bar{H}^{\dagger} \sigma^{i} q_{J} W_{\mu \nu}^{i}$
$\left[O_{H u d}\right]_{I J}$	$i u_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} \tilde{H}^{\dagger} D_{\mu} H$		$\left[O_{d B}\right]_{I J}$	$\frac{\sqrt{m_{I} m_{J}}}{v} d_{I}^{c} \sigma_{\mu \nu} H^{\dagger} q_{J} B_{\mu \nu}$

$\delta g_{L}^{Z \nu}=\delta g_{L}^{Z e}+\delta g_{L}^{W \ell}$
 $\delta g_{L}^{W q}=\delta g_{L}^{Z u} V_{\mathrm{CKM}}-V_{\mathrm{CKM}} \delta g_{L}^{Z d}$

$$
\begin{gathered}
\delta g_{L}^{W \ell}=c_{H \ell}^{\prime}+f(1 / 2,0)-f(-1 / 2,-1), \\
\delta g_{L}^{Z \nu}=\frac{1}{2} c_{H \ell}^{\prime}-\frac{1}{2} c_{H \ell}+f(1 / 2,0), \\
\delta g_{L}^{Z e}=-\frac{1}{2} c_{H \ell}^{\prime}-\frac{1}{2} c_{H \ell}+f(-1 / 2,-1), \\
\delta g_{R}^{Z e}=-\frac{1}{2} c_{H e}+f(0,-1), \\
\delta g_{L}^{W q}=c_{H q}^{\prime} V_{\mathrm{CKM}}+f(1 / 2,2 / 3)-f(-1 / 2,-1 / 3), \\
\delta g_{R}^{W q}=-\frac{1}{2} c_{H u d}, \\
\delta g_{L}^{Z u}= \\
\frac{1}{2} c_{H q}^{\prime}-\frac{1}{2} c_{H q}+f(1 / 2,2 / 3), \\
\delta g_{L}^{Z d}= \\
-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q}^{\prime} V_{\mathrm{CKM}}-\frac{1}{2} V_{\mathrm{CKM}}^{\dagger} c_{H q} V_{\mathrm{CKM}}+f(-1 / 2,-1 / 3), \\
\delta g_{R}^{Z u}= \\
-\frac{1}{2} c_{H u}+f(0,2 / 3), \\
\delta g_{R}^{Z d}= \\
-\frac{1}{2} c_{H d}+f(0,-1 / 3), \\
\delta\left(T^{3}, Q\right)=I_{3}\left[-Q c_{W B} \frac{g^{2} g^{\prime 2}}{g^{2}-g^{\prime 2}}+\left(c_{T}-\delta v\right)\left(T^{3}+Q \frac{g^{\prime 2}}{g^{2}-g^{\prime 2}}\right)\right] \\
\delta m=\frac{\delta v=\left(\left[c_{H \ell}^{\prime}\right]_{11}+\left[c_{H \ell}^{\prime}\right]_{22}\right) / 2-\left[c_{\ell \ell}\right]_{1221} / 4}{g^{2}-g^{\prime 2}\left[-g^{2} g^{2} c_{W B}+g^{2} c_{T}-g^{\prime 2} \delta v\right]}
\end{gathered}
$$

- Observation: vertex correction obtained from Warsaw basis are not independent. Corrections to W vertices are determined by corrections to Z vertices
- D=6 EFT with linearly realized $S U(3) \times S U(2) \times U(1)$ enforces relations between Higgs couplings to gauge bosons (otherwise, more parameters)
- Corrections to Higgs Yukawa couplings to fermions are also unconstrained by EWPT
- Apart from $\delta \mathrm{m}$ and $\delta \mathrm{g}$, additional $6+3 \times 3 \times 3$ CP-even and $4+3 \times 3 \times 3$ CP-odd parameters to parametrize LHC Higgs physics

$$
\begin{aligned}
\mathcal{L}_{\mathrm{hvv}} & =\frac{h}{v}\left[2\left(1+\delta c_{w}\right) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\left(1+\delta c_{z}\right) m_{Z}^{2} Z_{\mu} Z_{\mu}\right. \\
& +c_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}+\tilde{c}_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} \tilde{W}_{\mu \nu}^{-}+c_{w \square g_{L}^{2}}\left(W_{\mu}^{-} \partial_{\nu} W_{\mu \nu}^{+}+\text {h.c. }\right) \\
& +c_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+c_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} A_{\mu \nu}+c_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} A_{\mu \nu}+c_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} Z_{\mu \nu} \\
& +c_{z \square} g_{L}^{2} Z_{\mu} \partial_{\nu} Z_{\mu \nu}+c_{\gamma \square g_{L} g_{Y} Z_{\mu} \partial_{\nu} A_{\mu \nu}} \\
& \left.+\tilde{c}_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}+\tilde{c}_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} \tilde{z}_{\mu \nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta c_{w}=\delta c_{z}+4 \delta m \stackrel{\text { relative correction to } \mathrm{W} \text { mass }}{c_{w w}}=c_{z z}+2 s_{\theta}^{2} c_{z \gamma}+s_{\theta}^{4} c_{\gamma \gamma}, \\
& \tilde{c}_{w w}=\tilde{c}_{z z}+2 s_{\theta}^{2} \tilde{c}_{z \gamma}+s_{\theta}^{4} \tilde{c}_{\gamma \gamma}, \\
& c_{w \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[g_{L}^{2} c_{z \square}+g_{Y}^{2} c_{z z}-e^{2} s_{\theta}^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) s_{\theta}^{2} c_{z \gamma}\right], \\
& c_{\gamma \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[2 g_{L}^{2} c_{z \square}+\left(g_{L}^{2}+g_{Y}^{2}\right) c_{z z}-e^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) c_{z \gamma}\right]
\end{aligned}
$$

LHCHXSWG-INT-2015-001

$$
\mathcal{L}_{\mathrm{hff}}=-\frac{h}{v} \sum_{f=u, d, e} m_{f} f^{c}\left(I+\delta y_{f} e^{i \phi_{f}}\right) f+\text { h.c. }
$$

Higgs couplings to matter

- Corrections to Higgs couplings in phenomenological effective Lagrangian can be related by linear transformation to Wilson coefficients of any basis of $D=6$ operators
- Unexpected dependence of fermionic operators due to rescaling of SM couplings
- Corrections to Higgs and other SM couplings are $O\left(1 / \Lambda^{\wedge} 2\right)$ in EFT expansion. They can be used to define (perhaps more convenient) basis of $D=6$ operators

Gupta et al 1405.0181

Grządkowski et al. 1008.4884

Example:

from Warsaw Basis to Higgs couplings
for full dictionary and other bases

$$
\begin{aligned}
\delta c_{w} & =-c_{H}-c_{W B} \frac{4 g_{L}^{2} g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}+c_{T} \frac{4 g_{L}^{2}}{g_{L}^{2}-g_{Y}^{2}}-\frac{3 g_{L}^{2}+g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(2\left[c_{H \ell}^{\prime}\right]_{11}+2\left[c_{H \ell}^{\prime}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
\delta c_{z} & =-c_{H}-\frac{3}{4}\left(2\left[c_{H \ell}^{\prime}\right]_{11}+2\left[c_{H \ell}^{\prime}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}\right), \\
c_{\gamma \gamma} & =c_{W W}+c_{B B}-4 c_{W B}, \\
c_{z z} & =\frac{g_{L}^{4} c_{W W}+g_{Y}^{4} c_{B B}+4 g_{L}^{2} g_{Y}^{2} c_{W B}}{\left(g_{L}^{2}+g_{Y}^{2}\right)^{2}}, \\
c_{z \square} & =-\frac{2}{g_{L}^{2}}\left(c_{T}-\frac{2\left[c_{H \ell}^{\prime}\right]_{11}+2\left[c_{H \ell}^{\prime}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}}{4}\right), \\
c_{z \gamma} & =\frac{g_{L}^{2} c_{W W}-g_{Y}^{2} c_{B B}-2\left(g_{L}^{2}-g_{Y}^{2}\right) c_{W B}}{g_{L}^{2}+g_{Y}^{2}}, \\
c_{\gamma \square} & =\frac{4}{g_{L}^{2}-g_{Y}^{2}}\left(\frac{g_{L}^{2}+g_{Y}^{2}}{2} c_{W B}-c_{T}+\frac{2\left[c_{H \ell}^{\prime}\right]_{11}+2\left[c_{H \ell}^{\prime}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}}{4}\right), \\
c_{w w} & =c_{W W} \\
c_{w \square} & =\frac{2}{g_{L}^{2}-g_{Y}^{2}}\left(g_{Y}^{2} c_{W B}-c_{T}+\frac{2\left[c_{H \ell}^{\prime}\right]_{11}+2\left[c_{H \ell}^{\prime}\right]_{22}-\left[c_{\ell \ell}\right]_{1221}}{4}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{TGC}}^{\mathrm{SM}} & =i e\left[A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) A_{\nu}\right] \\
& +i g_{L} c_{\theta}\left[\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right]
\end{aligned}
$$

In EFT with $\mathrm{D}=6$ operators, new "anomalous" contributions to TGCs arise

$$
\begin{aligned}
\mathcal{L}_{\mathrm{tgc}}^{D=6} & =i e\left[\delta \kappa_{\gamma} A_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{\gamma} \tilde{A}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i g_{L} c_{\theta}\left[\delta g_{1, z}\left(W_{\mu \nu}^{+} W_{\mu}^{-}-W_{\mu \nu}^{-} W_{\mu}^{+}\right) Z_{\nu}+\delta \kappa_{z} Z_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}+\tilde{\kappa}_{z} \tilde{Z}_{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right] \\
& +i \frac{e}{m_{W}^{2}}\left[\lambda_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} A_{\rho \mu}+\tilde{\lambda}_{\gamma} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{A}_{\rho \mu}\right]+i \frac{g_{L} c_{\theta}}{m_{W}^{2}}\left[\lambda_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} Z_{\rho \mu}+\tilde{\lambda}_{z} W_{\mu \nu}^{+} W_{\nu \rho}^{-} \tilde{Z}_{\rho \mu}\right]
\end{aligned}
$$

These depend on previously introduced parameters describing Higgs couplings to electroweak gauge bosons, and on 2 new parameters

$$
\begin{array}{rlrl}
\delta g_{1, z} & =\frac{1}{2\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[c_{\gamma \gamma} e^{2} g_{Y}^{2}+c_{z \gamma}\left(g_{L}^{2}-g_{Y}^{2}\right) g_{Y}^{2}-c_{z z}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{Y}^{2}-c_{z \square}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{L}^{2}\right] \\
\delta \kappa_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(c_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+c_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-c_{z z}\right), & \delta \kappa_{z}=\delta g_{1, z}-t_{\theta}^{2} \delta \kappa_{\gamma} \\
\tilde{\kappa}_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(\tilde{c}_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+\tilde{c}_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-\tilde{c}_{z z}\right) & \lambda_{\gamma}=t_{\theta}^{2} \tilde{\kappa}_{\gamma} \\
\tilde{\lambda}_{\gamma}=\tilde{\lambda}_{z}
\end{array}
$$

Higgs Basis

- Connection between operators and observables a bit obscured in Warsaw or SILH basis. Also, in Warsaw basis EW precision constraínts look complicated.
- Higgs basis proposed by LHCHXSWG2 uses subset of couplings in phenomenological effective Lagrangian to span $D=6$ basis. Effectively, a rotation of any other $D=6$ basis
- By construction, one isolates combination of parameters strongly constrained by precision tests, and also the ones affecting Higgs observables and not constrained severely by precision tests

2499 dimensional vector of Wilson coefficients

Linear transformation $\vec{c}_{\mathrm{D}=6}=\hat{T} \cdot \vec{c}_{\mathrm{HB}}$
2499×2499 dimensional transformation matrix

Midge Basis - parameters

Instead of wilson coefficients in some basis, use directly a subset of eigenstates couplings to parametrize the $D=6 E F T$ space Hings couplings to gauge bosons

CP even: $\begin{array}{llllllll}c_{z} & c_{z} \square & c_{z z} & c_{z \gamma} & c_{\gamma \gamma} & c_{g g}\end{array}$

CP odd : $\begin{gathered}\tilde{c}_{z z} \\ \tilde{c}_{z \gamma} \\ \tilde{c}_{\gamma \gamma}\end{gathered} \tilde{c}_{g g}$

Hings couplings to
CP even: $\delta y_{u} \delta y_{d} \delta y_{e}$
fermions
CP odd: $\phi_{u} \phi_{d} \phi_{e}$
Triple gauge couplings

Vertex and mass
Corrections

CP - even: $\quad \lambda_{z}$
 CP - odd : $\tilde{\lambda}_{z}$

δm,
$\delta g_{L}^{Z e}, \delta g_{R}^{Z e}, \delta g_{L}^{W \ell}$,
$\delta g_{L}^{Z u}, \delta g_{R}^{Z u}, \delta g_{L}^{Z d}, \delta g_{R}^{Z d}, \delta g_{R}^{W q}$

For more details and the rest of the Lagrangian, see LHCHXSWG-INT-2015-001

In the resk of the kalk I will discuss constraines on the paramelers in the Higgs basis

Model-independent precision constraints

Analysis Assumptions

- Working at order $1 / \wedge^{\wedge} 2$ in EFT expansion. Taking into account corrections from $D=6$ operators, and neglecting $D=8$ and higher operators. (Only taking into account corrections to observables that are linear in Higgs basis parameters, that is to say, only interference terms between SM and new physics. Quadratic corrections are formally of order $1 / \wedge^{\wedge} 4$, much as $\mathrm{D}=8$ operators that are neglected.)
- Working at tree-level in EFT parameters (SM predictions taken at NLO or NNLO, but only interference of tree-level BSM corrections with tree-level SM amplitude taken into account)
- Allowing all dimension-6 operators to be present simultaneously with arbitrary coefficients (within EFT validity range). Constraints are obtained on all parameters affecting EWPT and Higgs at tree level, and correlations matrix is computed.
- Unless otherwise noted, dimension-6 operators are allowed with arbitrary flavor structure
- Goal: give you full likelihood in $D=6$ space, that can be reused for any 1503.07782 specific model predicting any particular patter of $D=6$ operators

Constraints

on Vertex Corrections from Pole Observables

Pole observables (LEP-1 et al)

- For observables with Z or W bosons on-shell, interference between SM amplitudes and 4 -fermion operators is suppressed by Γ / m and can be neglected
- Observables can be expressed by Z and W partial widths, and then $D=6$ corrections can be expressed just by vertex corrections $\delta \mathrm{g}$
- I will not assume anything about δ g: they are allowed to be arbitrary, flavor dependent, and all can be simultaneously present

$$
\begin{aligned}
\mathcal{L}_{v f f} & =\frac{g_{L}}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u} \bar{\sigma}_{\mu}\left(V_{\mathrm{CKM}}+\delta g_{L}^{W q}\right) d+W_{\mu}^{+} u^{c} \sigma_{\mu} \delta g_{R}^{W q} \bar{d}^{c}+W_{\mu}^{+} \bar{\nu} \bar{\sigma}_{\mu}\left(I+\delta g_{L}^{W \ell}\right) e+\text { h.c. }\right) \\
& +\sqrt{g_{L}^{2}+g_{Y}^{2}} Z_{\mu}\left[\sum_{f \in u, d, e, \nu} \bar{f} \bar{\sigma}_{\mu}\left(T_{f}^{3}-s_{\theta}^{2} Q_{f}+\delta g_{L}^{Z f}\right) f+\sum_{f^{c} \in u^{c}, d^{c}, e^{c}} f^{c} \sigma_{\mu}\left(-s_{\theta}^{2} Q_{f}+\delta g_{R}^{Z f}\right) \bar{f}^{c}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Gamma\left(Z \rightarrow f_{J} \bar{f}_{J}\right)}{\Gamma(Z \rightarrow f \bar{f})_{\mathrm{SM}}} & =\left(\frac{T_{f}^{3}-s_{\theta}^{2} Q_{f}+\left[\delta g^{Z f}\right]_{J J}}{T_{f}^{3}-s_{\theta}^{2} Q_{f}}\right)^{2} \\
\frac{\Gamma\left(W \rightarrow f_{L, J} f_{L, J}^{\prime}\right)}{\Gamma\left(W \rightarrow f_{L} f_{L}^{\prime}\right)_{\mathrm{SM}}} & =\left(1+\left[\delta g_{L}^{W f}\right]_{J J}\right)^{2} \\
\frac{\Gamma\left(W \rightarrow q_{R, J} q_{R, J}^{\prime}\right)}{\Gamma\left(W \rightarrow q_{R} q_{R}^{\prime}\right)_{\mathrm{SM}}} & =\left(\left[\delta g_{R}^{W f}\right]_{J J}\right)^{2}
\end{aligned}
$$

Z-pole observables

Observable	Experimental value	Ref.	SM prediction	Definition
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	$[21]$	2.4950	$\sum_{f} \Gamma(Z \rightarrow f f)$
$\sigma_{\text {had }}[\mathrm{nb}]$	41.541 ± 0.037	$[21]$	41.484	$\frac{12 \pi}{m_{Z}^{2}} \frac{\Gamma\left(Z \rightarrow e^{+} e^{-}\right) \Gamma(Z \rightarrow q \bar{q})}{\Gamma_{Z}^{2}}$
R_{e}	20.804 ± 0.050	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow e^{+} e^{-}\right)}$
R_{μ}	20.785 ± 0.033	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}-\right.}$
R_{τ}	20.764 ± 0.045	$[21]$	20.743	$\frac{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
$A_{\mathrm{FB}}^{0, e}$	0.0145 ± 0.0025	$[21]$	0.0163	$\frac{3}{4} A_{e}^{2}$
$A_{\mathrm{FB}}^{0, \mu}$	0.0169 ± 0.0013	$[21]$	0.0163	$\frac{3}{4} A_{e} A_{\mu}$
$A_{\mathrm{FB}}^{0, \tau}$	0.0188 ± 0.0017	$[21]$	0.0163	$\frac{3}{4} A_{e} A_{\tau}$
R_{b}	0.21629 ± 0.00066	$[21]$	0.21578	$\frac{\Gamma(Z \rightarrow b b)}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
R_{c}	0.1721 ± 0.0030	$[21]$	0.17226	$\frac{\Gamma(Z \rightarrow c \bar{c})}{\sum_{q} \Gamma(Z \rightarrow q \bar{q})}$
A_{b}^{FB}	0.0992 ± 0.0016	$[21]$	0.1032	$\frac{3}{4} A_{e} A_{b}$
A_{c}^{FB}	0.0707 ± 0.0035	$[21]$	0.0738	$\frac{3}{4} A_{e} A_{c}$
A_{e}	0.1516 ± 0.0021	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow e_{L}^{+} e_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{R}^{+} e_{R}^{-}\right)}{\Gamma_{L}\left(Z \rightarrow e^{+} e^{-}\right)}$
A_{μ}	0.142 ± 0.015	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow \mu_{L}^{+} \mu_{L}^{-}\right)-\Gamma\left(Z \rightarrow e_{\mu}^{+} \mu_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}$
A_{τ}	0.136 ± 0.015	$[21]$	0.1472	$\frac{\Gamma\left(Z \rightarrow \tau_{L}^{+} \tau_{L}^{-}\right)-\Gamma\left(Z \rightarrow \tau_{R}^{+} \tau_{R}^{-}\right)}{\Gamma\left(Z \rightarrow \tau^{+} \tau^{-}\right)}$
A_{b}	0.923 ± 0.020	$[21]$	0.935	$\frac{\Gamma\left(Z \rightarrow b_{L} b_{L}\right)-\Gamma\left(Z \rightarrow b_{R} b_{R}\right)}{\Gamma(Z \rightarrow b \bar{b})}$
A_{c}	0.670 ± 0.027	$[21]$	0.668	$\frac{\Gamma\left(Z \rightarrow c_{L} \bar{c}_{L}\right)-\Gamma\left(Z \rightarrow c_{R} \bar{c}{ }_{R}\right)}{\Gamma(Z \rightarrow c \bar{c})}$
A_{s}	0.895 ± 0.091	$[22]$	0.935	$\frac{\Gamma\left(Z \rightarrow s_{L} \bar{s}_{L}\right)-\Gamma\left(Z \rightarrow s_{R} \overline{\left.s_{R}\right)}\right.}{\Gamma(Z \rightarrow s \bar{s})}$
$R_{u c}$	0.166 ± 0.009	$[23]$	0.1724	$\frac{\Gamma(Z \rightarrow u \bar{u})+\Gamma(Z \rightarrow q \bar{c})}{2 \sum_{q} \Gamma(Z \rightarrow q \bar{q})}$

Table 1: Z boson pole observables. The experimental errors of the observables between the double lines are correlated, which is taken into account in the fit. The results for $A_{e, \mu, \tau}$ listed above come from the combination of leptonic polarization and left-right asymmetry measurements at the SLD; we also include the results $A_{\tau}=0.1439 \pm 0.0043, A_{e}=0.1498 \pm 0.0049$ from tau polarization measurements at LEP-1 [21]. For the theoretical predictions we use the best fit SM values from GFitter [20]. We also include the model-independent measurement of on-shell Z boson couplings to light quarks in D0 [26].

W-pole observables

Observable	Experimental value	Ref.	SM prediction	Definition
$\operatorname{Br}(W \rightarrow e \nu)$	0.1071 ± 0.0016	[28]	0.1083	$\frac{\Gamma(W \rightarrow e \nu)}{\sum \Gamma\left(W \rightarrow f f^{\prime}\right)}$
$\operatorname{Br}(W \rightarrow \mu \nu)$	0.1063 ± 0.0015	[28]	0.1083	$\frac{f(W \rightarrow \mu \nu)}{\sum_{f} \Gamma\left(W \rightarrow f f^{\prime}\right)}$
$\operatorname{Br}(W \rightarrow \tau \nu)$	0.1138 ± 0.0021	[28]	0.1083	$\frac{\Gamma(W \rightarrow \tau)}{\sum_{f} \Gamma\left(W \rightarrow f f^{\prime}\right)}$
$R_{W c}$	0.49 ± 0.04	[23]	0.50	$\frac{\Gamma(W \rightarrow c s)}{\Gamma} \frac{\Gamma(W \rightarrow u d)+\Gamma(W \rightarrow c s)}{}$
R_{σ}	0.998 ± 0.041	[29]	1.000	$g_{L}^{W q_{3}} / g_{L, \mathrm{SM}}^{W q_{3}}$

Table 2: W-boson pole observables. Measurements of the 3 leptonic branching fractions are correlated. For the theoretical predictions of m_{W} and Γ_{W}, we use the best fit SM values from GFitter [20], while for the leptonic branching fractions we take the value quoted in [28]. simultaneously constrained in a completely model-independent way

$$
\begin{aligned}
& {\left[\delta g_{L}^{W e}\right]_{i i}=\left(\begin{array}{c}
-1.00 \pm 0.64 \\
-1.36 \pm 0.59 \\
1.95 \pm 0.79
\end{array}\right) \times 10^{-2},} \\
& {\left[\delta g_{L}^{Z e}\right]_{i i}=\left(\begin{array}{c}
-0.26 \pm 0.28 \\
0.1 \pm 1.1 \\
0.16 \pm 0.58
\end{array}\right) \times 10^{-3}, \quad\left[\delta g_{R}^{Z e}\right]_{i i}=\left(\begin{array}{c}
-0.37 \pm 0.27 \\
0.0 \pm 1.3 \\
0.39 \pm 0.62
\end{array}\right) \times 10^{-3},} \\
& {\left[\delta g_{L}^{Z u}\right]_{i i}=\left(\begin{array}{c}
-0.8 \pm 3.1 \\
-0.16 \pm 0.36 \\
-0.28 \pm 3.8
\end{array}\right) \times 10^{-2}, \quad\left[\delta g_{R}^{Z u}\right]_{i i}=\left(\begin{array}{c}
1.3 \pm 5.1 \\
-0.38 \pm 0.51 \\
\times
\end{array}\right) \times 10^{-2},} \\
& {\left[\delta g_{L}^{Z d}\right]_{i i}=\left(\begin{array}{c}
-1.0 \pm 4.4 \\
0.9 \pm 2.8 \\
0.33 \pm 0.16
\end{array}\right) \times 10^{-2}, \quad\left[\delta g_{R}^{Z d}\right]_{i i}=\left(\begin{array}{c}
2.9 \pm 16 \\
3.5 \pm 5.0 \\
2.30 \pm 0.82
\end{array}\right) \times 10^{-2} .}
\end{aligned}
$$

- Z coupling to charged leptons constrained at 0.1% level
- W couplings to leptons constrained at 1% level
- Some couplings to quarks (bottom, charm) also constrained at 1% level
- Some couplings very weakly constrained in a model-independent way, in particular Z couplings to light quarks (though their combination affecting *total* hadronic Zwidth is strongly constrained)
- Some off-diagonal vertex corrections can also be constrained

Pole constraints - correlations

- Full correlation matrix is also derived

- From that, one can reproduce full likelihood function as function of 21 parameters $\delta \mathrm{g}$ and $\delta \mathrm{m}$
- If dictionary from Higgs basis to other bases exists, results can be easily recast to another form

- Similarly, when mapping to $d=6$ basis from (fewer) parameters of particular BSM models is given, results can be easily recast as constraints on that model

Pole constraints - recast to Warsaw basis

Results

$$
\begin{gathered}
{\left[\hat{c}_{H \ell}^{\prime}\right]_{i i}=\left(\begin{array}{c}
-1.09 \pm 0.64 \\
-1.45 \pm 0.59 \\
1.87 \pm 0.79
\end{array}\right) \times 10^{-2}, \quad\left[\hat{c}_{H \ell}\right]_{i i}=\left(\begin{array}{c}
1.03 \pm 0.63 \\
1.32 \pm 0.62 \\
-2.01 \pm 0.80
\end{array}\right) \times 10^{-2}} \\
{\left[\hat{c}_{H e}\right]_{i i}=\left(\begin{array}{c}
0.22 \pm 0.66 \\
-0.6 \pm 2.6 \\
-1.4 \pm 1.3
\end{array}\right) \times 10^{-3}, \quad c_{\ell \ell}^{\prime}=(-1.21 \pm 0.41) \times 10^{-2},} \\
{\left[\hat{c}_{H q}^{\prime}\right]_{i i}=\left(\begin{array}{c}
0.1 \pm 2.7 \\
-1.2 \pm 2.8 \\
-0.7 \pm 3.8
\end{array}\right) \times 10^{-2}, \quad\left[\hat{c}_{H q}\right]_{i i}=\left(\begin{array}{c}
1.8 \pm 7.0 \\
-0.8 \pm 2.9 \\
0.0 \pm 3.8
\end{array}\right) \times 10^{-2},} \\
{\left[\hat{c}_{H u}\right]_{i i}=\left(\begin{array}{c}
-3 \pm 10 \\
0.8 \pm 1.0 \\
\times
\end{array}\right) \times 10^{-2}, \quad\left[\hat{c}_{H d}\right]_{i i}=\left(\begin{array}{c}
-6 \pm 32 \\
-7 \pm 10 \\
-4.6 \pm 1.6
\end{array}\right) \times 10^{-2} .}
\end{gathered}
$$

$$
\left[\hat{c}_{H}^{\prime}\right]_{i j}=\left[c_{H L}^{\prime}\right]_{i j}+\left(g_{L}^{2} c_{W B}-\frac{g_{L}^{2}}{g_{Y}^{2}} c_{T}\right) \delta_{i j},
$$

$$
\left[\hat{c}_{H f}\right]_{i j}=\left[c_{H L}\right]_{i j}-c_{T} \delta_{i j},
$$

$$
\left[\hat{c}_{H} e_{i j}=\left[c_{H E}\right]_{i j}-2 c_{T} \delta_{i j},\right.
$$

$$
\left[\hat{c}_{H q}^{\prime}\right]_{i j}=\left[c_{H Q}^{\prime}\right]_{i j}+\left(g_{L}^{2} c_{W B}-\frac{g_{L}^{2}}{g_{Y}^{2}} c_{T}\right) \delta_{i j},
$$

$$
\left[\hat{c}_{H q}\right]_{i j}=\left[c_{H Q}\right]_{i j}+\frac{1}{3} c_{T} \delta_{i j},
$$

$$
\left[\hat{c}_{H u}\right]_{i j}=\left[c_{H U}\right]_{i j}+\frac{3}{3} c_{T} \delta_{i j},
$$

$$
\left[\hat{c}_{H d}\right]_{i j}=\left[c_{H D]_{i j}}-\frac{3}{3} c_{T} \delta_{i j} .\right.
$$

$f\left(T^{3}, Q\right)=\mathbb{I}\left[-Q c_{W B} \frac{g_{L}^{2} g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}+\left(c_{T}-\delta v\right)\left(T^{3}+Q \frac{g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}\right)\right]$

$$
\begin{aligned}
\delta g_{L}^{W q} & =c_{H q}^{\prime} V+f(1 / 2,2 / 3) V-f(-1 / 2,-1 / 3) V \\
\delta g_{R}^{W q} & =c_{H u d} \\
\delta g_{L}^{Z u} & =\frac{1}{2}\left(c_{H q}^{\prime}-c_{H q}\right)+f(1 / 2,2 / 3) \\
\delta g_{L}^{Z d} & =-\frac{1}{2} V^{\dagger}\left(c_{H q}^{\prime}+c_{H q}\right) V+f(-1 / 2,-1 / 3) \\
\delta g_{R}^{Z u} & =-\frac{1}{2} c_{H u}+f(0,2 / 3) \\
\delta g_{R}^{Z d} & =-\frac{1}{2} c_{H d}+f(0,-1 / 3) .
\end{aligned}
$$

Note in Warsaw basis only combinations of Wilson coefficients are constrained by pole observables

$$
\left[\delta g^{V f}\right]_{i j}=\delta g^{V f} \delta_{i j}
$$

- All leptonic couplings constrained at permille level, all quark couplings constrained at 1% level or better

Constraints

on 4-lepton operators
 from off-pole. observables

Off-Pole constraints on 4-lepton observables

AA,Mimouni
1511.07434

- There's 27 lepton-flavor conserving 4-lepton operators, 3 of which are complex, however not all are currently probed by experiment
- Using e+e- -> II scattering in LEP-2, low-energy neutrino scattering on electrons, W mass measurement, low-energy parity violating Moller scattering, and muon and tau decays
- All these observables depend also on leptonic vertex corrections, so combination with previous pole constraints is necessary

$$
\delta m=\frac{\delta g_{L}^{W e}+\delta g_{L}^{W \mu}}{2}-\frac{\left[c_{\ell \ell}\right]_{1221}}{4}
$$

$$
\begin{aligned}
{\left[O_{\ell \ell}\right]_{1111} } & =\left(\bar{\ell}_{1} \bar{\sigma}_{\mu} \ell_{1}\right)\left(\bar{\ell}_{1} \bar{\sigma}_{\mu} \ell_{1}\right), \\
{\left[O_{\ell e}\right]_{1111} } & =\left(\bar{\ell}_{1} \bar{\sigma}_{\mu} \ell_{1}\right)\left(e_{1}^{c} \sigma_{\mu} \bar{e}_{1}^{c}\right), \\
{\left[O_{e e}\right]_{1111} } & =\left(e_{1}^{c} \sigma_{\mu} \bar{e}_{1}^{c}\right)\left(e_{1}^{c} \sigma_{\mu} \bar{e}_{1}^{c}\right) .
\end{aligned}
$$

1-by-1

$$
\begin{aligned}
& {\left[c_{\ell \ell}\right]_{1111}=(4.0 \pm 1.6) \times 10^{-3}} \\
& {\left[c_{\ell e}\right]_{1111}=(1.7 \pm 1.5) \times 10^{-3}} \\
& {\left[c_{e e}\right]_{1111}=(4.0 \pm 1.7) \times 10^{-3}}
\end{aligned}
$$

LEP Averaged $d \sigma / d \cos \theta\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$

Simultaneous

$$
\begin{aligned}
& {\left[c_{e \ell}\right]_{1111}=-0.35 \pm 0.39} \\
& {\left[c_{\ell \ell}\right]_{1111}=(-3.7 \pm 2.7) \times 10^{-3}} \\
& \left.c_{e e}\right]_{1111}=0.37 \pm 0.40
\end{aligned}
$$

One needs other observables to break degeneracy

Off-Pole constraints on 4-lepton observables

$\left(\begin{array}{c}\delta g_{L}^{W e} \\ \delta g_{L}^{W \mu} \\ \delta g_{L}^{W \tau} \\ \delta g_{L}^{Z e} \\ \delta g_{L}^{Z \mu} \\ \delta g_{L}^{Z \tau} \\ \delta g_{R}^{Z e} \\ \delta g_{R}^{Z \mu} \\ \delta g_{R}^{Z \tau} \\ {\left[c_{\ell \ell}\right]_{1111}} \\ {\left[c_{\ell e}\right]_{1111}} \\ {\left[c_{e e}\right]_{1111}} \\ {\left[c_{\ell \ell}\right]_{1221}} \\ {\left[c_{\ell \ell}\right]_{1122}} \\ {\left[c_{\ell e}\right]_{1122}} \\ {\left[c_{\ell e}\right]_{2211}} \\ {\left[c_{e e}\right]_{1122}} \\ {\left[c_{\ell \ell}\right]_{1331}} \\ {\left[c_{\ell \ell}\right]_{1133}} \\ {\left[c_{\ell e}\right]_{1133}+\left[c_{\ell e}\right]_{3311}} \\ {\left[c_{e e}\right]_{1133}} \\ {\left[c_{\ell \ell}\right]_{2332}}\end{array}\right)=\left(\begin{array}{c}-1.00 \pm 0.64 \\ -1.36 \pm 0.59 \\ 1.95 \pm 0.79 \\ -0.027 \pm 0.028 \\ 0.01 \pm 0.11 \\ 0.016 \pm 0.058 \\ -0.037 \pm 0.027 \\ 0.00 \pm 0.13 \\ 0.039 \pm 0.062 \\ 0.99 \pm 0.39 \\ -0.23 \pm 0.22 \\ 0.23 \pm 0.39 \\ -4.8 \pm 1.6 \\ 2.0 \pm 2.3 \\ 0.9 \pm 2.3 \\ -0.8 \pm 2.2 \\ 2.8 \pm 2.8 \\ 1.5 \pm 1.3 \\ 140 \pm 170 \\ -0.55 \pm 0.64 \\ -150 \pm 180 \\ 3.0 \pm 2.3\end{array}\right) \times 10^{-2}$,

- Full correlation matrix also calculated
- Typical constraints at 1% level
- Flat directions for electron-tau operators: no additional observables to break LEP-2 degeneracy

Off-Pole constraints on 4-lepton observables

Four-lepton operators: one by one

-0.02	-0.01	0	0.01	0.02	$\Lambda / g_{*}[\mathrm{TeV}]$

One-by-one constraints are stronger, especially for electron-muon operators. Experiment probes scales suppressing 4 -fermion operators up to 5 TeV
0.0001 ± 0.0045 -0.004 ± 0.014 -0.0003 ± 0.0044 -0.0021 ± 0.0031 -0.0008 ± 0.003 -0.0008 ± 0.0041 -0.0046 ± 0.006 -0.0046 ± 0.006 0.0009 ± 0.0044 0.019 ± 0.018 -0.19 ± 0.15

Pole constraints - universal theories

Oblique corrections: $\delta \mathcal{M}\left(V_{1, \mu} \rightarrow V_{2, \nu}\right)=\eta_{\mu \mu}\left(\delta \Pi_{V_{1}, V_{2}}^{(0)}+\delta \Pi_{V_{1}, V_{2}}^{(2)} p^{2}+\delta \Pi_{V_{1}, v_{2}}^{(4)} p^{4}+\ldots\right)+p_{\mu \mu \nu}(\ldots)$

$$
\begin{aligned}
& \alpha S=-4 \frac{g_{L} g_{Y}}{g_{L}^{2}+g_{Y}^{2}} \delta \Pi_{3 B}^{(2)} \\
& \alpha T=\frac{\delta \Pi_{11}^{(0)}-\delta \Pi_{33}^{(0)}}{m_{W}^{2}} \\
& \alpha U=\frac{4 g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}\left(\delta \Pi_{11}^{(2)}-\delta \Pi_{33}^{(2)}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha V & =m_{W}^{2}\left(\delta \Pi_{11}^{(4)}-\delta \Pi_{33}^{(4)}\right) \\
\alpha W & =-m_{W}^{2} \delta \Pi_{33}^{(4)} \\
\alpha X & =-m_{W}^{2} \delta \Pi_{3 B}^{(4)} \\
\alpha Y & =-m_{W}^{2} \delta \Pi_{B B}^{(4)}
\end{aligned}
$$

Peskin Takeuchi
pre-arxiv
Barbieri et al
hep-ph/0405040
Wells Zhang 1510.08462

Equivalent to restricted form of flavor-diagonal vertex corrections, 4-fermion operators and W-mass corrections:

$$
\begin{aligned}
{\left[\delta g^{Z f}\right]_{i j} } & =\delta_{i j} \alpha\left\{T_{f}^{3} \frac{T-W-\frac{g_{Y}^{2}}{g_{L}^{2}} Y}{2}+Q_{f} \frac{2 g_{Y}^{2} T-\left(g_{L}^{2}+g_{Y}^{2}\right) S+2 g_{Y}^{2} W+\frac{2 g_{Y}^{2}\left(2 g_{L}^{2}-g_{Y}^{2}\right)}{g_{L}^{2}} Y}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\right\} \\
\delta m & =\frac{\alpha}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[2 g_{L}^{2} T-\left(g_{L}^{2}+g_{Y}^{2}\right) S+2 g_{Y}^{2} W+2 g_{Y}^{2} Y\right]
\end{aligned}
$$

$$
\left[c_{\ell \ell}\right]_{I I J J}=\alpha\left[W-\frac{g_{Y}^{2}}{g_{L}^{2}}\right] \quad\left[c_{\ell \ell \ell}\right]_{I J J I}=-2 \alpha W, \quad I<J
$$

$$
\left[c_{e \ell}\right]_{I I I I}=-\alpha\left[W+\frac{g_{Y}^{2}}{g_{L}^{2}} Y\right]
$$

$$
\left[c_{\ell e}\right]_{I I J J}=-\frac{2 g_{Y}^{2}}{g_{L}^{2}} \alpha Y \quad\left[c_{e e}\right]_{I I J J}=-\frac{4 g_{Y}^{2}}{g_{L}^{2}} \alpha Y
$$

Constraints from LHC Higgs data

Higgs signal strength observables

Channel	μ	Production	Ref.
$\gamma \gamma$	$1.16_{-0.18}^{+0.20}$	2 D	$[31]$
	$1.0_{-1.6}^{+1.6}$	Wh	$[34]$
	$0.1_{-0.1}^{+3.7}$	Zh	$[34]$
	$0.58_{-0.81}^{+0.93}$	Vh	$[33]$
	$1.30_{-1.75}^{+2.62} \& 2.7_{-1.7}^{+2.4}$	tth	$[33,34]$
$Z \gamma$	$2.7_{-4.3}^{+4.5} \&_{-0.2_{-4.9}^{+4.9}}$	total	$[34,35]$
$Z Z^{*}$	$1.31_{-0.14}^{+0.27}$	2 D	$[31]$
$W W^{*}$	$1.11_{-0.17}^{+0.18}$	2 D	$[31]$
	$2.1_{-1.6}^{+1.9}$	Wh	$[36]$
	$5.1_{-3.1}^{+4.3}$	Zh	$[36]$
	$0.80_{-0.93}^{+1.09}$	Vh	$[33]$
$\tau \tau$	$1.12_{-0.23}^{+0.25}$	2 D	$[31]$
	$0.87_{-0.88}^{+1.00}$	Vh	$[33]$
$b b$	$1.11_{-0.61}^{+0.65}$	Wh	$[32]$
	$0.05_{-0.49}^{+0.52}$	Zh	$[32]$
	$0.89_{-0.44}^{+0.47}$	Vh	$[33]$
	$2.8_{-1.4}^{+1.6}$	VBF	$[37]$
	$1.5_{-1.1}^{+1.1} \& 1.2_{-1.5}^{+1.6}$	tth	$[38,39]$
$\mu \mu$	$-0.7_{-3.7}^{+3.7} \& 0.8_{-3.4}^{+3.5}$	total	$[34,40]$
multi- ℓ	$2.1_{-1.2}^{+1.4} \& 3.8_{-1.4}^{+1.4}$	tth	$[41,42]$

Including 2D likelihoods from

recent ATLAS+CMS combination

ATLAS-CONF-2015-044
CMS-PAS-HIG-15-002

- In Higgs basis, Higgs couplings to gauge bosons are described by 10 parameters
- These parameters are observables probed by multiple Higgs production (ggF, VBF, VH) and Higgs decay ($\mathrm{Y} Y, \mathrm{ZY}, \mathrm{VV}^{\wedge *} \rightarrow 4 \mathrm{f}$) processes
- Linearly realized $\operatorname{SU}(3) \times S U(2) \times U(1)$ with $D=6$ operators enforces relations between Higgs couplings to gauge bosons (otherwise, 5 more parameters)

$$
\begin{aligned}
\mathcal{L}_{\mathrm{hvv}} & =\frac{h}{v}\left[2\left(1+\delta c_{w}\right) m_{W}^{2} W_{\mu}^{+} W_{\mu}^{-}+\left(1+\delta c_{z}\right) m_{Z}^{2} Z_{\mu} Z_{\mu}\right. \\
& +c_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} W_{\mu \nu}^{-}+\tilde{c}_{w w} \frac{g_{L}^{2}}{2} W_{\mu \nu}^{+} \tilde{W}_{\mu \nu}^{-}+c_{w \square} \square g_{L}^{2}\left(W_{\mu}^{-} \partial_{\nu} W_{\mu \nu}^{+}+\text {h.c. }\right) \\
& +c_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} G_{\mu \nu}^{a}+c_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} A_{\mu \nu}+c_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} A_{\mu \nu}+c_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} Z_{\mu \nu} \\
& +c_{z \square} g_{L}^{2} Z_{\mu} \partial_{\nu} Z_{\mu \nu}+c_{\gamma \square g_{L} g_{Y} Z_{\mu} \partial_{\nu} A_{\mu \nu}} \\
& \left.+\tilde{c}_{g g} \frac{g_{s}^{2}}{4} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}+\tilde{c}_{\gamma \gamma} \frac{e^{2}}{4} A_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z \gamma} \frac{e g_{L}}{2 c_{\theta}} Z_{\mu \nu} \tilde{A}_{\mu \nu}+\tilde{c}_{z z} \frac{g_{L}^{2}}{4 c_{\theta}^{2}} Z_{\mu \nu} \tilde{Z}_{\mu \nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \delta c_{w}=\delta c_{z}+4 \delta m, \\
& c_{w w}=c_{z z}+2 s_{\theta}^{2} c_{z \gamma}+s_{\theta}^{4} c_{\gamma \gamma}, \\
& \tilde{c}_{w w}=\tilde{c}_{z z}+2 s_{\theta}^{2} \tilde{c}_{z \gamma}+s_{\theta}^{4} \tilde{c}_{\gamma \gamma}, \\
& c_{w \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[g_{L}^{2} c_{z \square}+g_{Y}^{2} c_{z z}-e^{2} s_{\theta}^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) s_{\theta}^{2} c_{z \gamma}\right], \\
& c_{\gamma \square}=\frac{1}{g_{L}^{2}-g_{Y}^{2}}\left[2 g_{L}^{2} c_{z \square}+\left(g_{L}^{2}+g_{Y}^{2}\right) c_{z z}-e^{2} c_{\gamma \gamma}-\left(g_{L}^{2}-g_{Y}^{2}\right) c_{z \gamma}\right]
\end{aligned}
$$

- In Higgs basis, Higgs couplings to fermions are described by 3 general complex 3×3 matrices
- Here I will assume MFV couplings, thus reducing number of parameters to 2×3
- Without that assumption, couplings to light fermions are unconstrained, leading to flat directions; their effect on other parameters is similar to adding additional invisible width

Other Higgs couplings to fermions (vertex-like, or dipole-like) are constrained to be small by precision observables and cannot affect LHC Higgs observables given the current level of precision

$$
\Delta \mathcal{L}_{\mathrm{hff}}^{D=6}=-\frac{h}{v} \sum_{f \in u, d, e} \delta y_{f} e^{i \phi_{f}} m_{f} f^{c} f+\text { h.c.. }
$$

- Higgs signal strength observables at linear level are only sensitive to CP even parameter (CP odd enter only quadratically and are ignored)
- Only couplings unconstrained by precision tests can be relevant at the LHC
- Thus, assuming MFV couplings to fermions, only 9 EFT parameter affect Higgs signal strength measured at LHC

$$
\frac{\sigma_{V B F}}{\sigma_{V B F}^{\mathrm{SM}}} \simeq 1+1.49 \delta c_{w}+0.51 \delta c_{z}-\left(\begin{array}{c}
1.08 \\
1.11 \\
1.23
\end{array}\right) c_{w \square}-0.10 c_{w w}-\left(\begin{array}{c}
0.35 \\
0.35 \\
0.40
\end{array}\right) c_{z \square}
$$

$$
\frac{\sigma_{g g h}}{\sigma_{g g h}^{\mathrm{SM}}} \simeq 1+237 c_{g g}+2.06 \delta y_{u}-0.06 \delta y_{d}
$$

$$
-0.04 c_{z z}-0.10 c_{\gamma \square}-0.02 c_{z \gamma}
$$

$$
\rightarrow 1+2 \delta c_{z}-2.25 c_{z \square}-0.83 c_{z z}+0.30 c_{z \gamma}+0.12 c_{\gamma \gamma}
$$

$$
\begin{aligned}
\frac{\sigma_{W h}}{\sigma_{W h}^{\mathrm{SM}}} & \simeq 1+2 \delta c_{w}+\left(\begin{array}{c}
6.39 \\
6.51 \\
6.96
\end{array}\right) c_{w \square}+\left(\begin{array}{l}
1.49 \\
1.49 \\
1.50
\end{array}\right) c_{w w} \\
& \rightarrow 1+2 \delta c_{z}+\left(\begin{array}{c}
9.26 \\
9.43 \\
10.08
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
4.35 \\
4.41 \\
4.63
\end{array}\right) c_{z z}-\left(\begin{array}{c}
0.81 \\
0.84 \\
0.93
\end{array}\right) c_{z \gamma}-\left(\begin{array}{l}
0.43 \\
0.44 \\
0.48
\end{array}\right) c_{\gamma \gamma} \\
\frac{\sigma_{Z h}}{\sigma_{Z h}^{\mathrm{SM}}} & \simeq 1+2 \delta c_{z}+\left(\begin{array}{l}
5.30 \\
5.40 \\
5.72
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
1.79 \\
1.80 \\
1.82
\end{array}\right) c_{z z}+\left(\begin{array}{c}
0.80 \\
0.82 \\
0.87
\end{array}\right) c_{\gamma \square}+\left(\begin{array}{l}
0.22 \\
0.22 \\
0.22
\end{array}\right) c_{z \gamma} \\
& \rightarrow 1+2 \delta c_{z}+\left(\begin{array}{c}
7.61 \\
7.77 \\
8.24
\end{array}\right) c_{z \square}+\left(\begin{array}{l}
3.31 \\
3.35 \\
3.47
\end{array}\right) c_{z z}-\left(\begin{array}{c}
0.58 \\
0.60 \\
0.65
\end{array}\right) c_{z \gamma}+\left(\begin{array}{l}
0.27 \\
0.28 \\
0.30
\end{array}\right) c_{\gamma \gamma}
\end{aligned}
$$

Decays to 2 fermions

$$
\frac{\Gamma_{c c}}{\Gamma_{c c}^{S M}} \simeq 1+2 \delta y_{u}, \quad \frac{\Gamma_{b b}}{\Gamma_{b b}^{S M}} \simeq 1+2 \delta y_{d}, \quad \frac{\Gamma_{\tau \tau}}{\Gamma_{\tau \tau}^{S M}} \simeq 1+2 \delta y_{e}
$$

Decays to 4 fermions

$$
\left.\begin{array}{c}
\frac{\Gamma_{2 \ell 2 \nu}}{\Gamma_{2 \ell 2 \nu}^{S M}} \simeq 1+2 \delta c_{w}+0.46 c_{w \square}-0.15 c_{w w} \\
\\
\rightarrow 1+2 \delta c_{z}+0.67 c_{z \square}+0.05 c_{z z}-0.17 c_{z \gamma}-0.05 c_{\gamma \gamma} . \tag{4.13}\\
\begin{array}{c}
\bar{\Gamma}_{4 \ell} \\
\overline{\bar{\Gamma}}_{4 \ell}^{S M}
\end{array} 1+2 \delta c_{z}+\binom{0.41}{0.39} c_{z \square \square}-\binom{0.15}{0.14} c_{z z}+\binom{0.07}{0.05} c_{z \gamma}-\binom{0.02}{0.02} c_{\gamma \square}+\binom{<0.01}{0.03} c_{\gamma \gamma} \\
4 e
\end{array}\right)
$$

Decays to 2 gauge bosons

$$
\frac{\Gamma_{V V}}{\Gamma_{V V}^{S M}} \simeq\left|1+\frac{\hat{c}_{v v}}{c_{v v}^{S M}}\right|^{2}, \quad v v \in\{g g, \gamma \gamma, z \gamma\},
$$

$$
\begin{aligned}
& \hat{c}_{\gamma \gamma}=c_{\gamma \gamma}, \quad c_{\gamma \gamma}^{\mathrm{SM}} \simeq-8.3 \times 10^{-2}, \\
& \hat{c}_{z \gamma}=c_{z \gamma}, \quad c_{z \gamma}^{\mathrm{SM}} \simeq-5.9 \times 10^{-2}
\end{aligned}
$$

Higgs observables in the Higgs basis

Signal strength

$$
\mu_{X ; Y}=\frac{\sigma(p p \rightarrow X)}{\sigma(p p \rightarrow X)_{\mathrm{SM}}} \frac{\Gamma(h \rightarrow Y)}{\Gamma(h \rightarrow Y)_{\mathrm{SM}}} \frac{\Gamma(h \rightarrow \text { all })_{\mathrm{SM}}}{\Gamma(h \rightarrow \text { all })} .
$$

In EFT, assuming no other degrees of freedom, so total width is just sum of partial width into SM particle no invisible width in this analysis

- One can express all measured signal strength in terms of the 9 EFT parameters
$\delta c_{z} \quad c_{z} \square \quad c_{z z} \quad c_{z \gamma} \quad c_{\gamma \gamma} \quad c_{g g} \quad \delta y_{u} \quad \delta y_{d} \quad \delta y_{e}$
- Using available LHC signal strength data one can obtain constraints on most of these parameters

	$\mathbf{L}\left(x_{0} \pm 1 \sigma\right)$
δc_{z}	-0.12 ± 0.20
$c_{z z}$	0.6 ± 1.9
$c_{z \square}$	-0.25 ± 0.83
$c_{\gamma \gamma}$	0.015 ± 0.029
$c_{z \gamma}$	0.01 ± 0.10
$c_{g g}$	-0.0056 ± 0.0028
δy_{u}	0.55 ± 0.30
δy_{d}	-0.42 ± 0.45
δy_{e}	-0.18 ± 0.36

AA

Flat direction
$c_{z z} \approx-2.3 c_{z \square}$
Needs more data
on differential distributions in $h \rightarrow 4 f$ decays

- Not all parameters yet constrained enough that EFT approach is valid
- Results sensitive to including corrections to Higgs observables quadratic in EFT parameters which are formally $O\left(1 / \wedge^{\wedge} 4\right)$. Thus, in general, results may be sensitive to including dimension- 8 operators

Combined Constraints

from
 LEP-2 WW and LHC Higgs

Previously

Corbett et al 1304.1151
Dumont et al 1304. 3369
Pomarol Riva 1308. 2803
Masso 1406.6377
Ellis et al 1410.7703

Now
AA, Gonzalez-Alonso, Greljo, Marzocca 1508.00581

Consistent EFT analysis at $0(1 / \wedge \wedge 2)$

TGC - Higgs Synergy

TGC

Linearly realized $\operatorname{SU}(3) \times S U(2) \times U(1)$ at $\mathrm{D}=6$ level enforces relations between TGC and Higgs couplings in the Higgs basis

$$
\begin{aligned}
\delta g_{1, z} & =\frac{1}{2\left(g_{L}^{2}-g_{Y}^{2}\right)}\left[c_{\gamma \gamma} e^{2} g_{Y}^{2}+c_{z \gamma}\left(g_{L}^{2}-g_{Y}^{2}\right) g^{\prime 2}-c_{z z}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{Y}^{2}-c_{z \square}\left(g_{L}^{2}+g_{Y}^{2}\right) g_{L}^{2}\right] \\
\delta \kappa_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(c_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+c_{z \gamma} g_{L}^{2}-g_{Y}^{2}\right. \\
g_{L}^{2}+g_{Y}^{2} & \left.c_{z z}\right), \\
\tilde{\kappa}_{\gamma} & =-\frac{g_{L}^{2}}{2}\left(\tilde{c}_{\gamma \gamma} \frac{e^{2}}{g_{L}^{2}+g_{Y}^{2}}+\tilde{c}_{z \gamma} \frac{g_{L}^{2}-g_{Y}^{2}}{g_{L}^{2}+g_{Y}^{2}}-\tilde{c}_{z z}\right),
\end{aligned}
$$

- In Higgs basis formalism, all but 2 TGCs are dependent couplings and can be expressed by Higgs couplings to gauge bosons
- Therefore constraints on $\delta g 1 z$ and $\delta k y$ imply constraints on Higgs couplings
- But for that, all TGCs have to be simultaneously constrained in multi-dimensional fit, and correlation matrix should be given
- Note that c_zy c_zz and c_zBox are difficult to access experimentally in Higgs physics
- Important to combine Higgs and TGC data!

Higgs constraints on EFT

$$
\left(\begin{array}{c}
\delta c_{z} \\
c_{z z} \\
c_{z \square} \\
c_{\gamma \gamma} \\
c_{z \gamma} \\
c_{g g} \\
\delta y_{u} \\
\delta y_{d} \\
\delta y_{e} \\
\lambda_{z}
\end{array}\right)=\left(\begin{array}{c}
-0.07 \pm 0.14 \\
0.65 \pm 0.42 \\
-0.29 \pm 0.21 \\
-0.005 \pm 0.014 \\
-0.005 \pm 0.095 \\
-0.0053 \pm 0.0027 \\
0.55 \pm 0.30 \\
-0.44 \pm 0.24 \\
-0.22 \pm 0.18 \\
-0.152 \pm 0.080
\end{array}\right)
$$

Correlation matrix

$\left(\begin{array}{cccccccccc}1 . & -0.07 & -0.23 & 0.4 & -0.05 & -0.05 & 0.03 & 0.56 & 0.49 & -0.24 \\ -0.07 & 1 . & -0.92 & 0.34 & 0.18 & 0 . & 0.02 & -0.3 & -0.38 & -0.85 \\ -0.23 & -0.92 & 1 . & -0.43 & -0.12 & 0.03 & 0 . & 0.21 & 0.21 & 0.94 \\ 0.4 & 0.34 & -0.43 & 1 . & 0.09 & 0.4 & -0.47 & -0.11 & -0.12 & -0.42 \\ -0.05 & 0.18 & -0.12 & 0.09 & 1 . & 0.01 & -0.01 & -0.1 & -0.13 & -0.12 \\ -0.05 & 0 . & 0.03 & 0.4 & 0.01 & 1 . & -0.89 & 0.18 & 0.06 & 0.03 \\ 0.03 & 0.02 & 0 . & -0.47 & -0.01 & -0.89 & 1 . & 0.1 & 0.04 & 0.01 \\ 0.56 & -0.3 & 0.21 & -0.11 & -0.1 & 0.18 & 0.1 & 1 . & 0.66 & 0.19 \\ 0.49 & -0.38 & 0.21 & -0.12 & -0.13 & 0.06 & 0.04 & 0.66 & 1 . & 0.18 \\ -0.24 & -0.85 & 0.94 & -0.42 & -0.12 & 0.03 & 0.01 & 0.19 & 0.18 & 1 .\end{array}\right)$

- Flat direction between $c_{2} z z$ and c_{2} zBox lifted to large extent by WW data!
- Much better constraints on some parameters.

Most parameters (marginally) within the EFT regime

- Lower sensitivity to the quadratic terms (though still not completely negligible, especially for $\delta c z$ and $\delta y d$)

- LHC Higgs and LEP-2 WW data by itself do not constrain TGCs robustly due to each suffering from 1 flat direction in space of 3 TGCs
- However, the flat directions are orthogonal and combined constraints lead to robust O(0.1) limits on aTGCs

$$
\begin{aligned}
\left(\begin{array}{c}
\delta g_{1, z} \\
\delta \kappa_{\gamma} \\
\lambda_{z}
\end{array}\right) & =\left(\begin{array}{c}
0.037 \pm 0.041 \\
0.133 \pm 0.087 \\
-0.152 \pm 0.080
\end{array}\right) \\
\rho & =\left(\begin{array}{ccc}
1 & 0.62 & -0.84 \\
0.62 & 1 & -0.85 \\
-0.84 & -0.85 & 1
\end{array}\right)
\end{aligned}
$$

Combined WW+Higgs: robustness

- Non-trivial constraints at linear ($1 / \wedge^{\wedge} 2$) level
- Quadratic $\left(1 / \wedge^{\wedge} 4\right)$ terms not completely negligible yet, but they do not change fit qualitatively

Combined WW+Higgs: robustness

- For VH production, quadratic $\left(1 / \wedge^{\wedge} 4\right)$ contributions are comparable to linear $\left(1 / \wedge^{\wedge} 2\right)$ ones
- They are numerically important but don't change fit significantly because they constrain similar direction in parameter space as linear ones
- Sensitivity to $1 / \wedge^{\wedge} 4$ terms greatly reduced if VH signal strength with cut $\mathrm{mVH}<400 \mathrm{GeV}$ was quoted

Take away

- There are strong constraints on certain combinations of dimension-6 operators from the pole observables measured at LEP-1 and other colliders. These can be conveniently presented as correlated constraints on vertex corrections and W mass corrections.
- Adding off-pole observables, one can also constrain 4-fermion operators
- Constraints are given as likelihood in space of $D=6$ parameters, without assuming anything about flavor structure of higher dimensional operators
- Assuming MFV, these constraints allow one to describe LO EFT deformations of single Higgs signal strength LHC observables by just 9 parameters
- There are non-trivial constraints on all of these 9 parameters from Higgs and WW data
- Synergy of TGC and Higgs coupling measurements is crucial for deriving meaningful model-independent bounds

