Advances in Machine Learning tools in High Energy Physics

David Rousseau LAL-Orsay

rousseau@lal.in2p3.fr

SPP Seminar, Monday 9th May

Outline

- Basics
- ML software tools
- ML techniques
- ML in analysis
- ML in reconstruction/simulation
- Data challenges
- Wrapping up

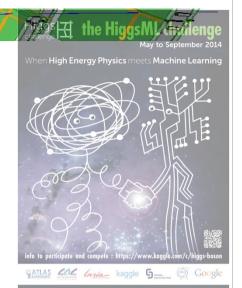
ML in HEP

- Use of Machine Learning (a.k.a Multi Variate Analysis as we used to call it) already at LEP somewhat (Neural Net), more at Tevatron (Trees)
 - At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
 - In most cases, Boosted Decision Tree with Root-TMVA
 - Meanwhile, in the outside world :

- "Artificial Intelligence" not a dirty word anymore!
- We've realised we're been left behind! Trying to catch up now...

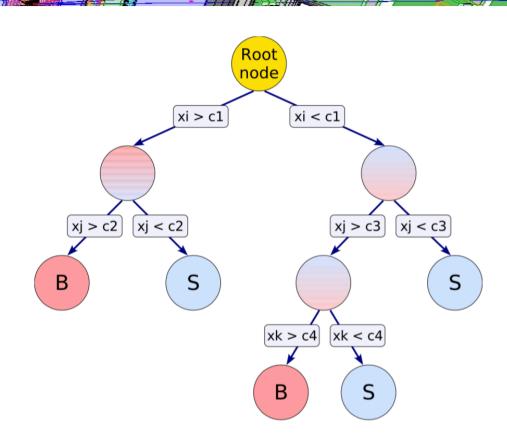
Multitude of HEP-ML events

- Started informally September 2015, gaining speed
- □ Moscou/Dubna ML workshop 7-9th Dec 2015
- ☐ Heavy Flavour Data Mining workshop, 18-21 Feb 2016
- Connecting The Dots, Vienna, 22-24 February 2016
- (internal) ATLAS Machine Learning workshop 29-31 March 2016 at CERN
- ☐ Hep Software Foundation workshop 2-4 May 2016 at Orsay, ML session
- TrackML Challenge, fall 2016



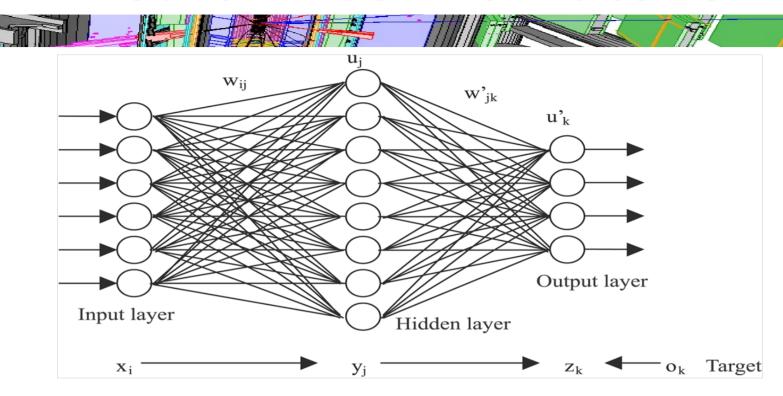
ML Basics

BDT in a nutshell



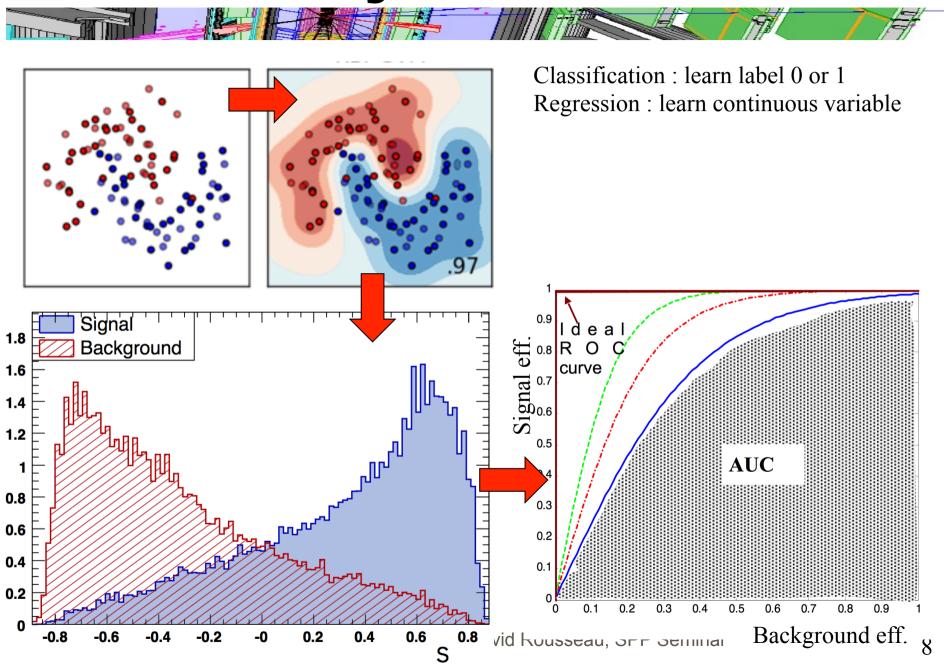
- ☐ Single tree (CART) < 1980
- □ AdaBoost 1997 : rerun increasing the weight of misclassified entries → boosted trees

Neural Net in a nutshell

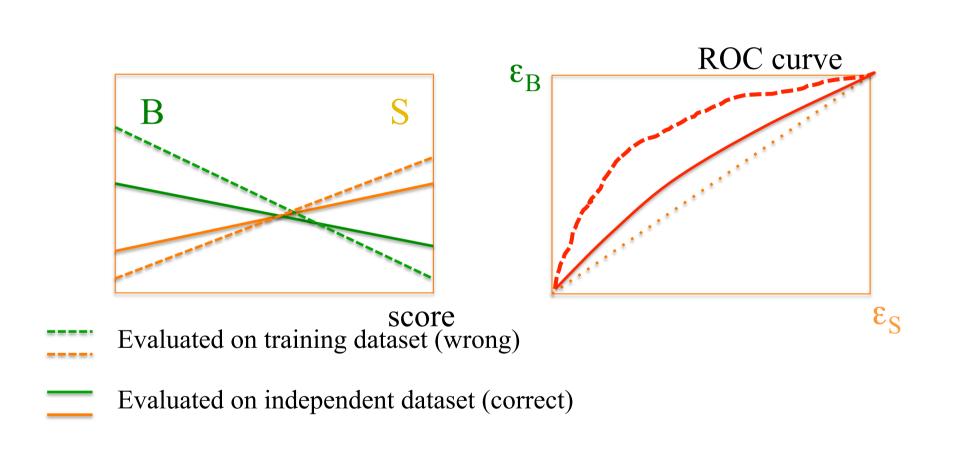


- Neural Net ~1950!
- But many many new tricks for learning, in particular if many layers (also ReLU instead of sigmoïd activation)
- Computing power (DNN training can take days even on GPU)

Any classifier

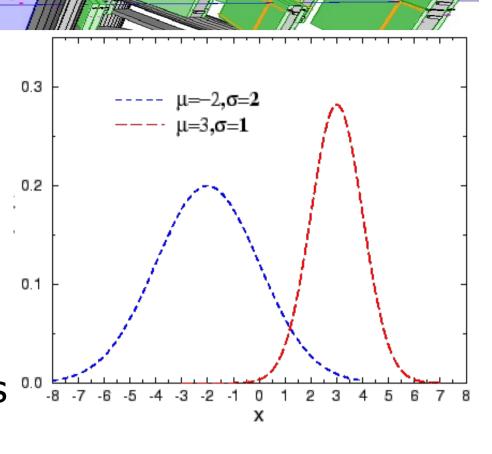


Overtraining



No miracle

- ML does not do miracles
- ☐ If underlying distributions are known, nothing beats Likelihood ratio! (often called "bayesian limit")
- ML starts to be interesting when there is no proper formalism of the pdf

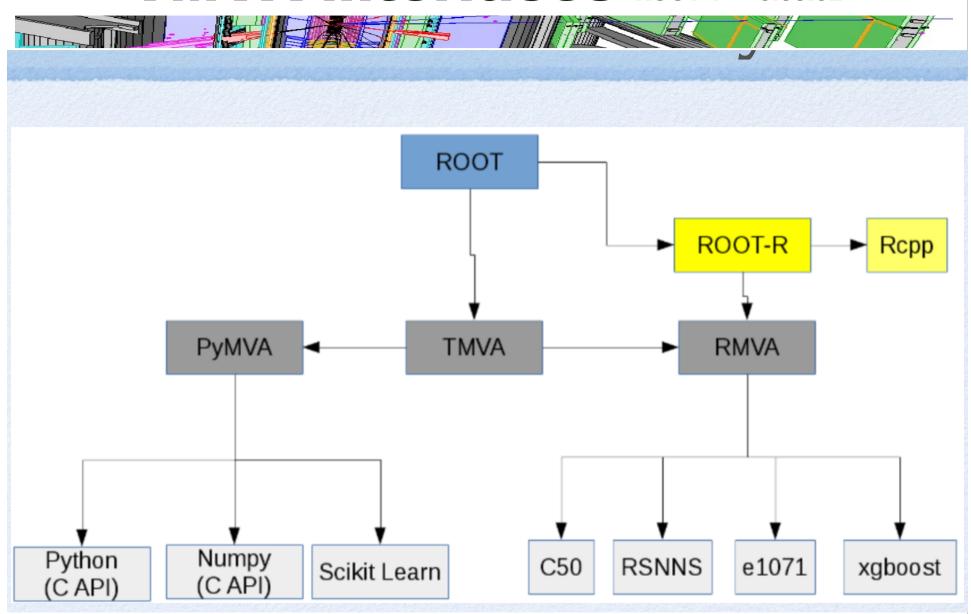


ML Tools

ML Tool: TMVA

- - Root-TMVA de-facto standard for ML in HEP
 - Has been instrumental into "democratising" ML at LHC (at least)
 - ☐ Well coupled with Root (which everyone uses)
 - But:
 - Has sterilized somewhat the creativity
 - Mostly frozen the last few years, left behind
 - However:
 - Rejuvenating effort since summer 2015
 - Revise structure for more flexibility
 - Improve algorithms
 - Interface to the outside world
 - □ See <u>talk Lorenzo Moneta</u> at Hep Software Fondation workshop at LAL last week

TMVA interfaces ROOT v>= 6.05.02



ML Tool: XGBoost

- □ XGBoost: Xtreme Gradient Boosting:
 https://github.com/dmlc/xgboost, arXiv:1603.02754
 - Written originally for HiggsML challenge
 - □ Used by many participants, including number 2
 - Meanwhile, used by many other participants in many other challenges
 - Open source, well documented, and supported
 - Best BDT on the market, performance and speed
 - Classification and regression

ML Tool: SciKit-learn

- ☐ SciKit-Learn: Machine Learning in python
 - Modern Jupyter interface (notebook à la Mathematica)
 - Open source (several core developers in Paris-Saclay)
 - ☐ Built on NumPy, SciPy, and matplotlib
 - (very fast, despite being python)
 - Install on any laptop with <u>Anaconda</u>
 - All the major ML algorithms (except deep learning)
 - Superb documentation
 - Quite different look and fill from Root-TMVA
 - Short demo (Navigator should be started)

ML platforms

- Training time can become prohibitive (days), especially Deep Learning, especially with large datasets
- With hyper-parameter optimisation, crossvalidation, number of trainings for a particular application large ~100
- Emergence of ML platforms :
 - Dedicated cluster (with GPUs)
 - Relevant software preinstalled (VM)
 - Possibility to load large datasets (GB to TB)

ML Techniques

Cross Validation

- Cross Validation (CV) are techniques to measure MVA performance independently of the training
- Goal is to build an optimisation curve (e.g. significance, ROC,...) with the smallest variance (despite lack of data), for a better optimisation of hyper parameters or choice of techniques
- Default TMVA CV (one fold CV):
 - o split sample in two halves A and B.
 - o train on A, test on B
- Two-fold CV (e.g. ATLAS Htautau analysis)
 - Split sample in two halves A and B
 - Train on A, test on B; train on B test A
 - →test statistics = total statistics →double test statistics wrt one fold CV (double training time of course)
- n-fold CV (very standard technique in ML)
 - Split sample in n e.g. 5 equal pieces A,B,C,D and E
 - o Train on ABCD, test on E;train on ABCE, test on D; etc...
 - o → same test statistics wrt two-fold CV, but larger training statistics 4/5 over ½ (larger training time as well)
 - bonus: variance of the samples an estimate of the statistical uncertainty
- Nested CV: if hyper-parameters tuned using CV, need an independent measurement of the final performance
- Technique being integrated in TMVAEP, David Rousseau, SPP Seminar

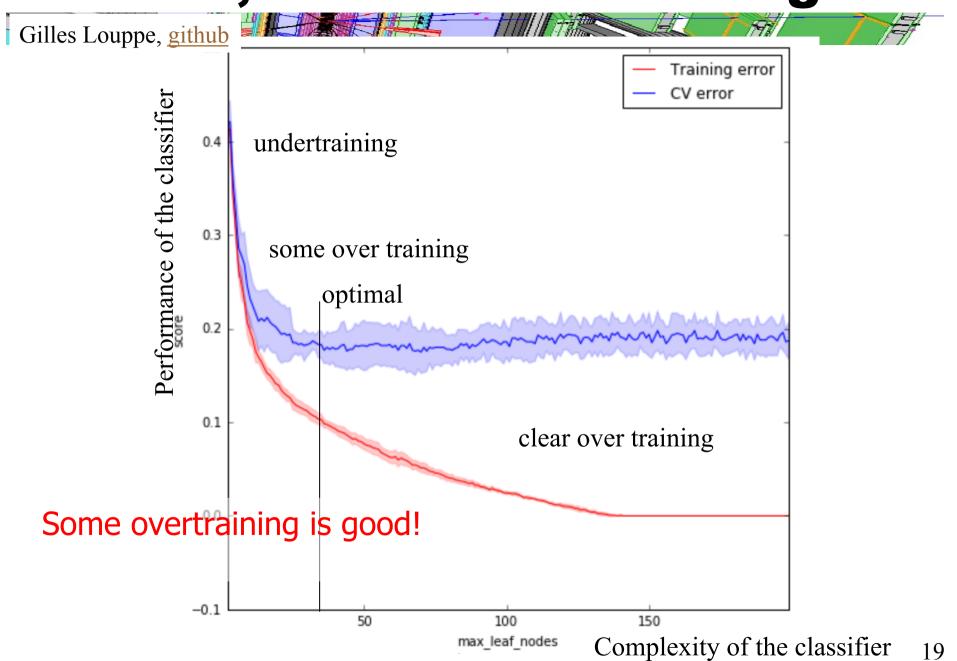
- Split the dataset into k randomly sampled independent subsets (folds).
- Train classifier with k-1 folds and test with remaining fold.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

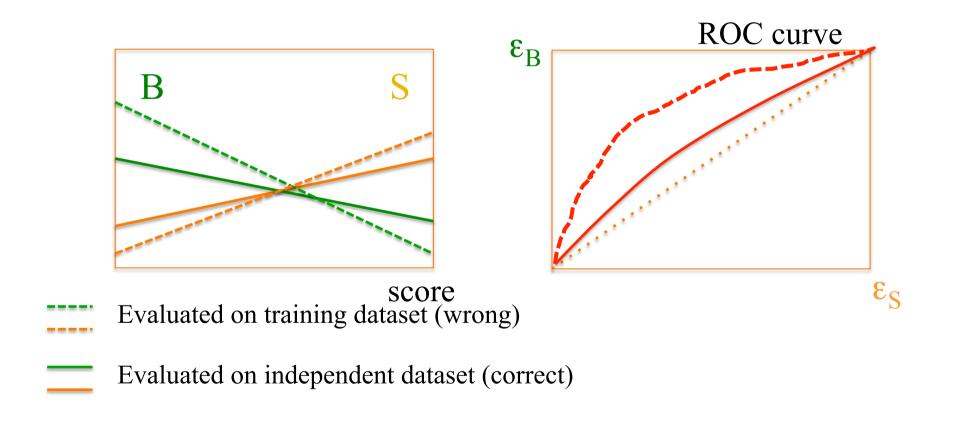
Repeat k times.

$$E = \frac{1}{k} \sum_{i=1}^{k} E_i.$$

CV, under/over training

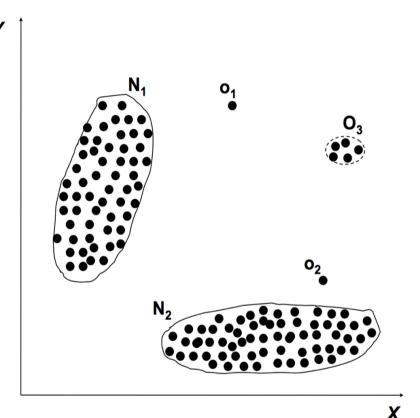


(reminder) Overtraining



Anomaly: point level

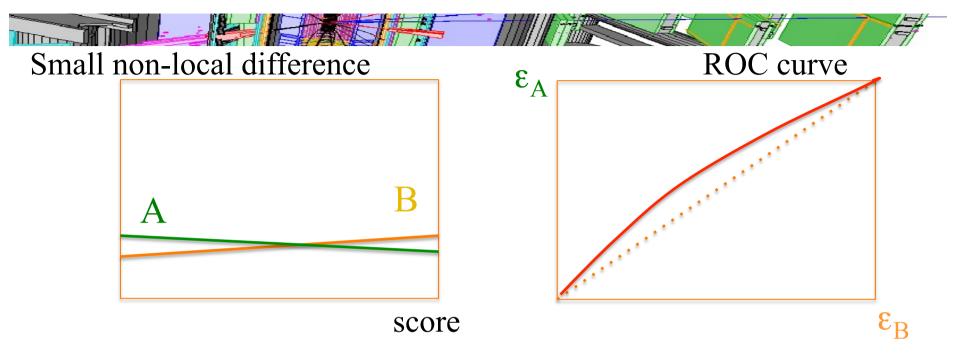
- Also called outlier detection
- ☐ Two approaches:
 - Give the full data, ask the algorithm to cluster and find the lone entries: o1, o2, O3



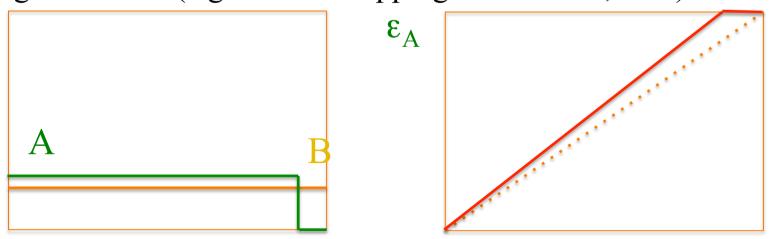
- We have a training "normal" data set with N1 and N2. Algorithm should then spot o1,o2, O3 as "abnormal" i.e. "unlike N1 and N2" (no a priori model for outliers)
- Application : detector malfunction, grid site malfunction, or even new physics discovery...

Anomaly: population level

- Also called collective anomalies
- □ Suppose you have two independent samples A and B, *supposedly* statistically identical. E.g. A and B could be:
 - MC prod 1, MC prod 2
 - MC generator 1, MC generator 2
 - Derivation V12, Derivation V13
 - G4 Release 20.X.Y, release 20.X.Z
 - Production at CERN, production at BNL
 - Data of yesterday, Data of today
- ☐ How to verify that A and B are indeed identical?
- Standard approach: overlay histograms of many carefully chosen variables, check for differences (e.g. KS test)
- ML approach: ask an artificial scientist, train your favorite classifier to distinguish A from B, histogram the score, check the difference (e.g. AUC or KS test)
 - →only one distribution to check



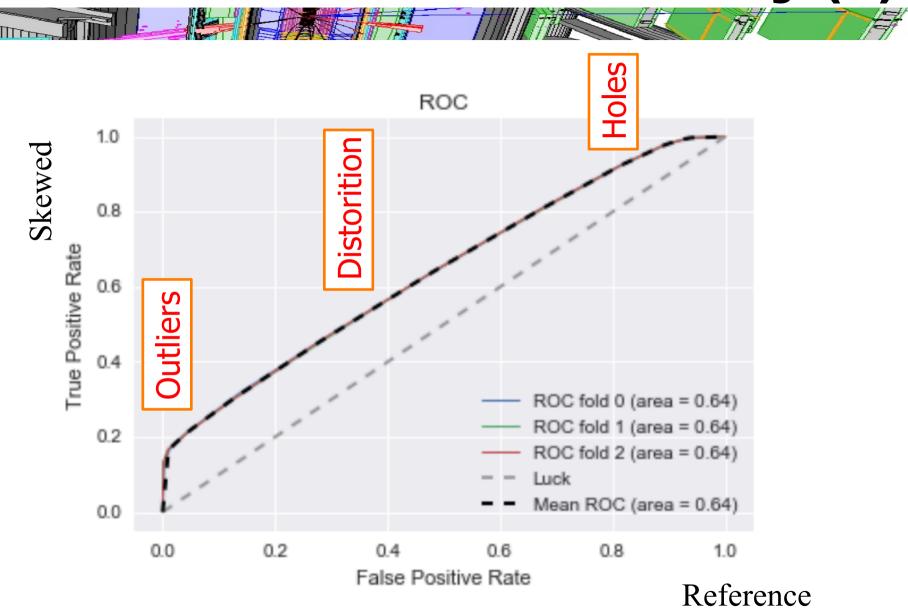
Local big difference (e.g. non overlapping distribution, hole)



HSF ML RAMP on anomaly

- RAMP: collaborative competition around a dataset and a figure of merit. Organised by CDS Paris Saclay with HEP people. See <u>agenda</u>.
- □ Dataset built from the Higgs Machine Learning challenge dataset (on CERN Open Data Portal)
 - Lepton, and tau hadron 3 momentum, MET: PRImary variables
 - DERived variables (computed from the above) from Htautau analysis
 - Jet variables dropped
- → reference dataset
- "Skewed" dataset built from the above, introducing small and big distortions:
 - Small scaling of Ptau
 - Holes in eta phi efficiency map of lepton and tau hadron
 - Outliers introduced, each with 5% probability
 - Eta tau set to large non possible values
 - P lepton scaled by factor 10
 - Missing ET + 50 GeV
 - Phi tau and phi lepton swapped → DERived variables inconsistent with PRImary one
- ☐ → skewed dataset

HSF ML RAMP on anomaly (2)



HSF RAMP (2)

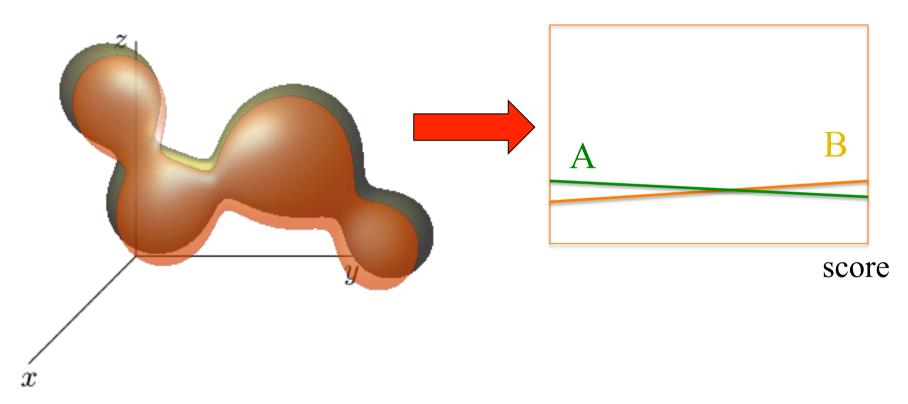
team	submission	accuracy
mcherti	adab2_mt1_calibrated	0.611
dhrou	adab2_mt1	0.611
kazeevn	GradientBoosting	0.596
glouppe	bags2	0.594
glouppe	boosting-duo	0.595
mcherti	adaboost2	0.594
glouppe	bags	0.593
mcherti	adaboost1	0.593
djabbz	beta tester	0.591
soobash	ExtraTreesClassifier	0.576
mcherti	extratrees1	0.562
dhrou	DRv0	0.553
calaf	starting_kit_paolo	0.526

Breakthrough : add new variable: $\Delta m_T = \sqrt{(2P_{lT}^*MET^*(1-\cos(\phi_l - \phi_{MET})))-m_T}$ Non zero for some outliers \rightarrow classifiers were unable to guess it

→ what functional form classifiers can learn?

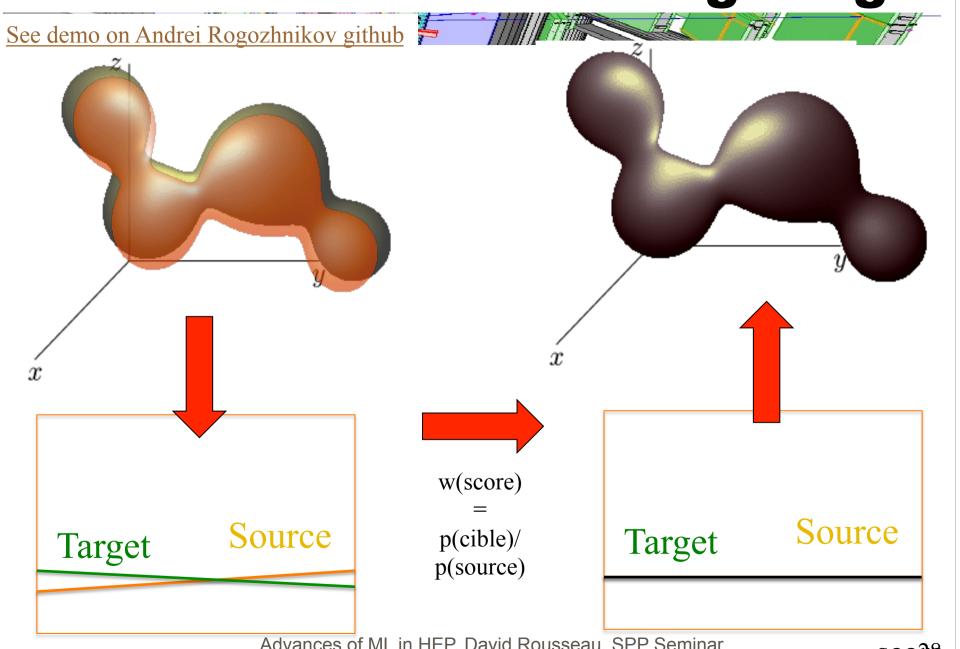
Classifier optimisation

What does a classifier do?



The classifier "projects" the two multidimensional "blobs" maximising the difference, without (ideally) any loss of information

Multidimension reweighting



Advances of ML in HEP, David Rousseau, SPP Seminar SCOTE

SCOP&

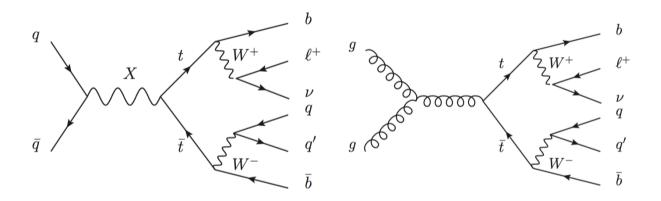
Multi dimensional reweighting (2)

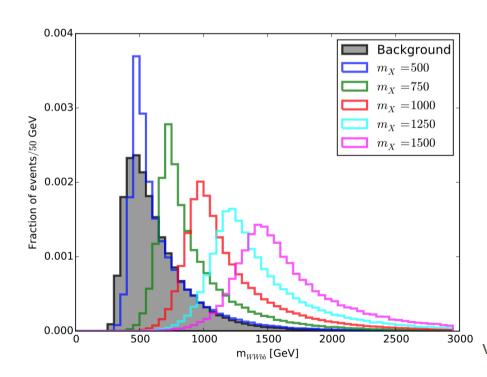
- Reweighting usually done one 1D projection, at best 2D, because of quick lack of statistics
- Reweighting the Source distribution on the score allows multidimensional reweighting without statistics problem
- ☐ Usual caveat still hold: Target support should be included in Source support, distributions should not be too different otherwise unmanageable very large or very small weights
- (Note: "reweighting" in HEP language <==> "importance sampling" in ML language)

ML in analysis

Parameterised learning

1601.07913 Baldi, Cranmer, Faucett, Sadowksi, Whiteson

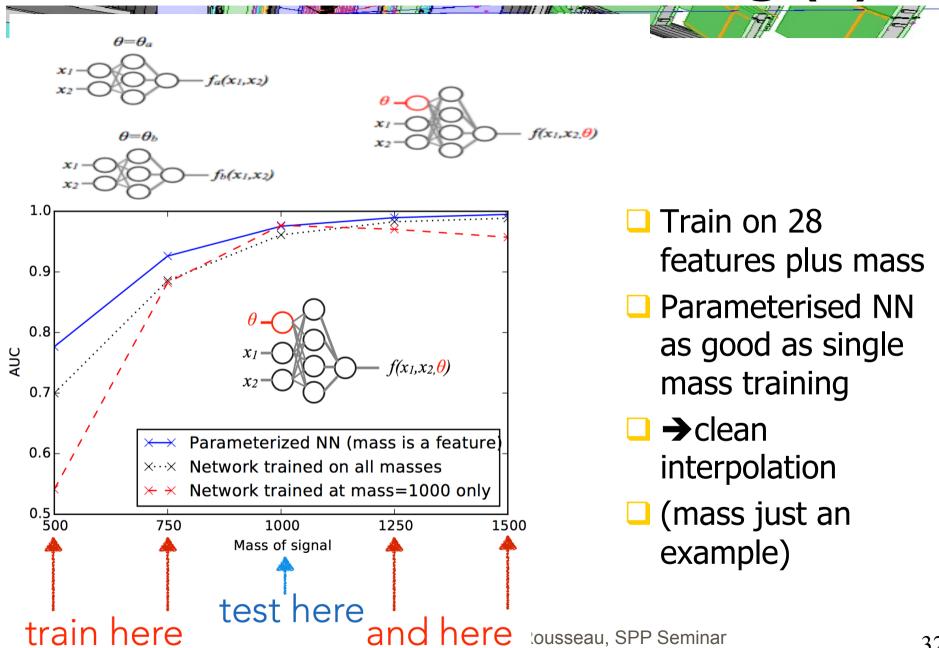




- Typical case: looking for a particle of unknown mass
- E.g. here tt decay

vid Rousseau, SPP Seminar

Parameterised learning (2)



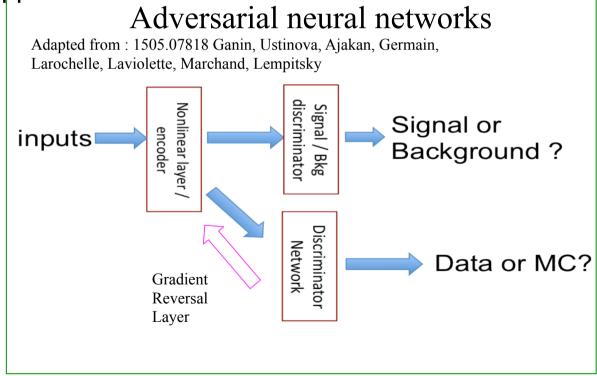
Systematics

- Our experimental papers typically ends with
 - o measurement = $m \pm \sigma(stat) \pm \sigma(syst)$
 - o σ(syst) systematic uncertainty: known unknowns, unknown unknowns...
- □ Name of the game is to minimize quadratic sum of : $\sigma(\text{stat}) \pm \sigma(\text{syst})$
- \square ML techniques used so far to minimise σ (stat)
- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) ± σ (syst) is an open problem
- \square Worrying about σ (syst) untypical of ML in industry

Systematics (2)

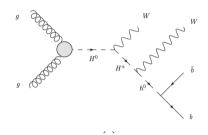
- However, a hot topic in ML in industry: transfer learning
- □ E.g.: train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP: we train with Signal and Background which are not the real one (MC, control regions, etc...) source of systematics

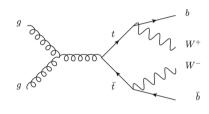
One possible approach:

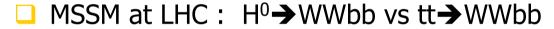


Deep learning for analysis

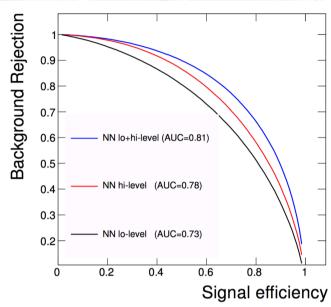
1402.4735 Baldi, Sadowski, Whiteson

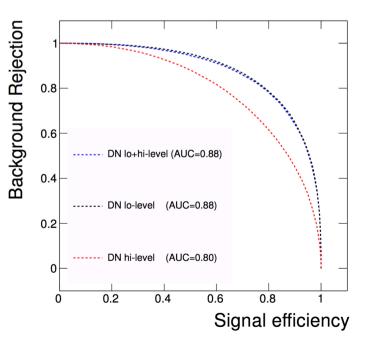






- Low level variables:
 - 4-momenta
- High level variables:
 - Pair-wise invariant masses
- Deep NN outperforms NN, and does not need high level variables
- DNN learns the physics ?

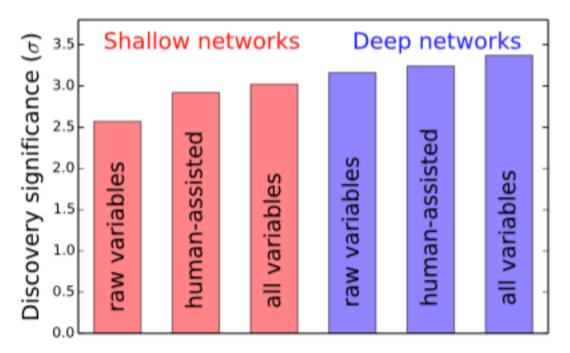




Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

- □ H tautau analysis at LHC: H→tautau vs Z→tautau
 - Low level variables (4-momenta)
 - High level variables (transverse mass, delta R, centrality, jet variables, etc...)

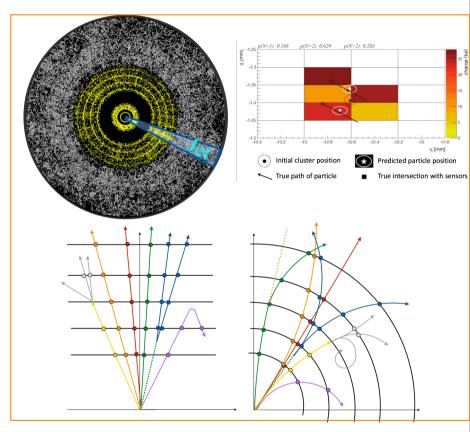


- Here, the DNN improved on NN but still needed high level features
- Both analyses withDelphes fast simulation
- ~10M events used for training (>10 full G4 simulation in ATLAS)

ML in reconstruction

Reconstruction

- ☐ Clear upcoming challenges as we approach HL-LHC
- Generally, making everything robust to increased pileup, and resource usage will be vital
 - New techniques needed
 (e.g. TrackML challenge, end of this talk)

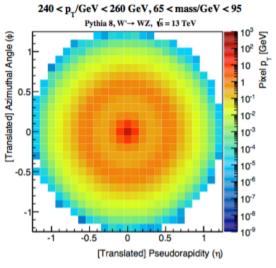


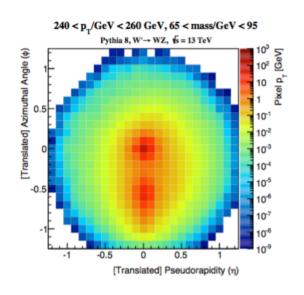
Jet Images

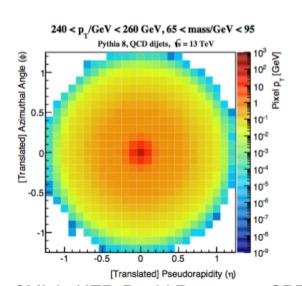
arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

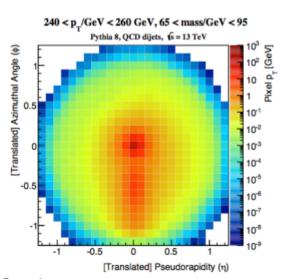
Distinguish boosted W jets from QCD

- Particle level simulation
- Average images:

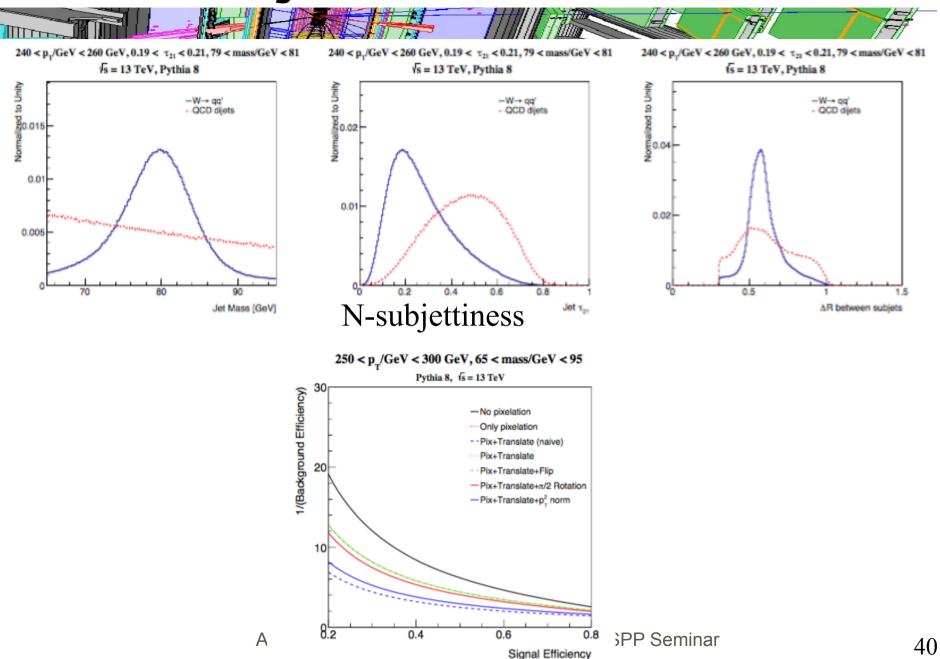




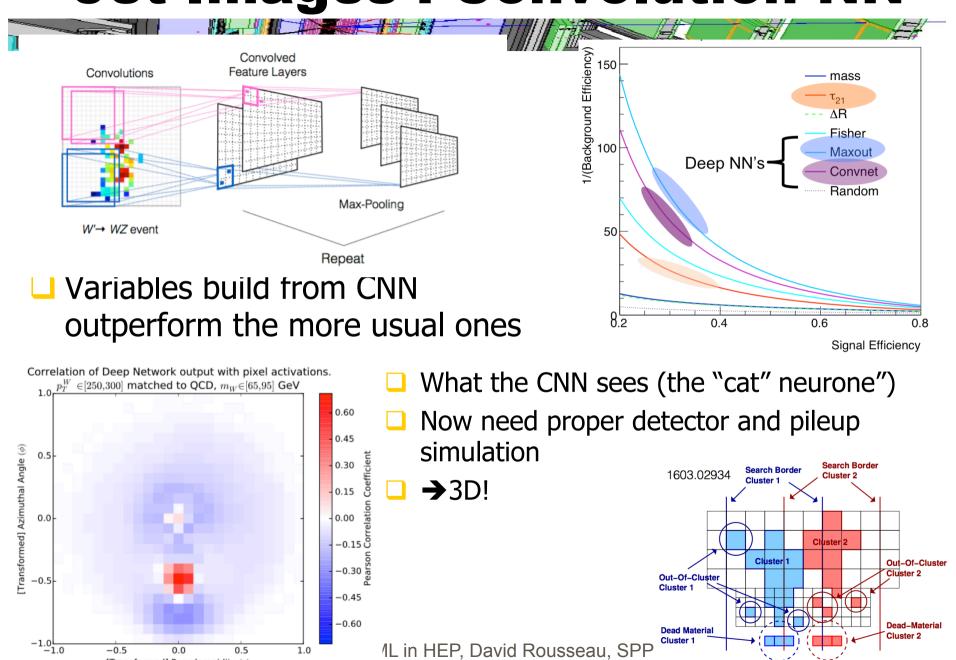




Boosted jets: standard variables



Jet Images: Convolution NN



1.0

0.5

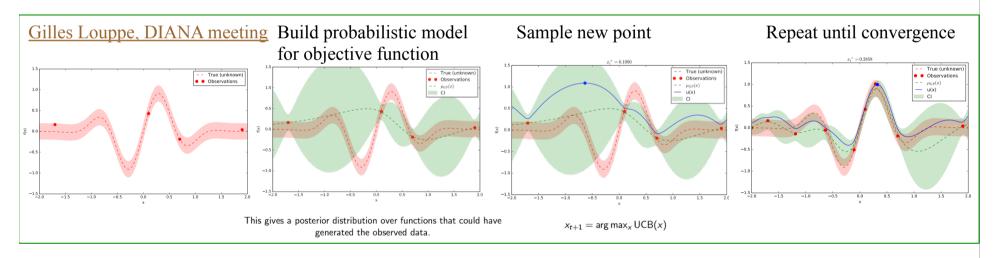
-0.5

0.0

[Transformed] Pseudorapidity (η)

ML in Simulation

- We invest a lot of resources (CPU: ~100k cores/experiment *year, human) on very fine tuned simulations:
 - so far very manual optimisation by super experts
 - o optimisation in many dimensions parameter space, with costly evaluation
- Now turning to more modern techniques e.g.:
 - Bayesian Optimization and Gaussian Processes



Another avenue : multivariable regression to parameterise detector response

Data Challenges

Challenges (competition)

- Challenges are essentially a way to create a buzz around an open dataset dressed with a benchmark
 - o HiggsML (ATLAS) 2014
 - FlavourML (LHCb) 2015
 - o future TrackML (ATLAS+CMS) 2016?
- Buzz in non-HEP world to get the attention of ML specialists

HiggsML in a nutshell

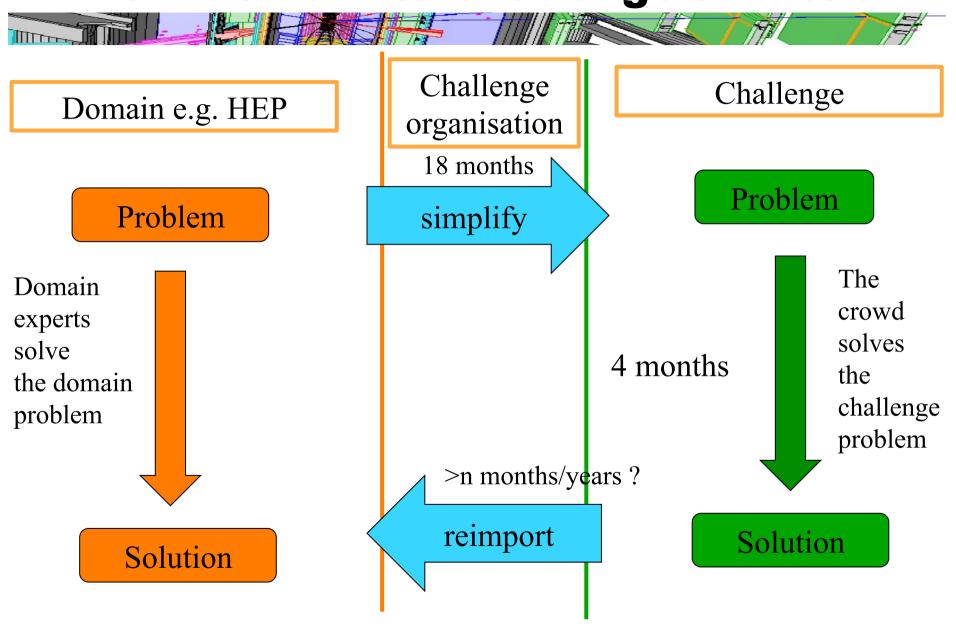
- Why not put some ATLAS simulated data on the web and ask data scientists to find the best machine learning algorithm to find the Higgs ?
 - Instead of HEP people browsing machine learning papers, coding or downloading possibly interesting algorithm, trying and seeing whether it can work for our problems
- Challenge for us: make a full ATLAS Higgs analysis simple for non physicists, but not too simple so that it remains useful
- Also try to foster long term collaborations between HEP and ML
- Do not underestimate the time to learn common languages (e.g. hand waving explanation of S/sqrt(B) not enough)
- Do not underestimate the percolation time :
 - 1) New ML ideas → 2) Demo on toy data set → 3) Demo in real ATLAS analysis → 4) published ATLAS analysis ==> we're still between 1 and 2 for most new ideas

Why challenges work?

MOTIVATION OF ORGANIZING CONTESTS: EXTREME VALUE Courtesy: Lakhani 2014

Experts are highly skilled, trained -> more focused, performed solution, low variety Traditional **Probability** Experts Nontraditional **Participants** High OI is suitable for a variety of Value of an Idea nonconvential surprising ideas that are « far » from traditional Not just ML, but a general trend: expertise - > high volatility Open Innovation

From domain to challenge and back

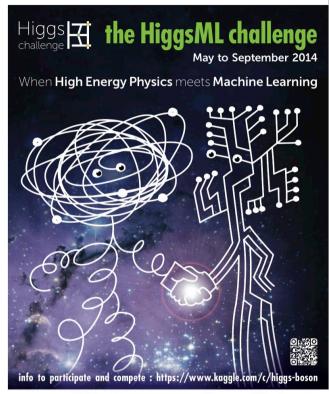


HiggsML: Committees

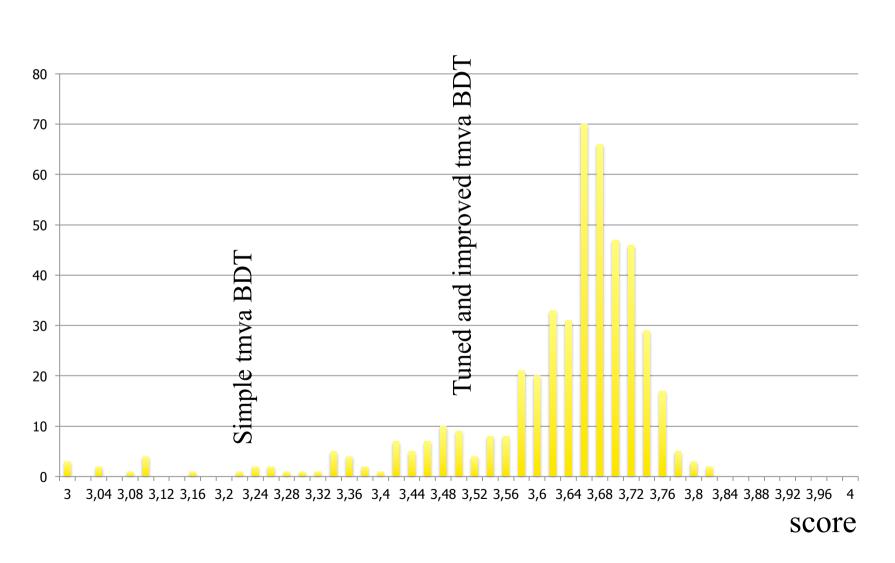
- Organization committee:
- O David Rousseau: Atlas-LAL
 - Claire Adam-Bourdarios : Atlas-LAL (outreach, legal matter)
 - Glen Cowan: Atlas-RHUL (statistics)
 - o Balazs Kegl: Appstat-LAL
 - o Cécile Germain: TAO-LRI
 - Isabelle Guyon: Chalearn (now chaire Paris Saclay)
 - (challenges organisation)
- Advisory committee:
 - Andreas Hoecker : Atlas-CERN (PC,TMVA)
 - Joerg Stelzer : Atlas-CERN (TMVA)
 - Thorsten Wengler: Atlas-CERN (ATLAS management)
 - O Marc Schoenauer: INRIA David Rousseau HiggsML challenge, GDR Terascale 2015, Saclay

Higgs Machine learning challenge

- □ See talk DR CTD2015 Berkeley
- An ATLAS Higgs signal vs background classification problem, optimising statistical significance
- Ran in summer 2014
- 2000 participants (largest on Kaggle at that time)
- Outcome
 - Best significance 20% than with Root-TMVA
 - BDT algorithm of choice in this case where number variables and number of training events limited (NN very slightly better but much more difficult to tune)
 - XGBoost best BDT on the market (quite wide spread nowadays)
 - Wealth of ideas, documented in <u>JMLR proceedings v42</u>
 - Still working on what works in real life what does not
 - Raised awareness about ML in HEP
- Also:
 - Winner Gabor Melis hired by DeepMind
 - Tong He, co-developper of XGBoost, winner of special "HEP meets ML" price got a PhD grant and US visa



Best private scores

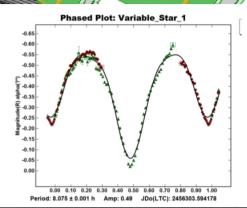


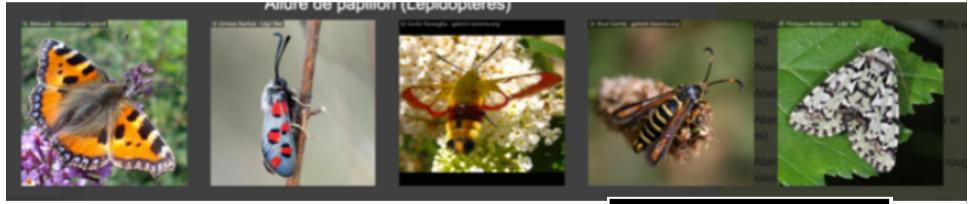
LHCb: flavour of physics

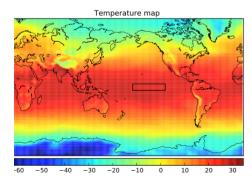
- □ LHCb organised in summer 2015 another challenge "flavour of physics": search for LFV decay τ→μμμ
- similar to HiggsML, with a big novelty:
 - some variables known to be poorly described by MC
 - o algorithm had to behave similarly on data and MC in a control region D0 \rightarrow K $\pi\pi$
- → Nice idea, however, never underestimates the machine learners: They devised an algorithm which
 - was able to distinguish control region from signal region
 - was behaving well (data=MC) in the control region
 - but was recklessly abusing the data/MC difference in the signal region
- □ → rules had to be changed in the middle of the challenge to disallow this
- Anyway, this does show that systematics is tricky to handle

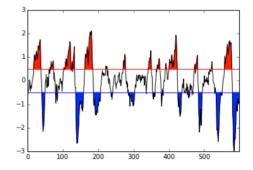
Beyond challenges: RAMP

- ☐ (Already mentioned for Anomaly Detection)
- Run by CDS Paris Saclay
- Main difference wrt to HiggsML:
 - participants post their software, which is run by the RAMP platform
 - o one day hackathon
 - o participants are encouraged to re-use other people's software
- Can adapt to all domains:





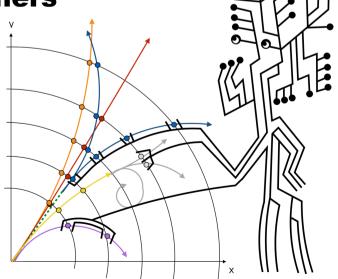




Advances of ML in HEP, David Roussea

Towards a Future Tracking Machine Learning challenge

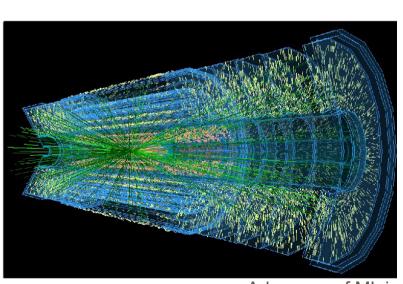
A collaboration between ATLAS and CMS physicists, and Machine Learners



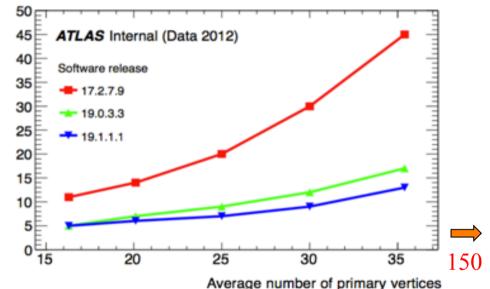
TrackML: Motivation 1

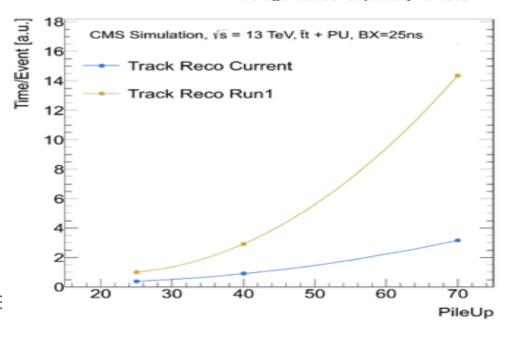
Graeme Stewart ECFA HL-LHC workshop 2014

- ☐ See details DR talk at CTD2016
- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective : increased pileup :
 - o Run 1 (2012): <>~20
 - o Run 2 (2015): <>~30
 - o Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)



Advances of ML in HE



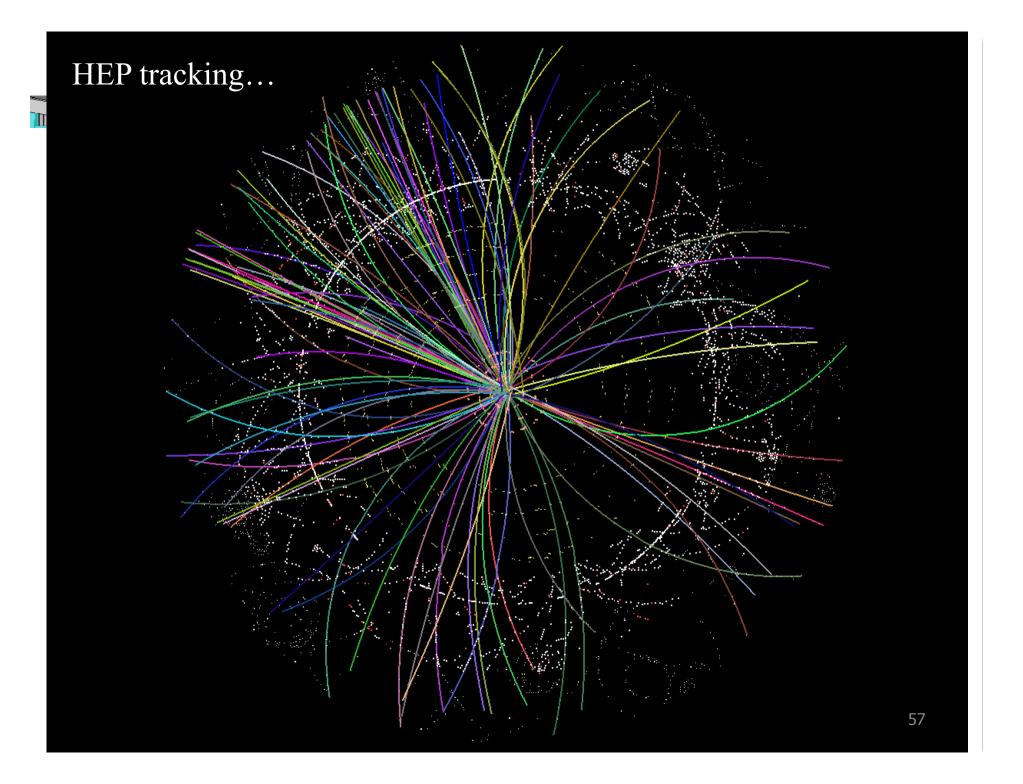


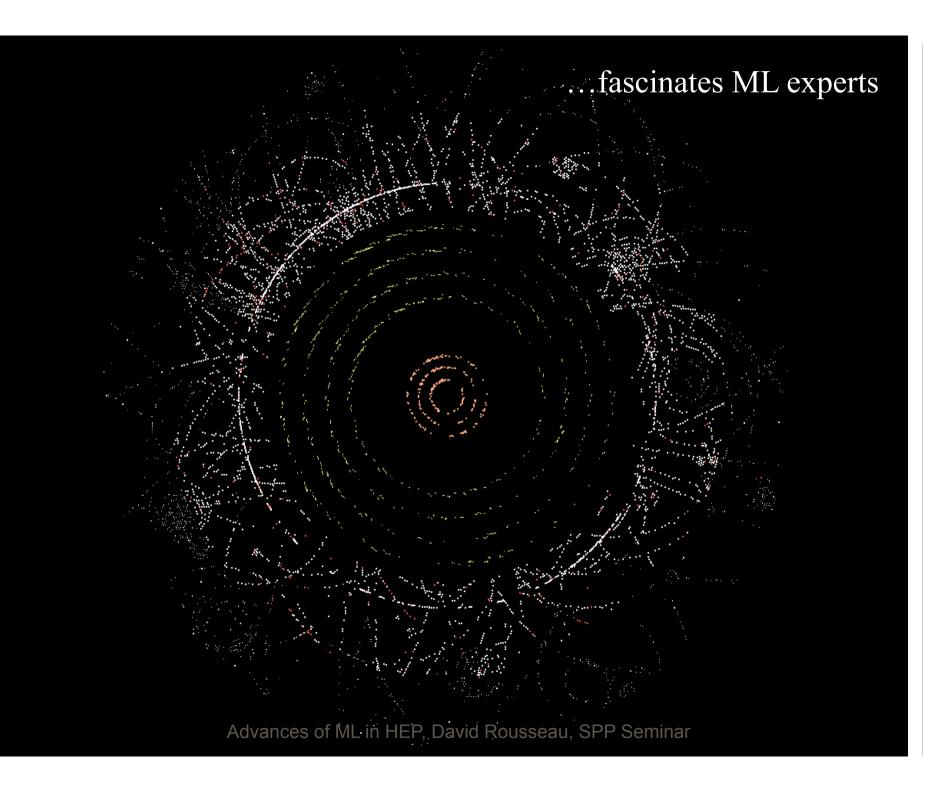
TrackML: Motivation 2

- - LHC experiments future computing budget flat (at best)
 - Installed CPU power per \$==€==CHF expected increase factor ~10 in 10 years
 - □ Experiments plan on increase of data taking rate ~10 as well (~1kHz to 10kHz)
 - → HL reconstruction at mu=150 need to be as fast as Run1 reconstruction at mu=20
 - □ → requires very significant software improvement, factor 10-100
 - □ Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
 - □ >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
 - Need to engage a wide community to tackle this problem

TrackML: engaging Machine Learners

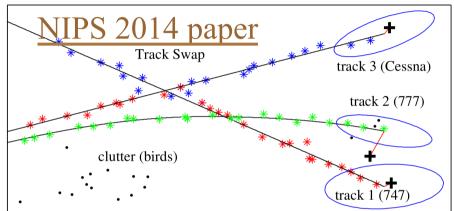
- Suppose we want to improve the tracking of our experiment
- We read the literature, go to workshops, hear/read about an interesting technique (e.g. ConvNets, MCTS...). Then:
 - o Try to figure by ourself what can work, and start coding→traditional way
 - o Find an expert of the new technique, have regular coffee/beer, get confirmation that the new technique might work, and get implementation tips→better
- ...repeat with each technique...
- Much much better:
 - Release a data set, with a benchmark, and have the expert do the coding him/ herself
 - → he has the software and the know-how so he'll be (much) faster even if he does not know anything about our domain at the beginning
 - o →engage multiple techniques and experts simultaneously (e.g. 2000 people participated to the Higgs Machine Learning challenge) in a comparable way
 - →even better if people can collaborate
 - →a challenge is a dataset with a benchmark and a buzz
 - Looking for long lasting collaborations beyond the challenge
- Focus on the pattern recognition: release list of 3D points, challenge is to associate them into tracks fast. Use public release of ATLAS tracking (ACTS) as a simulation engine and starting kitau, SPP Seminar

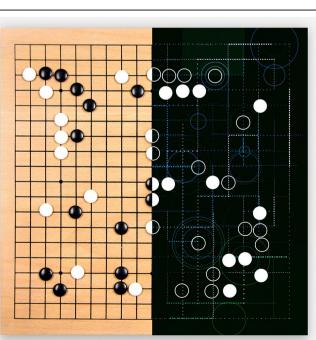


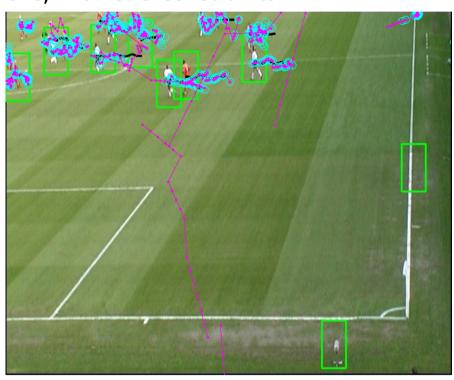


Pattern recognition

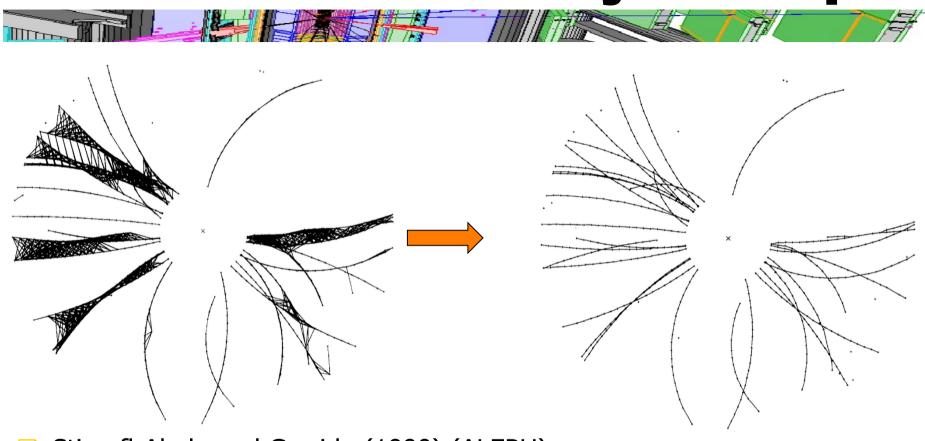
- Pattern recognition is a very old, very hot topic in Artificial Intelligence
- □ Note that these are real-time applications, with CPU constraints







TrackML: An early attempt



- ☐ Stimpfl-Abele and Garrido (1990) (ALEPH)
- All posssible neighbor connections are built, the correct ones selected by the NN (not used in production)
- □ Also PhD Vicens Gaitan 1993, winner of Flavour of Physics challenge

Wrapping-up

ML Collaborations

- ☐ ML scientists (often) eager to collaborate with HEP physicists
 - o prestige
 - o new and interesting problems (which they can publish in ML proceedings)
- Takes time to learn common language
- Access to experiment internal data an issue, but there are ways out (see later)
- Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCB
- Very useful/essential to build HEP ML collaborations (study on shared dataset, thesis (Computer Science or HEP)
- Successful collaborations often within one campus
- Center for Data Science Paris-Saclay 'role is precisely to favour these collaborations
- Most likely within CEA too...

Open Data

- Public dataset are essential to collaborate (beyond talking over beer/coffee) on new
 ML techniques with ML experts (or even physicists in other experiments)
 - o can share without experiments NDA
- Some collaborations built on just generator data (e.g. Pythia) or with simple detector simulation e.g. Delphes
 - Good for a start, but inaccurate
- Effort to have better open simulation engine (e.g. Delphes 4-vector detector simulation, ACTS for tracking)
- UCI dataset repository
- Role of CERN Open Data portal:
 - We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on releasing data)
 - But after all ML collaboration is a kind of scientific outreach
 - →ATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge (essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
 - ATLAS consider releasing more datasets dedicated to ML studies

Collection of links



- In addition to workshops mentioned in the first transparencies, and references mentioned in the talks
- <u>Interexperiment Machine Learning group (IML)</u> is gathering speed (documentation, tutorials, etc...). Topical monthly meeting.
- An internal ATLAS ML group will start by June. Probably also in CMS?
- https://www.kaggle.com/c/higgs-boson
- https://higgsml.lal.in2p3.fr
- http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014: permanent home of the challenge dataset
- NIPS 2014 workshop agenda and proceedings http://jmlr.org/proceedings/papers/v42/
- http://cern.ch/higgsml-visit mini workshop at CERN
- Mailing list opened to any one with an interest in both Data Science and High Energy Physics : HEP-data-science@googlegroups.com

Conclusion

- - Machine Learning techniques widely used in HEP
 - Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
 - Some of these are ~easy, most are complex: collaboration between HEP and ML scientists are needed
 - More and more open datasets/simulators to favour the collaborations
 - More and more HEP and ML workshops, forums, group, challenges etc...
 - Never underestimate the time for :
 - o (1) Great idea→
 - (2) demonstrated on toy dataset→
 - (3) demonstrated on real experiment dataset →
 - (4) experiment publication using the great idea