$B \rightarrow K^{\star} \mu \mu$ and other $b \rightarrow$ sle transitions: a theory status report

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS, Univ. Paris-Sud, Université Paris-Saclay 91405 Orsay, France

in collaboration with B. Capdevilla, L. Hofer, J. Matias, J. Virto SPP/CEA Saclay, June 12th 2016

What's all that fuss about P_{5}^{\prime} ?

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS, Univ. Paris-Sud, Université Paris-Saclay 91405 Orsay, France
in collaboration with B. Capdevilla, L. Hofer, J. Matias, J. Virto SPP/CEA Saclay, June 12th 2016

Outline

(1) A few ideas around flavour physics
(2) The observed anomalies in $b \rightarrow s \ell \ell$ decays
(3) The conclusions of a global analysis
(1) Assessing the nature of the anomalies
(c) More observables to conclude

A Swiss knife for particle physics

Particle physics

Central question of QFT-based particle physics

$$
\mathcal{L}=\text { ? }
$$

Particle physics

Central question of QFT-based particle physics

$$
\mathcal{L}=\text { ? }
$$

i.e. which degrees of freedom, symmetries, scales ?

SM best answer up to now, but

- neutrino masses
- dark matter
- dark energy
- baryon asymmetry of the universe
- hierarchy problem
$\Longrightarrow 3$ generations playing a particular role in the SM

Why flavour?

$$
\mathcal{L}_{S M}=\mathcal{L}_{\text {gauge }}\left(A_{a}, \Psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \Psi_{j}\right)
$$

Gauge part $\mathcal{L}_{\text {gauge }}\left(A_{a}, \Psi_{j}\right)$

- Highly symmetric (gauge symmetry, flavour symmetry)
- Well-tested experimentally (electroweak precision tests)
- Stable with respect to quantum corrections

Higgs part $\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \Psi_{j}\right)$

- Ad hoc potential
- Dynamics not fully tested
- Not stable w.r.t quantum corrections
- Origin of flavour structure of the Standard Model

Flavour structure: Quark masses and CKM matrix from diagonalisation of Yukawa couplings after EWSB

Flavour parameters and SM

Important, unexplained hierarchy among 10 of 19 params of $\mathrm{SM}_{m_{\nu}=0}$

- Mass (6 params, a lot of small ratios of scales)
- CP violation (4 params, strong hierarchy between generations)

With interesting phenomenological consequences

- Hierarchy of CP asymmetries according to generations
- Quantum sensitivity (via loops) to large range of scales within the Standard Model and beyond...
- GIM suppression of Flavour-Changing Neutral Currents

Flavour-Changing Neutral Currents

Forbidden in SM at tree level, and suppressed by GIM at one loop so good place for NP to show up (tree or loops)

Experimental and theoretical effort on interesting FCNC transitions

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales $\mathrm{BSM} \rightarrow \mathrm{SM}+1 / \Lambda_{N P}\left(\Lambda_{E W} / \Lambda_{N P}\right) \rightarrow \mathcal{H}_{\text {eff }}\left(m_{b} / \Lambda_{E W}\right) \rightarrow$ eff. theories $\left(\Lambda_{Q C D} / m_{b}\right)$

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM $\rightarrow \mathrm{SM}+1 / \Lambda_{N P}\left(\Lambda_{E W} / \Lambda_{N P}\right) \rightarrow \mathcal{H}_{\text {eff }}\left(m_{b} / \Lambda_{E W}\right) \rightarrow$ eff. theories $\left(\Lambda_{Q C D} / m_{b}\right)$
- Main theo problem from hadronisation of quarks into hadrons: description/parametrisation in terms of QCD quantities decay constants, form factors, bag parameters. . .
- Long-distance non-perturbative QCD: source of uncertainties lattice QCD simulations, effective theories...

Effective approaches

Fermi-like approach: separation of different scales
short distances (numerical coeffs) versus long dist (local operator)
(separation also valid for QCD corrections)

$$
V_{u d} V_{c b}^{*} \frac{G_{F}}{\sqrt{2}} \frac{m_{W}^{2}}{m_{W}^{2}-p_{W}^{2}} \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d \bar{b} \gamma^{\mu}\left(1-\gamma_{5}\right) c
$$

Effective approaches

Fermi-like approach: separation of different scales
short distances (numerical coeffs) versus long dist (local operator)
(separation also valid for QCD corrections)

Before/below SM, Fermi theory carry info on underlying (EW) physics

- G_{F} : scale of underlying physics
- \mathcal{O}_{j} : interaction with left-handed fermions, through charged spin 1
- Obviously not all info (gauge structure, $Z^{0} \ldots$),
but a good start if no new particle $(=W)$ already seen

Looking for interesting processes

Starting from the SM
(or one of its extensions)

$$
\begin{aligned}
\mathcal{H}^{\mathrm{eff}} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
\langle M| \mathcal{H}^{\mathrm{eff}}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
$$

Looking for interesting processes

Starting from the SM
 (or one of its extensions)
 $$
\begin{aligned} \mathcal{H}^{\text {eff }} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\ \langle M| \mathcal{H}^{\text {eff }}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle \end{aligned}
$$

Looking for interesting processes

Starting from the SM (or one of its extensions)

$$
\begin{aligned}
\mathcal{H}^{\text {eff }} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
\langle M| \mathcal{H}^{\text {ef }}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
$$

involving hadronic quantities such as form factors
selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors
\Longrightarrow observables with limited sensitivity to (ratio of form) factors

Looking for interesting processes

Starting from the SM (or one of its extensions)

$$
\begin{aligned}
\mathcal{H}^{\text {eff }} & =C K M \times \mathcal{C}_{i} \times \mathcal{O}_{i} \\
\langle M| \mathcal{H}^{\text {eff }}|B\rangle & =C K M \times \mathcal{C}_{i} \times\langle M| \mathcal{O}_{i}|B\rangle
\end{aligned}
$$

involving hadronic quantities such as form factors
selecting processes for accurate predictions:

- semileptonic decays (form factors, not more complicated objects)
- ratios of branching ratios with different leptons
- ratios of observables with similar dependence on form factors
\Longrightarrow observables with limited sensitivity to (ratio of form) factors
Two possible uses of effective approaches
- fixing \mathcal{C}_{i}, computing SM and comparing with the data
- determining short-distance \mathcal{C}_{i} from the data and compare with SM

B-meson form factors

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=(p-k)^{2}$

$$
\begin{aligned}
\langle V(k)| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right)|B(\epsilon, p)\rangle= & -i \epsilon_{\mu}\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)+i(p+k)_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{V}} \\
& +i q_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{2 m_{V}}{q^{2}} \tilde{A}_{0}\left(q^{2}\right)+\epsilon_{\mu \nu \rho \sigma} \epsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{V}} \\
\langle V(k)| \bar{s} \sigma_{\mu \nu} q^{\nu}\left(1+\gamma_{5}\right)|B(\epsilon, p)\rangle= & i \epsilon_{\mu \nu \rho \sigma \epsilon^{* \nu} p^{\rho} k^{\sigma} 2 T_{1}\left(q^{2}\right)+\epsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right) T_{2}\left(q^{2}\right)} \\
& -(p+k)_{\mu}\left(\epsilon^{*} \cdot q\right) \tilde{T}_{3}\left(q^{2}\right)+q_{\mu}\left(\epsilon^{*} \cdot q\right) T_{3}\left(q^{2}\right) \\
& \text { with } \tilde{A}_{0} \text { linear combination of } A_{0,1,2} \text { and } \tilde{T}_{3} \text { of } T_{2,3}
\end{aligned}
$$

Can these form factors be further simplified/factorised using $\Lambda \ll m_{B}$?

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by 7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

Large recoil of the meson

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory
[Charles et al., Beneke, Feldmann]
- in the limit $m_{b} \rightarrow \infty$, two soft form factors $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$
- corrections: $\boldsymbol{O}\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

The last step of factorisation

For illustration, take $B \rightarrow V$ transitions, described in general by
7 form factors: V (vector), $A_{0,1,2}$ (axial) and $T_{1,2,3}$ (tensor), depending on $q^{2}=\left(p_{B}-p_{V}\right)^{2}$

Large recoil of the meson

- Light-cone sum rules (light V, parton language)
- Soft Collinear Effective Theory
[Charles et al., Beneke, Feldmann]
- in the limit $m_{b} \rightarrow \infty$, two soft form factors $\xi_{\perp}\left(q^{2}\right)$ and $\xi_{\|}\left(q^{2}\right)$
- corrections: $O\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

Low recoil of the meson
$\left(E_{V} \sim \Lambda_{Q C D} \ll m_{B}\right)$

- Lattice QCD simulations (discretised QCD)
- Heavy Quark Effective Theory [Neubert, Grinstein, Piriol, Hiller, Bobeth, Van Dyk...]
- in the limit $m_{b} \rightarrow \infty$, three soft form factors $f_{\perp}\left(q^{2}\right), f_{\| \mid}\left(q^{2}\right), f_{0}\left(q^{2}\right)$
- corrections: $\boldsymbol{O}\left(\alpha_{s}\right)$ from hard gluons + nonperturbative $O\left(\Lambda / m_{B}\right)$

Radiative decays as seen by LHCb

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K \ell \ell$

- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K \ell \ell$

- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
- $R_{K}=\left.\frac{\operatorname{Br}(B \rightarrow K \mu \mu)}{\operatorname{Br}(B \rightarrow K e e)}\right|_{[1,6]}=$

$$
0.745_{-0.074}^{+0.090} \pm 0.036
$$

- equals to 1 in SM (universality of lepton coupling), 2.6σ dev
- would require NP coupling differently to μ and e

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
Zwicky, Gratrex, Hopfer, Becirevic, Sumensari, Zukanovic-Funchal ...]
- Transversity amplitudes in terms of 7 form factors $A_{0,1,2}, V, T_{1,2,3}$
- Relations between form factors in limit $m_{B} \rightarrow \infty$, either when K^{*} very soft or very energetic (low/large-recoil)

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*}(\rightarrow K \pi) \mu \mu(1)
$$

Rich kinematics

- differential decay rate in terms of 12 angular coeffs $J_{i}\left(q^{2}\right)$

$$
\text { with } q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}
$$

- interferences between 8 transversity amplitudes for $B \rightarrow K^{*}(\rightarrow K \pi) V^{*}(\rightarrow \ell)$
[Ali, Hiller, Matias, Krüger, Mescia, SDG, Virto, Hofer, Bobeth, van Dyck, Buras, Altmanshoffer, Straub, Bharucha,
- Transversity amplitudes in terms of 7 form factors $A_{0,1,2}, V, T_{1,2,3}$
- Relations between form factors in limit $m_{B} \rightarrow \infty$,
either when K^{*} very soft or very energetic (low/large-recoil)
- Build ratios of J_{i} where form factors cancel in these limits (corrections by hard gluons $O\left(\alpha_{s}\right)$, power corrs $O\left(\Lambda / m_{B}\right)$)
- Optimised observables P_{i} with reduced hadronic uncertainties

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(2)$

- Very large K^{*}-recoil $\left(4 m_{\ell}^{2}<q^{2}<1 \mathrm{GeV}^{2}\right)$
γ almost real
- Large K^{*}-recoil $\left(q^{2}<9 \mathrm{GeV}^{2}\right) \quad$ energetic $K^{*}\left(E_{K^{*}} \gg \Lambda_{Q C D}\right)$ LCSR, SCET, QCD factorisation
- Charmonium region $\left(q^{2}=m_{\psi, \psi^{\prime} \ldots}^{2}\right.$ between 9 and $\left.14 \mathrm{GeV}^{2}\right)$
- Low K^{*}-recoil $\left(q^{2}>14 \mathrm{GeV}^{2}\right)$ soft $K^{*}\left(E_{K^{*}} \simeq \Lambda_{Q C D}\right)$
Lattice QCD, HQET, Operator Product Expansion

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu$ (3)

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ

$$
b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(3)
$$

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables, in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ - ... confirmed by Belle last month

$b \rightarrow s \ell^{+} \ell^{-}: B \rightarrow K^{*} \mu \mu(3)$

- Optimised observables P_{i} with reduced hadronic uncertainties at large recoil
[Matias, Mescia, Virto, SDG, Ramon, Hurth, Hofer]
- Measured at LHCb with $1 \mathrm{fb}^{-1}$ (2013) and $3 \mathrm{fb}^{-1}$ (2015)
- Discrepancies for some (but not all) observables,
in particular two bins for P_{5}^{\prime} deviating from SM by 2.8σ and 3.0σ
- ... confirmed by Belle last month
- Also deviations in $B R\left(B \rightarrow K^{*} \mu \mu\right)$ and $B R\left(B_{s} \rightarrow \phi \mu \mu\right)$ at low recoil

A more global viewpoint

$b \rightarrow s \mu \mu$ effective hamiltonian

$$
b \rightarrow \boldsymbol{s} \gamma\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

$b \rightarrow s \mu \mu$ effective hamiltonian

$$
b \rightarrow s \gamma\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

$b \rightarrow s \mu \mu$ effective hamiltonian

$b \rightarrow s \mu \mu$ effective hamiltonian

$b \rightarrow s \mu \mu$ effective hamiltonian

- $\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z]$
$\mathcal{C}_{7}^{S M}=-0.29, \mathcal{C}_{9}^{S M}=4.1, \mathcal{C}_{10}^{S M}=-4.3 @ \mu_{b}=m_{b}$

$b \rightarrow s \mu \mu$ effective hamiltonian

- $\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow \boldsymbol{s} \mu \mu$ via $Z]$
$\mathcal{C}_{7}^{S M}=-0.29, \mathcal{C}_{9}^{S M}=4.1, \mathcal{C}_{10}^{S M}=-4.3 @ \mu_{b}=m_{b}$

NP changes short-distance \mathcal{C}_{i} for SM or new long-distance ops \mathcal{O}_{i}

- Chirally flipped ($W \rightarrow W_{R}$)
- (Pseudo)scalar $\left(W \rightarrow H^{+}\right)$
- Tensor operators $(\gamma \rightarrow T)$
$\mathcal{O}_{7} \rightarrow \mathcal{O}_{7^{\prime}} \propto \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b$
$\mathcal{O}_{9}, \mathcal{O}_{10} \rightarrow \mathcal{O}_{S} \propto \bar{s}\left(1+\gamma_{5}\right) b \bar{\ell} \ell, \mathcal{O}_{P}$
$\mathcal{O}_{9} \rightarrow \mathcal{O}_{T} \propto \bar{s} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell$

Global analysis of $b \rightarrow s \mu \mu$ anomalies

Global analysis needed

- eff Hamiltonian adapted for a global model-independent analysis
- identify universal short-distance contributions
- cross-checks to confirm estimates of hadronic uncertainties
[SDG, Hofer, Matias, Virto]

Global analysis of $b \rightarrow s \mu \mu$ anomalies

Global analysis needed

- eff Hamiltonian adapted for a global model-independent analysis
- identify universal short-distance contributions
- cross-checks to confirm estimates of hadronic uncertainties
[SDG, Hofer, Matias, Virto]
96 observables in total (LHCb for exclusive, no CP-violating obs)
- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins +1 low-recoil bin)
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu(\mathrm{BR})$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right)$

Global analysis of $b \rightarrow s \mu \mu$ anomalies

Global analysis needed

- eff Hamiltonian adapted for a global model-independent analysis
- identify universal short-distance contributions
- cross-checks to confirm estimates of hadronic uncertainties
[SDG, Hofer, Matias, Virto]
96 observables in total (LHCb for exclusive, no CP-violating obs)
- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins +1 low-recoil bin)
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \mu \mu(\mathrm{BR})$
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR}), B \rightarrow K^{*} \gamma\left(A_{/}\right.$and $\left.S_{K^{*} \gamma}\right)$

Frequentist analysis

- $\mathcal{C}_{i}\left(\mu_{\text {ref }}\right)=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$, with $\mathcal{C}_{i}^{N P}$ assumed to be real
- Experimental correlation matrix provided
- Theoretical correlation matrix treating all theo errors (form factors...) as Gaussian random variables
- Various hypotheses "NP in some \mathcal{C}_{i} only" to be compared with SM

$b \rightarrow s \mu \mu:$ 1D hypotheses

- SM pull: $\chi^{2}\left(\mathcal{C}_{i}=0\right)-\chi_{\text {min }}^{2}$ (metrology, how far best fit from SM ?)
- p-value: $\chi_{\text {min }}^{2}$ and $N_{\text {dof }}$ (goodness of fit, how good is best fit?)

Coefficient	Best Fit Point	3σ	Pull ${ }_{\text {SM }}$	p -value (\%)
SM	-	-	-	16.0
$\mathcal{C}_{7}{ }^{\text {P }}$	-0.02	[-0.07, 0.03]	1.2	17.0
$\mathcal{C}_{9}{ }^{\text {P }}$	-1.09	[-1.67, -0.39]	4.5	63.0
$\mathcal{C}_{10}^{\text {NP }}$	0.56	[-0.12, 1.36]	2.5	25.0
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	[-0.74, 0.50]	1.1	16.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.68	[-1.22, -0.18]	4.2	56.0
$\mathcal{C}_{\mathcal{C}^{\prime}}{ }^{\mathrm{NP}}=\mathcal{C}_{10}{ }^{\mathrm{NP}}$,	-0.07	[-0.86, 0.68]	0.3	14.0
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=\mathcal{C}^{10} \mathcal{C}_{10^{\prime}}$	0.19	[-0.17, 0.55]	1.6	18.0
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9}^{\mathrm{NP}}$	-1.06	[-1.60, -0.40]	4.8	72.0
$\begin{gathered} \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}} \\ =-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}} \end{gathered}$	-0.69	[-1.37, -0.16]	4.1	53.0
$\begin{gathered} \mathcal{C}_{9}^{\mathrm{NP}^{9^{\prime}}}=-\mathcal{C}_{10}^{\mathrm{NP}^{10}} \\ =\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime \prime}}^{\mathrm{NP}} \end{gathered}$	-0.19	[-0.55, 0.15]	1.7	19.0

$b \rightarrow s \mu \mu:$ 2D hypotheses

- Pull for the SM point in each scenario from $\chi_{\text {min }}^{2}-\chi^{2}\left(\mathcal{C}_{i}=\mathcal{C}_{j}=0\right)$
- p-value from $\chi_{\text {min }}^{2}$ and $N_{\text {dof }}$
- several favoured scenarios, all with $\mathcal{C}_{9}^{N P}$, hard to single out one

Coefficient	Best Fit Point	Pull ${ }_{\text {SM }}$	p-value (\%)
SM	-	-	16.0
$\left(\mathcal{C}_{7}{ }^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}\right)$	$(-0.00,-1.07)$	4.1	61.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}\right)$	$(-1.08,0.33)$	4.3	67.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{7 \prime}^{\mathrm{NP}}\right)$	(-1.09, 0.02)	4.2	63.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}{ }^{\text {PP }}\right.$)	($-1.12,0.77$)	4.5	72.0
$\left(\mathcal{C}_{9}^{\text {NP }}, \mathcal{C}_{10^{\prime}}{ }^{\text {NP }}\right.$)	$(-1.17,-0.35)$	4.5	71.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	$(-1.15,0.34)$	4.7	75.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	($-1.06,0.06$)	4.4	70.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\text {NP }}\right.$)	($-0.64,-0.21$)	3.9	55.0
$\left(\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}\right)$	($-0.72,0.29$)	3.8	53.0

Some favoured scenarios (1)

- 1,2,3 σ regions
- Separately BRs and angular observables (+b $\rightarrow \boldsymbol{s} \gamma$ and inclusive)

Some favoured scenarios (2)

From the fit

- $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$
- $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}$
- $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$, $\mathcal{C}_{10}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$
$\begin{aligned} & \text { - } \mathcal{C}^{\mathrm{NP}}=-\mathcal{C}^{\mathrm{NP}}, \\ & \mathcal{C}_{10}^{\mathrm{NP}}==-\mathcal{C}_{10^{\prime}}^{\mathrm{NP}},\end{aligned}$

For model

 builders $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$ natural if $S U_{L}(2)$ symmetry used for all fermions
Cross-checks: Processes, low vs large recoil

- Different processes and different kinematic ranges
involving different theoretical tools
- $B \rightarrow K^{*} \mu \mu$ tighter than $B_{s} \rightarrow \phi \mu \mu$, tighter than $B \rightarrow K \mu \mu$
- Large recoil driving the discussion, but [1,6] bins already providing bulk of the effect, and low-recoil also in favour of $\mathcal{C}_{9}^{\mathrm{NP}}<0$
[Horgan et al., Bouchard et al., Altmannshofer and Straub]

$b \rightarrow s \mu \mu: 6 \mathrm{D}$ hypothesis

Letting all 6 Wilson coefficients vary (but only real)

Coefficient	1σ	2σ	3σ	Preference
$c^{\text {NP }}$	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]	no p
$\mathcal{C s}^{\text {NP }}$	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]	negative
$\mathcal{C l o b}_{10}^{\text {NP }}$	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]	positive
	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]	no pref
$c_{9,}^{\text {NP }}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]	positive
$\mathcal{C}_{10}^{\mathrm{NP}}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]	no pref

- \mathcal{C}_{9} is consistent with SM only above 3σ
- All others are consistent with zero at 1σ except for $\mathcal{C}_{9^{\prime}}$ at 2σ
- Pull ${ }_{\text {SM }}$ for the 6D fit is 3.6σ

From 2013 to 2016

Many improvements from experiment and theory, but. . .

[SDG, J. Matias, Virto] (2013)

[SDG, L. Hofer J. Matias, Virto] (2016)

A few recent analyses

Statistical approach	[SDG, Hofer Matias, Virto] Frequentist $\Delta \chi^{2}$	 Altmannshofer] Frequentist $\Delta \chi^{2}$	[Hurth, Mahmoudi, Neshatpour] Frequentist $\Delta \chi^{2} \& \chi^{2}$
Data	LHCb	Averages	LHCb
$B \rightarrow K^{*} \mu \mu$ data	P_{i}, Max likelihood	S_{i}, Max likelihood	S_{i}, Max I.\& moments
Form	B-meson LCSR	[Bharucha, Straub, Zwicky]	[Bharucha, Straub, Zwicky]
factors	[Khodjamirian et al.] + lattice QCD	fit light-meson LCSR + lattice QCD	
Theo approach	soft and full ff	full ff	soft and full ff
cc̄ large recoil	magnitude from [Khodjamirian et al.]	polynomial param	polynomial param
$\mathcal{C}_{9}^{\mu} 1 \mathrm{D} 1 \sigma$	[-1.29,-0.87]	[-1.54,-0.53]	[-0.27,-0.13]
pull ${ }_{\text {SM }}$	4.5 \%	3.7 \%	4.2σ
$\begin{gathered} \text { "good } \\ \text { scenarios" } \end{gathered}$	see before	$\begin{gathered} \mathcal{C}_{9}^{\mathbb{N P}}, \mathcal{C}_{9}^{\mathbb{N P}}=-\mathcal{C}_{10}^{\mathrm{NP}} \\ \left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime}}^{N P}\right),\left(\mathcal{C}_{9}, \mathcal{C}_{10}^{\mathrm{NP}}\right) \end{gathered}$	$\left(\mathcal{C}_{9}^{N P}, \mathcal{C}^{\text {NP }}{ }^{\text {NP }}\right),\left(\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{10}^{\mathrm{NP}}\right)$

\Longrightarrow Good overall agreement for the results of the three fits
$\mathcal{C}_{9}^{\text {New Physics }}$ or
$\mathcal{C}_{9}^{\text {Non Perturbative }}$
?

QCD or BSM ?

Anomalies can be a sign from many things

- unlucky statistical fluctuations

Take more data

- underestimated syst in the experimental analysis

Cross-checks from other experiments (Belle for P_{i})

- underestimated syst in the theoretical computation

Check and recheck the hypotheses

- something really new...

Add more observables, and interpret

Since exclusive decays play an important role in global fits necessary to cross-checks SM computations !

Amplitudes for exclusive decays

$$
A(B \rightarrow V \ell \ell)=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(A_{\mu}+T_{\mu}\right) \bar{u}_{\ell} \gamma^{\mu} v_{\ell}+B_{\mu} \gamma^{\mu} \gamma_{5} v_{\ell}\right]
$$

Amplitudes for exclusive decays

$$
A(B \rightarrow V \ell \ell)=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(A_{\mu}+T_{\mu}\right) \bar{u}_{\ell} \gamma^{\mu} v_{\ell}+B_{\mu} \gamma^{\mu} \gamma_{5} v_{\ell}\right]
$$

Form factors (local)

- Local contributions (more terms if NP in non-SM \mathcal{C}_{i}): form factors

$$
\begin{aligned}
& A_{\mu}=-\frac{2 m_{b} q^{\nu}}{q^{2}} \mathcal{C}_{7}\left\langle V_{\lambda}\right| \bar{s} \sigma_{\mu \nu} P_{R} b|B\rangle+\mathcal{C}_{9}\left\langle V_{\lambda}\right| \overline{\boldsymbol{s}} \gamma_{\mu} P_{L} b|B\rangle \\
& B_{\mu}=\mathcal{C}_{10}\left\langle V_{\lambda}\right| \overline{\boldsymbol{s}} \gamma_{\mu} P_{L} b|B\rangle \quad \lambda: K^{*} \text { helicity }
\end{aligned}
$$

Amplitudes for exclusive decays

$$
A(B \rightarrow V \ell \ell)=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left(A_{\mu}+T_{\mu}\right) \bar{u}_{\ell} \gamma^{\mu} v_{\ell}+B_{\mu} \gamma^{\mu} \gamma_{5} v_{\ell}\right]
$$

Form factors (local)

Charm loop (non-local)

- Local contributions (more terms if NP in non-SM \mathcal{C}_{i}): form factors

$$
\begin{aligned}
& A_{\mu}=-\frac{2 m_{b} q^{\nu}}{q^{2}} \mathcal{C}_{7}\left\langle V_{\lambda}\right| \bar{s} \sigma_{\mu \nu} P_{R} b|B\rangle+\mathcal{C}_{9}\left\langle V_{\lambda}\right| \overline{\boldsymbol{s}}_{\mu} P_{L} b|B\rangle \\
& B_{\mu}=\mathcal{C}_{10}\left\langle V_{\lambda}\right| \overline{\boldsymbol{s}} \gamma_{\mu} P_{L} b|B\rangle \quad \lambda: K^{*} \text { helicity }
\end{aligned}
$$

- Non-local contributions (charm loops): hadronic contribs.
T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^{2} and external states

Controversies: form factors and power corrs

Controversies: form factors and power corrs

Form factors (local)

Charm loop (non-local)

Controversies: form factors and power corrs

Uncertainties in form factors

- EFT with limit $m_{b} \rightarrow \infty$ useful to correlate form factors with $O\left(\Lambda / m_{b}\right)$ power corrections to this limit
- Corrections with large impact on optimised observables ?

Controversies: form factors and power corrs

Charm loop (non-local)

Uncertainties in form factors

- EFT with limit $m_{b} \rightarrow \infty$ useful to correlate form factors with $O\left(\Lambda / m_{b}\right)$ power corrections to this limit
- Corrections with large impact on optimised observables ?
- No, but accurate predictions require
- appropriate definition of form factors in $m_{b} \rightarrow \infty$ limit
- power corrections varied in agreement with info on form factors
- proper propagation of correlations induced among form factors

Cross-checks: form factors and power corrs

- Soft form factor approach ([khodiamirian et al.j $\mathrm{ff}+$ EFT correls) vs full ff (AAtmannshofer, Straub] with [Bharucha et al.] ff with correls and small errors)
- Increasing size of power corrections weakens role of large recoil, but low recoil enough to pull fit away from the SM

Controversies: charm loops

Form factors (local)

Charm loop (non-local)

Controversies: charm loops

Form factors (local)

Charm loop (non-local)
Uncertainties from charm loops
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias,Virto,Hofer,Capdevilla,SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^{2} - and hadron-dependent contrib with $\mathcal{O}_{7,9}$-like structures
- order of magnitude from [Khodjamirian et al.] used in [sDG, Hofer, Matias, virto]
- other global fits use q^{2}-dependent param. with $O\left(\Lambda / m_{b}\right)$ estimates

Controversies: charm loops

Form factors (local)

Charm loop (non-local)

Uncertainties from charm loops
[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Matias,Virto,Hofer,Capdevilla,SDG]

- Effect well-known (loop process, charmonium resonances)
- Yields q^{2} - and hadron-dependent contrib with $\mathcal{O}_{7,9}$-like structures
- order of magnitude from [Khodjamirian et al.] used in [SDG, Hofer, Matias, Virto]
- other global fits use q^{2}-dependent param. with $O\left(\Lambda / m_{b}\right)$ estimates
- Bayesian extraction from data performed by [ciuchini et al.]
- q^{2}-dependence present (as expected), apparently signficant
- actually not contradicting results of global fits, though less precise

Cross-checks: charm loops (1)

- Estimates of charm loops from [Khodjamirian, Mannel, Pivovarov, Wang] $\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right), i}$ for each $B \rightarrow K^{*} \mu \mu$ transversity
- Use it as an order of magnitude $\Delta \mathcal{C}_{9}^{B K\left({ }^{*}\right), i}=\delta \mathcal{C}_{9, \text { pert }}^{B K(*), i}+s_{i} \delta \mathcal{C}_{9, \text { non pert }}^{B K(*), i}$ ($s_{i}=1$ corresponds to [Khodjamirian, Mannel, Pivovarov, Wang])
- Ditto for $B_{s} \rightarrow \phi$, with all $6 s_{i}$ independent, and very small for $B \rightarrow K \mu \mu, c \bar{c}$
- Increasing the range allowed for s_{i} makes low-recoil and $B \rightarrow K \mu \mu$ dominate more and more
- Does not alter the pull, and does not explain a difference between $B R(B \rightarrow K e e)$ and $B R(B \rightarrow K \mu \mu)$

Cross-checks: charm loops (2)

- $\mathcal{C}_{9}^{\text {NP }}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$

Cross-checks: charm loops (2)

- $\mathcal{C}_{9}^{\text {NP }}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent

Cross-checks: charm loops (2)

- $\mathcal{C}_{9}^{\text {NP }}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent
- Mid, down: correlated shift in \mathcal{C}_{9} and other \mathcal{C}_{i} (never q^{2}-depend: are NP scenarios consistent ?)

Cross-checks: charm loops (2)

- $\mathcal{C}_{9}^{\text {NP }}$ bin by bin assuming NP in $\mathcal{C}_{9}^{\mathrm{NP}}, \mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ or $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$
- Up: Assuming shift in \mathcal{C}_{9} only tests need for hadronic contrib:
- NP in \mathcal{C}_{9} from short distances, q^{2}-independent
- Hadronic physics in \mathcal{C}_{9} is related to $c \bar{c}$ dynamics, (likely) q^{2}-dependent
- Mid, down: correlated shift in \mathcal{C}_{9} and other \mathcal{C}_{i} (never q^{2}-depend: are NP scenarios consistent ?)
- No indication of q^{2}-dependent contribution

Looking for more inputs

Lepton-flavour (non) universality

- Include LHCb $B R(B \rightarrow$ Kee $)$ and large-recoil obs for $B \rightarrow K^{*} e e$
- For several favoured scenarios, SM pull increases by $\sim 0.5 \sigma$ (but not $\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$ which does not explain R_{K})

$\mathcal{C}_{9 e}{ }^{\mathrm{NP}}, \mathcal{C}_{9 \mu}^{\mathrm{NP}}$

$$
\mathcal{C}_{9 e}^{\mathrm{NP}}=-\mathcal{C}_{10 e}^{\mathrm{NP}}, \mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10 \mu}^{\mathrm{NP}}
$$

- Favours violation of LFU, compatible with no NP in $b \rightarrow$ see

Anomaly patterns

		R_{K}	$\left\langle P_{5}^{\prime}\right\rangle_{[4,6],[6,8]}$	$B R\left(B_{s} \rightarrow \phi \mu \mu\right)$	low recoil $B R$	Best fit now
$\mathcal{C}_{9}^{\text {NP }}$	+					
$\mathcal{C}_{10}^{\text {NP }}$	+	\checkmark	\checkmark		\checkmark	\checkmark
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	+	-	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	+	\checkmark	\checkmark	\checkmark	\checkmark	X
			\checkmark		X	

- $\mathcal{C}_{9}^{\mathrm{NP}}<0$ consistent with all anomalies
- no consistent and global alternative from long-dist dynamics
- R_{K} (stat fluct, exp issues with evs μ)
- P_{5}^{\prime} ($c \bar{c}$ contrib, power corrections)
- $B R\left(B_{s} \rightarrow \phi \mu \mu\right)$ ($c \bar{c}$ contrib, form factors)
- low-recoil $B R(B \rightarrow M \mu \mu)$ (lattice, duality violation)
- lower sensitivity to other \mathcal{C}_{i} (cannot be mimicked by long distances), with \mathcal{C}_{10} most promising but no consistent picture yet

NP interpretations

SM explanations seem contrived

- hadronic effects ($B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation $\left(R_{K}\right)$
- bad luck (\mathcal{C}_{9} can accomodate all discrepancies by chance)

NP interpretations

SM explanations seem contrived

- hadronic effects ($B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$ at low and large recoils)
- statistical fluctuation $\left(R_{K}\right)$
- bad luck (\mathcal{C}_{9} can accomodate all discrepancies by chance)

NP models with new scale around TeV often trying to connect with $B \rightarrow D\left(^{*}\right) \ell \nu$ anomalies

- Z^{\prime} boson (larger gauge group, e..g, $S U_{C}(3) \otimes S U_{L}(3) \otimes U_{Y}(1)$)
- Partial compositeness (mixing between known and extra fermions transforming under $\left.S U_{C}(3) \otimes S U_{L}(2) \otimes S U_{R}(2) \otimes U_{Y}(1)\right)$
- Leptoquarks (coupling to a quark and a lepton, like (3,2,1/6))
- MSSM susy definitely not favoured ...

[Buras, De Fazio, Girrbach, Blanke, Altmannshofer, Straub, Crivellin, D'Ambrosio, Becirevic, Sumensari, Isidori, Greljo...]

Additional observables: $R^{\prime} \mathrm{s}$

	$R_{K}[1,6]$	$R_{K^{*}}[1.1,6]$		$R_{\phi}[1.1,6]$
SM	1.00 ± 0.01	1.00 ± 0.01	$[1.00 \pm 0.01]$	1.00 ± 0.01
$\mathcal{C}_{9}^{N P}=-1.11$	0.79 ± 0.01	0.87 ± 0.08	[0.84 ± 0.02]	0.84 ± 0.02
$\mathcal{C}_{9}^{\text {NP }}=-\mathcal{C}_{9}{ }^{\text {NP }}=-1.09$	1.00 ± 0.01	0.79 ± 0.14	[0.74 $\pm 0.04]$	0.74 ± 0.03
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{N P}=-0.69$	0.67 ± 0.01	0.71 ± 0.03	$[0.69 \pm 0.01]$	0.69 ± 0.01
$\mathcal{C}_{9}^{N P}=-1.15, \mathcal{C}_{9}{ }^{\text {NP }}=0.77$	0.91 ± 0.01	0.80 ± 0.12	[0.76 ± 0.03]	0.76 ± 0.03
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.16, \mathcal{C}_{10}^{\mathrm{NP}}=0.35$	0.71 ± 0.01	0.78 ± 0.07	[0.75 ± 0.02]	0.76 ± 0.01
$\mathcal{C}_{9}^{N P}=-1.23, \mathcal{C}_{10^{\prime}}^{N P}=-0.38$	0.87 ± 0.01	0.79 ± 0.11	[0.75 ± 0.02]	0.76 ± 0.02
$\left.\begin{array}{c} \mathcal{C}_{9}^{N P}=-\mathcal{C}_{9^{\prime}}^{N P}=-1.14 \\ \mathcal{C}_{10}^{N P}=-\mathcal{C}_{10^{\prime}}^{N P}=0.04 \end{array}\right\}$	1.00 ± 0.01	0.78 ± 0.13	[0.74 $\pm 0.04]$	0.74 ± 0.03
$\left.\begin{array}{c} \mathcal{C}_{9}^{N P}=-\mathcal{C}_{9}^{N P}=-1.17 \\ \mathcal{C}_{10}^{N P}=\mathcal{C}_{10^{\prime}}^{N P}=0.26 \end{array}\right\}$	0.88 ± 0.01	0.76 ± 0.12	[0.71 $\pm 0.04]$	0.71 ± 0.03

- $R_{M}=B R(B \rightarrow$ Mee $) / B R(B \rightarrow M \mu \mu)$ clean probes of NP ${ }_{[H i l l e r, ~ S c h m a l z] ~}$
- Predicted assuming NP only in $b \rightarrow s \mu \mu$
- $\mathcal{C}_{9}^{\text {NP }}=-\mathcal{C}_{10}^{\text {NP }}$ yields very low values of R 's, other intermediate
- [Bharucha, Straub, Zwicky] ff in brackets compared to our default set

Additional observables: Q_{i}, B_{i}, M

Expecting measurements of BR and angular coefficients for $B \rightarrow K^{*} e e$

- Null SM tests (up to m_{ℓ} effects): $Q_{i}=P_{i}^{\mu}-P_{i}^{e}, \quad B_{i}=\frac{J_{i}^{\mu}}{J_{i}^{e}}-1$
- J_{5} and $J_{6 s}$ with only a linear dependence on \mathcal{C}_{9}

$$
M=\left(J_{5}^{\mu}-J_{5}^{e}\right)\left(J_{6 s}^{\mu}-J_{6 s}^{e}\right) /\left(J_{6 s}^{\mu} J_{5}^{e}-J_{6 s}^{e} J_{5}^{\mu}\right)
$$

- cancellation of hadronic contribs in \mathcal{C}_{9} in some NP scenarios
- different sensitivity to NP scenarios compared to $R_{K} *$

$$
\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-1.1, \mathcal{C}_{i e}^{\mathrm{NP}}=0
$$

$$
\mathcal{C}_{9 \mu}^{\mathrm{NP}}=\mathcal{C}_{10 \mu}^{\mathrm{NP}}=-0.65, \mathcal{C}_{i e}^{\mathrm{NP}}=0
$$

Additional obs: time dependence in $B \rightarrow V \ell \ell$

- time-dependence in $B_{d} \rightarrow K^{*}\left(\rightarrow K_{s} \pi^{0}\right) \ell \ell$ or $B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \ell \ell$
- interference of transversity ampl. with mixing phase
- lifts part of the degeneracy in the angular coefficients
- two new optimised observables Q_{8}^{-}and Q_{9} with potential to disentangle various scenarios, but require flavour tagging
[SDG, Virto]

Outlook

$b \rightarrow s \ell \ell$

- Many observables, more or less sensitive to hadronic unc.
- Confirmation of LHCb results for $B \rightarrow K^{*} \mu \mu$, supporting $\mathcal{C}_{9}^{\mathrm{NP}}<0$ with large significance and room for NP in other Wilson coeffs
- Several discrepancies in $b \rightarrow s \mu \mu$ require more global viewpoint
- Global fit does not seem to favour hadronic explanations Where to go ?
- Improve measurements of q^{2}-dependence to check status of $\mathcal{C}_{i}^{\text {NP }}$
- Confirm R_{K} with other LFU violating observables
- Better estimate soft-gluon contributions and duality violation
- Provide lattice form factors over larger range (large recoil ?)
- Look for new observables: CP-violation, time-dependence, involving τ, LFUV and LFV observables...

A lot of (interesting) work on the way !

Flavor Physics and New Physics Searches

26-30 Sentember 2016, Fréus, France

Information and Registration on http://indico.in2p3.fr/e/FlavorNewPhys

UNIVERSITE

