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of this technique have been described numerous times in the literature (see Lorimer &

Kramer 2005 for an overview and Edwards, Hobbs & Manchester 2006 for full details of

the method). In brief, the observed pulse times-of-arrival (TOAs) are compared with a

prediction for the arrival times obtained with a model of the spin, astrometric and orbital

parameters of the pulsar and details of the pulse propagation through the interstellar

medium. The deviations between the predicted and the observed TOAs are known as
the pulsar ‘timing residuals’ and indicate unmodelled effects, i.e., Ri = (φi−Ni)/ν where

φi describes the time evolution of the pulse phase based on the model pulse frequency

(ν) and its derivatives. Ni is the nearest integer to φi. GW signals are not included in

a pulsar timing model and, hence, any such waves will induce residuals. Unfortunately,

the expected signal induced by GWs is small, with typical residuals being <100 ns.

The TOA precision achievable for the majority of pulsars is ∼ 1ms and most pulsars
show long-term timing irregularities that would make the detection of the expected GW

signal difficult or impossible (e.g. Hobbs, Lyne & Kramer 2006). However, a sub-set of

the pulsar population, the millisecond pulsars, have very high spin rates, much smaller

timing irregularities and can be observed with much greater TOA precision. Recent

observations of PSR J0437−4715 have shown that TOA precisions of ∼ 30 ns can be

achieved (see §4) and over 10 yr the root-mean-square (rms) timing residuals are 200 ns
(Verbiest et al. 2008).

In §2 of this paper we describe the induced timing residuals caused by GWs.

The expected sources of detectable GW signals are given in §3. We summarise the

International Pulsar Timing Array project in §4 and highlight future telescopes and

timing array projects in §5.

2. Induced timing residuals caused by gravitational waves

Sazhin (1978) and Detweiler (1979) first showed that a GW signal causes a fluctuation

in the observed pulse frequency δν/ν which affects the pulsar timing residuals at time

t from the initial observation as

R(t) = −
∫ t

0

δν(t)

ν
dt. (1)

The Doppler shift can be shown to have the form

δν

ν
= H ij(he

ij − hp
ij) (2)

where he
ij is the GW strain at the Earth at the time of observation, hp

ij the strain at the

pulsar when the electromagnetic pulse was emitted (typically ∼ 1000 yr ago) and H ij

is a geometrical term that depends upon the angle between the Earth, pulsar and GW

source. This equation was derived assuming a plane gravitational wave and is accurate

to first order in hij for all GW wavelengths. Note, this expression holds even if the

wave is not sinusoidal. Full details of the exact form of the induced residuals are given
by Hobbs et al. (2009a). Standard pulsar timing techniques absorb any low-frequency

GWs by fitting for the pulsar’s spin-down and so the time span of the data provides a

•  Sazhin!(1978)!and!Detweiler!(1979)!first!showed!that!a!GW!signal!causes!a!
fluctua3on!in!the!observed!pulse!frequency!δν/ν!!

•  The!3ming!residual!is!the!integral!over!these!varia3on!over!the!dura3on!of!
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prediction for the arrival times obtained with a model of the spin, astrometric and orbital

parameters of the pulsar and details of the pulse propagation through the interstellar

medium. The deviations between the predicted and the observed TOAs are known as
the pulsar ‘timing residuals’ and indicate unmodelled effects, i.e., Ri = (φi−Ni)/ν where

φi describes the time evolution of the pulse phase based on the model pulse frequency

(ν) and its derivatives. Ni is the nearest integer to φi. GW signals are not included in

a pulsar timing model and, hence, any such waves will induce residuals. Unfortunately,

the expected signal induced by GWs is small, with typical residuals being <100 ns.

The TOA precision achievable for the majority of pulsars is ∼ 1ms and most pulsars
show long-term timing irregularities that would make the detection of the expected GW

signal difficult or impossible (e.g. Hobbs, Lyne & Kramer 2006). However, a sub-set of

the pulsar population, the millisecond pulsars, have very high spin rates, much smaller

timing irregularities and can be observed with much greater TOA precision. Recent

observations of PSR J0437−4715 have shown that TOA precisions of ∼ 30 ns can be

achieved (see §4) and over 10 yr the root-mean-square (rms) timing residuals are 200 ns
(Verbiest et al. 2008).

In §2 of this paper we describe the induced timing residuals caused by GWs.

The expected sources of detectable GW signals are given in §3. We summarise the

International Pulsar Timing Array project in §4 and highlight future telescopes and

timing array projects in §5.

2. Induced timing residuals caused by gravitational waves

Sazhin (1978) and Detweiler (1979) first showed that a GW signal causes a fluctuation

in the observed pulse frequency δν/ν which affects the pulsar timing residuals at time

t from the initial observation as

R(t) = −
∫ t

0

δν(t)

ν
dt. (1)

The Doppler shift can be shown to have the form

δν

ν
= H ij(he

ij − hp
ij) (2)

where he
ij is the GW strain at the Earth at the time of observation, hp

ij the strain at the

pulsar when the electromagnetic pulse was emitted (typically ∼ 1000 yr ago) and H ij

is a geometrical term that depends upon the angle between the Earth, pulsar and GW

source. This equation was derived assuming a plane gravitational wave and is accurate

to first order in hij for all GW wavelengths. Note, this expression holds even if the

wave is not sinusoidal. Full details of the exact form of the induced residuals are given
by Hobbs et al. (2009a). Standard pulsar timing techniques absorb any low-frequency

GWs by fitting for the pulsar’s spin-down and so the time span of the data provides a
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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[ Detweiler 1979, Jenet et al. 2004 ]
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ
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Z t
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where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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ABSTRACT

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from
a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are
used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in
3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a
circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of
PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to
place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out
the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of
a G-wave detector based on pulsar timing.

Subject headings: black hole physics — gravitational waves — pulsars: general —
pulsars: individual (B1855+09)

1. INTRODUCTION

This work describes a general technique used to constrain
the properties of supermassive binary black hole (SBBH)
systems using pulsar-timing observations. This technique is
applied to the recently proposed SBBH system in 3C 66B
(Sudou et al. 2003; hereafter S03) using 7 yr of timing data
from the radio pulsar PSR B1855+09. Given the length of
the available data set and this pulsar’s low rms timing noise
(1.5 !s), these data are well suited for this analysis.

Expressions are derived for the expected timing residuals
induced by G-waves generated from two orbiting masses. The
effects of orbital eccentricity, viewing geometry, and post-
Newtonian orbital evolution are included. Since the resulting
waveforms are quasi-periodic, although not necessarily sinu-
soidal, a periodogram analysis together with harmonic sum-
ming can be used to search for the signature of G-waves in
pulsar-timing data. When this signature is detected, the de-
rived expressions can be used to determine the system’s chirp
mass and eccentricity. For a nondetection, these expression
can be used in a Monte Carlo analysis in order to place limits
on the properties of the proposed system.

In this work, the derived expressions are used to place limits
on the proposed SBBH system in 3C 66B, a nearby (z ¼ 0:02)
radio galaxy. S03 recently suggested that this galaxy may
contain a SBBH system with a current period of 1.05 yr, a
total mass of 5:4 ; 1010 M", and a mass ratio of 0.1. Such a
system will merge in #5 yr. Although it would be fortuitous to
catch such a system so close to coalescence, the reward for
directly detecting G-waves for the first time is large enough to
warrant a short investigation focused on this system.

Future work will place constraints on other known nearby
candidate SBBH systems. Lommen & Backer (2001) showed
that meaningful constraints could be placed on about a dozen
nearby sources, if pulsar timing can reach sensitivities of
100 ns. The residual expressions derived here can be used
to place limits on the chirp mass and eccentricity of these
systems. These expressions also show how the same G-wave
will affect multiple sources, thus allowing one to discriminate
between G-wave-induced and non–G-wave-induced timing
fluctuations.

Section 2 describes the expected signature of G-wave
emission from a general binary system; x 3 applies these re-
sults to the specific case of the proposed system in 3C 66B. The
observations of PSR B1855+09 used to search for G-waves
are described in x 4. Section 5 discusses the search tech-
niques employed as well as the Monte Carlo simulation used
to place limits on the mass and eccentricity of the system.
The results are discussed in x 6.

2. THE SIGNATURE OF A SBBH

The orbital motion of a SBBH system will generate gravi-
tational radiation. The emitted G-waves will induce periodic
oscillations in the arrival times of individual pulses from
radio pulsars. Given a model for the pulse arrival times in the
absence of G-waves, one can generate a time series of
‘‘residuals,’’ which are the observed pulse arrival times minus
the expected pulse arrival times. Ideally, the effects of known
accelerations are removed from the timing residuals, leaving
only the variations due to the presence of G-waves.

The emitted G-waves are described by two functions of
spacetime, hþ and h;, which correspond to the gravitational
wave strain of the two polarization modes of the radiation
field. As these waves pass between the Earth and a pulsar, the
observed timing residuals, R(t), will vary as (Estabrook &
Wahlquist 1975; Detweiler 1979)

R(t) ¼ 1

2
1þ cos !ð Þ rþ tð Þ cos 2 ð Þ þ r; tð Þ sin 2 ð Þ½ (; ð1Þ
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where t is time, ! is the opening angle between the G-wave
source and the pulsar relative to Earth,  is the G-wave
polarization angle, and the ‘‘+’’ and ‘‘;’’ refer to the two
G-wave polarization states. The functions rþ and r;, referred
to collectively as rþ;;, are related to the G-wave strain by

rþ;;(t) ¼ reþ;;(t)# r
p
þ;;(t); ð2Þ

reþ;;(t) ¼
Z t

0

heþ;;(") d"; ð3Þ

r
p
þ;;(t) ¼

Z t

0

h
p
þ;; " # d

c
1# cos !ð Þ

! "
d"; ð4Þ

where heþ;;(t) is the G-wave strain at Earth, h
p
þ;;(t) is the

gravitational wave strain at the pulsar, " is the time integration
variable, d is the distance between Earth and the pulsar, and c
is the speed of light. Note that the pulsar term, hpþ;;, is eval-
uated at the current time minus a geometric delay.

G-waves emitted by a system in a circular orbit (i.e., zero
eccentricity) will vary sinusoidally as a function of time, with
a frequency given by twice the orbital frequency. For eccentric
systems, the emitted waves will contain several harmonics of
the orbital frequency. The second harmonic will dominate at
low eccentricities, while the fundamental (i.e., the orbital)
frequency will dominate at high eccentricities. In general, the
period and eccentricity of a binary system will be decreas-
ing with time, because the system is radiating away energy
and angular momentum in G-waves. Hence, the frequencies
present in hþ;;(t) will vary with time. Since r eþ;; and r

p
þ;; may

be generated by hþ;;(t) at epochs separated by an extremely
long time interval, the frequency content of these terms may
differ significantly.

The G-wave strain, h(t), induced by a black hole binary can
be calculated using the standard weak-field approximation
applied to two orbiting point masses (Wahlquist 1987). The
expected residuals are found by integrating h(t) with respect to
time (see eqs. [2]–[4]):

reþ(t) ¼ # (t) A(t) cos (2$)# B(t) sin (2$)½ '; ð5Þ

re;(t) ¼ # (t) A(t) sin (2$)þ B(t) cos (2$)½ '; ð6Þ

# (t) ¼ M 5=3
c

D!1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# e(t)2

p

1þ e(t) cos %(t)½ '
; ð7Þ

where D is the distance to the source, $ is the orientation of
the line of nodes on the sky, !(t) is the orbital frequency, e(t)
is the eccentricity, %(t) is the orbital phase, and Mc is the
‘‘chirp mass,’’ defined as

Mc ¼ Mt
m1m2

M2
t

$ %3=5

; ð8Þ

where Mt ¼ m1 þ m2 and m1 and m2 are the masses of the
individual black holes. Note that all units from equation (5) on
are in ‘‘geometrized’’ units,5 where G ¼ c ¼ 1. A(t) and B(t)
are given by

A(t) ¼ 2e(t) sin %(t)½ ' cos %(t)# %n½ '2# cos i½ '2 sin %(t)# %n½ '2
n o

# 1

2
sin 2 %(t)# %n½ 'f gf1þ e(t) cos ½%(t)'g 3þ cos 2ið Þ½ ';

ð9Þ

B(t) ¼ 2 cos i cos 2 %(t)# %n½ 'f gþ e(t) cos ½%(t)# 2%n'ð Þ; ð10Þ

where i and %n are the orbital inclination angle and the value of
% at the line of nodes, respectively (Wahlquist 1987). Values
for %(t) and e(t) are given by the coupled differential equations
(Wahlquist 1987; Peters 1964)

d%

dt
¼ !(t)

1þ e(t) cos %(t)½ 'f g2

1# e tð Þ2
h i3=2 ; ð11Þ

de

dt
¼# 304

15
M 5=3

c !8=3
0 &#4

0

e tð Þ#29=19 1# e tð Þ2
h i3=2

1þ 121=304ð Þe tð Þ2
h i1181=2299 ;

ð12Þ

where !0 is the initial value of !(t) and &0 is a constant that
depends on the initial eccentricity e0:

&0 ¼ 1# e20
& '

e
#12=19
0 1þ 121

304
e20

! "#870=2299

: ð13Þ

Here !(t) is given by

!(t) ¼ a0e tð Þ#18=19 1# e tð Þ2
h i3=2

1þ 121

304
e tð Þ2

! "#1305=2299

;

ð14Þ

where a0 is determined by the initial condition !(t ¼ 0) ¼ !0.
The above equations are accurate to first order in v=c and valid
only when both e(t) and !(t) vary slowly with time. The
expressions for rpþ;; are identical to those for r

e
þ;;. Note that r

p
þ;;

is evaluated at an earlier time than reþ;; (see eqs. [3] and [4]).

3. APPLICATION TO 3C 66B

S03 suggest the presence of a 1:3 ; 1010M( black hole bi-
nary in the radio galaxy 3C 66B. Their VLBI measurements at
both 8.4 and 2.3 GHz show the elliptical motion of a radio
core with a period of 1:05 ) 0:03 yr at epoch 2002. Normally,
this motion would be attributed to the precession of a jet (e.g.,
Katz 1997), but in this case, S03 argue that the observed
motion is due to the orbit of the jet’s source, a supermassive
black hole, around a supermassive black hole companion.
Concerning these claims, we note several issues. First, only a
single orbit is observed, i.e., the elliptical motion has not yet
been shown to be repeatable. Second, S03 do not address the
possibility that the observed elliptical motion, which is per-
ilously close to having a 1 yr period, is somehow the result of
the Earth’s motion around the Sun. Third, they suggest that the
system will merge in about 5 yr. Hence, the a priori probability
that we have ‘‘caught’’ such a system in the act of coalescence
is very low. Nonetheless, the proposed system would generate5 In geometrized units, mass and distance are in units of time.
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Expected'amplitudes'&'sources'
• !Highest!frequency!is!given!by!cadence:!!!~1!per!month!!!!!!!!!=>!!~400!nHz!!
• !Lowest!frequency!is!given!by!observing!length:!!!~10!years!!=>!!!!!!!~3!nHz!!
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• !Timing!residuals!for!a!monochroma3c!GW!(i.e.!h!=!h0!cos(2π\)!)!

• !In!order!to!get!residuals!of!100!ns,!
!!!on!needs:!
!!!!!!!!!!!h0!=!1.9!x!10-15!!!!at!!!!!!3!nHz!
!!!!!!!!!!!h0!=!2.5!x!10-15!!!at!400!nHz!
What!sources!can!produce!those?!
Binary!system!(m1=m2):!
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Searching'for'a'stochas$c'GWB'
•  We!are!looking!for!a!"red!noise"!signal!with!a!period!comparable!to!the!length!

of!the!data!set,!using!frequen3st!and!Bayesian!methods!
•  Compe3ng!noise!sources:!
!!!!!!!!!!!-!pulsar!determinis3c!"noise"!(orbital!mo3on,!spin-down!etc.)!
!!!!!!!!!!!-!pulsar!intrinsic!white!noise!+!instrumental!(thermal)!white!noise!
!!!!!!!!!!!-!pulsar!intrinsic!red!noise!(pulse!jiIer,!3ming!irregulari3es)!
!!!!!!!!!!!-!varia3on!in!the!interstellar!medium!("Weather",!DM!varia3on,!scaIering)!
!!!!!!!!!!!-!"common!noise":!planetary!ephemeris!errors,!clock!errors!
!!!!!!!!!!!-!stochas3c!noise!due!to!GWB!
!
!
•  In!order!to!extract!GWB!signal,!a!number!of!pulsars!need!to!be!observed!
•  Note!that!adding!more!pulsars!should!!
!!!!!!improve!signals!(α!N)!but!can!also!add!!
!!!!!!addi3onal!noise:!
!!!!!!!!!fewer!good!pulsars!may!be!beIer!than!
!!!!!!!!!many!less!good!ones!
!!!!!!!!!but:!perhaps!only!way!to!find!common!noise!

  Norbert Wex / GR@99 / Bad Honnef / 2014-09-17

Hellings-Downs curve

47

[ Hellings & Downs 1983 ]

20 pulsars

1

2

� 1� cos ✓

8


1� 6 ln

✓
1� cos ✓

2

◆�

C(✓ij) =
hRi(t)Rj(t)i

�i�j



The'Interna$onal'Pulsar'Timing'Array'(IPTA)'

Currently!3ming!50!MSPs!at!six!radio!frequencies!with!seven!(soon!nine)!telescopes.!
There!are!roughly!50,000!TOAs!spanning!10!years!in!the!current!IPTA!data!release.!!

• Brian Burt



The'European'Pulsar'Timing'Array'(EPTA)'

An!array!of!100-m!class!telescopes!to!form!a!pulsar!3ming!array!

and!ul3mately!forming!the!Large!European!Array!for!Pulsars!(LEAP)!

SRT,!Sardinia,!Italy!

Effelsberg!100-m,!Germany!
Lovell,!Jodrell!Bank,!
UK!

NRT,!Nancay,!France! WSRT,!Westerbork,!NL!

Plus theory: 
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Loca$ng'a'(nonTevolving)'single'source'with'the'SKATPTA'
Response!paIern!for!PSR!J0437-4715!!
for!a!6.3!nHz!gravita3onal!wave!
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Figure 2. Response pattern H of a single-pulsar timing response to a single monochromatic GW source. For illustration purposes, the
pulsar distance is chosen to be small with a value of 200 pc and the GW period is chosen as 5 years, in order to show the structure of
the response pattern. The GW source is in the 0◦ angle position, the orbital plane inclination is 90◦ and the orbital plane coincides with
the paper plane. In this way the plotted response pattern is, in fact, the term (1 + cos θ) sin(∆Φ/2) in equation. (A7).

is derived from the detailed motion of the Earth from Solar System dynamics (Seidelmann 2005). For the purpose of this
paper, it is sufficient to keep the leading term of the timing parallax, i.e. assuming a circular motion of the Earth,

Rpar(t) =
cos[2(λpsr − λ⊕(t))] cos2 βpsrr

2
⊕

4Dpsr
, (17)

where the term r⊕ is the average distance between the Sun and the Earth, and λ⊕(t) = 2π(t/1 year) is the ecliptic longitude

of the Earth at time t. This form of timing parallax assumes that the eccentricity of the Earth orbit is zero. This assumption
is valid for cases where the pulsar is not too close to the ecliptic poles, i.e. (−89◦ ! β ! +89◦), such that a timing parallax

signal is not dominated by the Earth orbit’s eccentricity. As this will generally be the case, the error of the measured pulsar

timing parallax distance is (see Appendix B for details)

σDpsr =
4
√
2σnD

2
psr√

Nobs r2⊕ cos2 βpsr
≃ 2.34

cos2 βpsr

(

Nobs

100

)− 1
2

(

Dpsr

1 kpc

)2
(

σn

10 ns

)

pc , (18)

where Nobs is the number of TOAs. The numerical factor is derived assuming that the time span of pulsar data is longer
than one year. In a real data analysis, one always uses the full Solar System ephemeris. We compared equation. (18) with

results from numerical simulations based on TEMPO3 and the planetary ephemeris DE405 (Standish 1998). For pulsars with

−89◦ ! β ! +89◦, we find that the simplified version of the timing parallax shown above agrees with the correct result
derived from TEMPO within a few percent difference, justifying the usage of equation. (18) for the purpose of the present

paper. We note that the validity of equation. (17) comes from the fact that the Earth orbital eccentricity is small and that
we are investigating measurement accuracies, where the effect of orbital eccentricity is of even higher order. According to

equation. (18), with a timing accuracy at the 10 to 30-ns level, one can use the timing parallax to measure the pulsar distance

accurately to a few light years for pulsar distances of less than 1 kpc. This distance accuracy become comparable to the
wavelength of the GW, and the timing parallax measurement is therefore indeed a potential technique to remove the pulsar

distance confusion. Both GW parameters and pulsar distances should thus be estimated from pulsar timing data at the same

time. In the following, we estimate the corresponding accuracy of the GW parameters and pulsar distances measurements
based on the signal timing of equation. (10).

3.2 Vector Ziv-Zakai bound for signals with additive white Gaussian noise

We are, now, going to determine the statistical error of estimating GW parameters using data from a PTA. A well known

and popular statistical technique to calculate such lower bounds of the statistical accuracies of parameter estimators is the

3 See http://www.atnf.csiro.au/research/pulsar/tempo/.

Enabling!by!spectacular!SKA!distance!measurements:!

Lee!et!al.!(2011)!
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Figure 8: The six polarization modes for gravitational waves permitted in any metric theory of
gravity. Shown is the displacement that each mode induces on a ring of test particles. The wave
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(b), and (c), the wave propagates out of the plane; in (d), (e), and (f), the wave propagates in
the plane. In GR, only (a) and (b) are present; in massless scalar-tensor gravity, (c) may also be
present.
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the GR and breathing modes, the GW-induced correlation func-
tions can be calculated analytically. For the shear and longitudinal
polarizations, modes that are not purely transverse, the correlation
function must be computed with Monte Carlo simulations.

We consider a distribution of plane GWs in a general metric
theory of gravity. The function hP( f ; êz)df d! denotes the distri-
bution of GWs of polarization P, in the frequency interval df and
in the solid angle d! around the propagation direction êz, such
that the GWmetric perturbation, at a given spacetime point (t; r) is

hab(t; r)

¼
X

P¼þ; ; ;b;sn;se;l

Z 1

#1
df

Z
d! hP f ; êzð Þe2!if (t#r = êz=c)P

ab êzð Þ:

ð1Þ

The polarization index P indicates any of the polarization states
þ, ; , b, sn, se, and l; the ‘‘þ’’ and ‘‘ ; ’’ denote the two different
GR spin-2 transverse traceless polarization modes; the ‘‘sn’’ and
‘‘se’’ denote the two spin-1 shear modes; the ‘‘l’’ and ‘‘b’’ denote
the spin-0 longitudinal mode and the spin-0 breathing mode,
respectively.

In this paper, we apply equation (1) to a stochastic background
of GWs. This stochastic background is a superposition of mono-
chromatic plane wave components with a frequency chosen at ran-
dom from a predetermined spectrum, for our purposes always a
power-law spectrum. The propagation direction of each plane
wave component is chosen at random from an isotropic distri-
bution. For a given planewave component, the polarization tensor
"Pab for the polarization state P depends on the direction of prop-
agation (e.g., it is parallel to the propagation direction for the

TABLE 1

Expansion Coefficients of the Normalized Cross-Correlation Function, #($) ¼ C($)/C(0)

% c0 c1 c2 c3 c4 c5

ck for C sn;se($)

0........................................ 0.0378 #0.0871 0.1928 #0.1086 0.0239 #0.0073

#2/3 ................................. 0.0317 #0.0739 0.1603 #0.0955 0.0289 #0.0121

#1 .................................... 0.0298 #0.0700 0.1511 #0.0917 0.0302 #0.0135

ck for Cl($)

0........................................ 0.0584 #0.1206 0.1386 #0.0908 0.0409 #0.0147

#2/3 ................................. 0.0512 #0.1057 0.1220 #0.0805 0.0373 #0.0156

#1 .................................... 0.0470 #0.0987 0.1148 #0.0785 0.0388 #0.0175

Notes.—We obtain this table using Legendre polynomials, i.e., #($) ¼
PN

k¼0 ckPk (2$/!# 1) with 0 & $ & !. Note
that these expansions are not applicable when $ ¼ 0. The % column indicates the power index of the GW background. By
using these normalized cross-correlation functions, #($), and by calculating C(0) from eq. (A37), the cross-correlation
functions C($) can be found.

Fig. 1.—Normalized pulsar timing residual correlation coefficient, #P ¼ CP($)/CP(0). Here, $ is the angular separation between two pulsars. ‘‘GR’’ stands for the two
transverse traceless modes, ‘‘+’’ and ‘‘;.’’ For the shear and longitudinal modes, the plots are the curves fitted with the expansion coefficients in Table 1, for five years of
observation. Results are given for several values of% , the power-law index of theGWspectrum. The change in # sn;se;l is on the order of 10#2 for a change in% from0 to#1.
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of the lack of a theory of the graviton, it is important to have
upper limits based on different phenomenological implications
of graviton mass.

The mass limit of Finn & Sutton (2002) is based on the
effect of graviton mass on the generation of GWs, not on their
propagation, but the dispersion relation for propagation is also
an important independent approach to a mass limit, as has been
recently suggested by a number of groups (Will 1998; Larson
& Hiscock 2000; Cutler et al. 2003; Stavridis & Will 2009).
Questions about this method are timely since the detection
of GWs is expected in the near future, thanks to the progress
with present ground-based laser interferometers, possible future
space-based interferometers (Hough & Rowan 2000; Hough
et al. 2005), and pulsar timing array projects (Sallmen et al.
1993; Stappers et al. 2006; Manchester 2006; Hobbs et al.
2009b).

The pulsar timing array is a unique technique to detect
nano-Hertz GWs by timing millisecond pulsars, which are
very stable celestial clocks. It turns out that a stochastic GW
background leaves an angular-dependent correlation in pulsar
timing residuals for widely spaced pulsars (Hellings & Downs
1983; Lee et al. 2008). That is, the correlation C(θ ) between
timing residual of pulsar pairs is a function of angular separation
θ between the pulsars. One can analyze the timing residual and
test such a correlation between pulsar timing residuals to detect
GWs (Jenet et al. 2005). We find in this paper that if the graviton
mass is not zero, the form of C(θ ) is very different from that
given by general relativity. Thus, by measuring this graviton
mass-dependent correlation function, we can also detect the
massive graviton.

The outline of this paper is as follows. The mass of the
graviton is related to the dispersion of GWs in Section 2. The
pulsar timing responses to a plane GW and to a stochastic GW
background in the case of a massive graviton are calculated in
Section 3. The massive graviton induces effects on the shape
of the pulsar timing correlation function, which is derived in
Section 4, while the detectability of a massive GW background is
studied in Section 5. The algorithm to detect a massive graviton
using a pulsar timing array and the sensitivity of that algorithm
are examined in Section 6. We discuss several related issues and
conclude in Section 7.

2. GRAVITATIONAL WAVES WITH
MASSIVE GRAVITONS

We incorporate the massive graviton into the linearized weak
field theory of general relativity (Gupta 1952; Arnowitt & Deser
1959; Weinberg 1972). For linearized GWs, specifying the
graviton mass is equivalent to specifying the GW dispersion
relation that follows from the special relativistic relationship:

E2 = p2c2 + m2c4, (1)

where c is the light velocity, E is energy of the particle, and p
and m are the particle’s momentum and rest mass, respectively.
One can derive the corresponding dispersion relation from
Equation (1) by replacing the momentum by p = h̄kg and the
energy by E = h̄ωg , where h̄ is the reduced Planck constant with
kg and ωg , respectively, the GW wave vector and the angular
frequency. With these replacements, the dispersion relation for
a massive vacuum GW graviton propagating in the z direction
reads

kg(ωg) =
(
ω2

g − ω2
cut

) 1
2

c
êz , (2)

where êz is the unit vector in the z direction. If the GW frequency
ωg is less than the cutoff frequency ωcut ≡ mgc

2/h̄, then
the wave vector becomes imaginary, indicating that the wave
attenuates and does not propagate. (The equivalent phenomena
for electromagnetic waves can be found in Section 87 of Landau
& Lifshitz 1960.)

At a spacetime point (t, r), the spatial metric perturbation due
to a monochromatic GW is

hab(t, r) = ℜ
[

∑

P=+,×
AP ϵP

abe
i[ωgt−r·kg(ωg)]

]

, (3)

where ℜ indicates the real part, and where the a, b range over
spacetime indices from 0 to 3. The summation is performed
over the polarizations of the GW. Since we are not assuming
that general relativity is the theory of gravitation, we could,
in principle, have as many as six polarization states. For
definiteness, however, and to most clearly show how pulsar
timing probes graviton mass, we will confine ourselves in
this paper to only the two standard polarization modes of
general relativity, denoted + and ×, the usual “TT” gauge (see
Appendix A for the details). Thus, the polarization index takes
on only the values P = +,×, with AP and ϵP standing for
the amplitude and polarization tensors for the two transverse
traceless modes.

The polarization tensor ϵP is described in terms of an
orthonormal three-dimensional frame associated with the GW
propagating direction. Let the unit vector in the direction of
GW propagation be êz; we can choose the other two mutually
orthogonal unit vectors êx, êy to be both perpendicular to êz.
In terms of these three vectors, êz, êx , and êy , the polarization
tensors are given as

ϵ+
ab = êxa êxb − êya êyb,

ϵ+
ab = êxa êyb + êya êxb . (4)

Since the polarization tensors are purely spatial, we will
have only spatial components of the metric perturbations. For
a stochastic GW background, these metric perturbations are a
superposition of monochromatic GWs with random phase and
amplitude and can be written as

hij (t, ri) =
∑

P=+,×

∫ ∞

−∞
dfg

∫
dΩ hP (fg, êz) ϵP

ij (êz)ei[ωgt−kg(ωg)·r],

(5)
where fg = ωg/2π is the GW frequency, Ω is solid angle,
spatial indices i, j run from 1 to 3, and hP is the amplitude
of the GW propagating in the direction of êz per unit solid
angle, per unit frequency interval, in polarization state P. If
the GW background is isotropic, stationary, and independently
polarized, we can define the characteristic strain hP

c according
to Maggiore (2000) and Lee et al. (2008), and can write

⟨hP (fg, êz)h⋆P ′
(f ′

g, êz
′)⟩ =

∣∣hP
c

∣∣2

16πfg
δPP ′δ(fg − f ′

g)δ(êz − ê′
z),

(6)
where the ⋆ stands for the complex conjugate and ⟨⟩ is the
statistical ensemble average. The symbol δPP ′ is the Kronecker
delta for polarization states; δPP ′ = 0 when P and P ′ are
different, and δPP ′ = 1 when P and P ′ are the same. With
the relationships above, one can show that

⟨hab(t)hab(t)⟩ =
∑

P=+,×

∫ ∞

0

∣∣hP
c

∣∣2

fg
dfg. (7)1590 LEE ET AL. Vol. 722

of the lack of a theory of the graviton, it is important to have
upper limits based on different phenomenological implications
of graviton mass.

The mass limit of Finn & Sutton (2002) is based on the
effect of graviton mass on the generation of GWs, not on their
propagation, but the dispersion relation for propagation is also
an important independent approach to a mass limit, as has been
recently suggested by a number of groups (Will 1998; Larson
& Hiscock 2000; Cutler et al. 2003; Stavridis & Will 2009).
Questions about this method are timely since the detection
of GWs is expected in the near future, thanks to the progress
with present ground-based laser interferometers, possible future
space-based interferometers (Hough & Rowan 2000; Hough
et al. 2005), and pulsar timing array projects (Sallmen et al.
1993; Stappers et al. 2006; Manchester 2006; Hobbs et al.
2009b).

The pulsar timing array is a unique technique to detect
nano-Hertz GWs by timing millisecond pulsars, which are
very stable celestial clocks. It turns out that a stochastic GW
background leaves an angular-dependent correlation in pulsar
timing residuals for widely spaced pulsars (Hellings & Downs
1983; Lee et al. 2008). That is, the correlation C(θ ) between
timing residual of pulsar pairs is a function of angular separation
θ between the pulsars. One can analyze the timing residual and
test such a correlation between pulsar timing residuals to detect
GWs (Jenet et al. 2005). We find in this paper that if the graviton
mass is not zero, the form of C(θ ) is very different from that
given by general relativity. Thus, by measuring this graviton
mass-dependent correlation function, we can also detect the
massive graviton.

The outline of this paper is as follows. The mass of the
graviton is related to the dispersion of GWs in Section 2. The
pulsar timing responses to a plane GW and to a stochastic GW
background in the case of a massive graviton are calculated in
Section 3. The massive graviton induces effects on the shape
of the pulsar timing correlation function, which is derived in
Section 4, while the detectability of a massive GW background is
studied in Section 5. The algorithm to detect a massive graviton
using a pulsar timing array and the sensitivity of that algorithm
are examined in Section 6. We discuss several related issues and
conclude in Section 7.

2. GRAVITATIONAL WAVES WITH
MASSIVE GRAVITONS

We incorporate the massive graviton into the linearized weak
field theory of general relativity (Gupta 1952; Arnowitt & Deser
1959; Weinberg 1972). For linearized GWs, specifying the
graviton mass is equivalent to specifying the GW dispersion
relation that follows from the special relativistic relationship:

E2 = p2c2 + m2c4, (1)

where c is the light velocity, E is energy of the particle, and p
and m are the particle’s momentum and rest mass, respectively.
One can derive the corresponding dispersion relation from
Equation (1) by replacing the momentum by p = h̄kg and the
energy by E = h̄ωg , where h̄ is the reduced Planck constant with
kg and ωg , respectively, the GW wave vector and the angular
frequency. With these replacements, the dispersion relation for
a massive vacuum GW graviton propagating in the z direction
reads

kg(ωg) =
(
ω2

g − ω2
cut

) 1
2

c
êz , (2)

where êz is the unit vector in the z direction. If the GW frequency
ωg is less than the cutoff frequency ωcut ≡ mgc

2/h̄, then
the wave vector becomes imaginary, indicating that the wave
attenuates and does not propagate. (The equivalent phenomena
for electromagnetic waves can be found in Section 87 of Landau
& Lifshitz 1960.)

At a spacetime point (t, r), the spatial metric perturbation due
to a monochromatic GW is

hab(t, r) = ℜ
[

∑

P=+,×
AP ϵP

abe
i[ωgt−r·kg(ωg)]

]

, (3)

where ℜ indicates the real part, and where the a, b range over
spacetime indices from 0 to 3. The summation is performed
over the polarizations of the GW. Since we are not assuming
that general relativity is the theory of gravitation, we could,
in principle, have as many as six polarization states. For
definiteness, however, and to most clearly show how pulsar
timing probes graviton mass, we will confine ourselves in
this paper to only the two standard polarization modes of
general relativity, denoted + and ×, the usual “TT” gauge (see
Appendix A for the details). Thus, the polarization index takes
on only the values P = +,×, with AP and ϵP standing for
the amplitude and polarization tensors for the two transverse
traceless modes.

The polarization tensor ϵP is described in terms of an
orthonormal three-dimensional frame associated with the GW
propagating direction. Let the unit vector in the direction of
GW propagation be êz; we can choose the other two mutually
orthogonal unit vectors êx, êy to be both perpendicular to êz.
In terms of these three vectors, êz, êx , and êy , the polarization
tensors are given as

ϵ+
ab = êxa êxb − êya êyb,

ϵ+
ab = êxa êyb + êya êxb . (4)

Since the polarization tensors are purely spatial, we will
have only spatial components of the metric perturbations. For
a stochastic GW background, these metric perturbations are a
superposition of monochromatic GWs with random phase and
amplitude and can be written as

hij (t, ri) =
∑

P=+,×

∫ ∞

−∞
dfg

∫
dΩ hP (fg, êz) ϵP

ij (êz)ei[ωgt−kg(ωg)·r],

(5)
where fg = ωg/2π is the GW frequency, Ω is solid angle,
spatial indices i, j run from 1 to 3, and hP is the amplitude
of the GW propagating in the direction of êz per unit solid
angle, per unit frequency interval, in polarization state P. If
the GW background is isotropic, stationary, and independently
polarized, we can define the characteristic strain hP

c according
to Maggiore (2000) and Lee et al. (2008), and can write

⟨hP (fg, êz)h⋆P ′
(f ′

g, êz
′)⟩ =

∣∣hP
c

∣∣2

16πfg
δPP ′δ(fg − f ′

g)δ(êz − ê′
z),

(6)
where the ⋆ stands for the complex conjugate and ⟨⟩ is the
statistical ensemble average. The symbol δPP ′ is the Kronecker
delta for polarization states; δPP ′ = 0 when P and P ′ are
different, and δPP ′ = 1 when P and P ′ are the same. With
the relationships above, one can show that

⟨hab(t)hab(t)⟩ =
∑

P=+,×

∫ ∞

0

∣∣hP
c

∣∣2

fg
dfg. (7)
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Figure 2. Atlas for cross-correlation functions C(θ ). The label of each curve indicates the corresponding graviton mass in units of electron volts (eV). The left panel
shows the correlation functions for a 5 year bi-weekly observation. The right panel shows correlation functions for 10 years of bi-weekly observations. We take
α = −2/3 for these results. These correlations are normalized such that C(0) = 0.5 for two different pulsars.

m runs from 1 to the number of pulsar pairs M = (Np −1)Np/2,
because the autocorrelations are not used.

Following Jenet et al. (2005), we define

ρ =
∑M

m=1(C(θm) − C)(c(θm) − c)
√∑M

m=1(C(θm) − C)2
∑M

m=1(c(θm) − c)2
, (21)

where C =
∑M

m=1 C(θm)/M and c =
∑M

m=1 c(θm)/M . Then
the statistic S, describing the significance of the detection, is
S =

√
M ρ. In particular, when there is no GW present, c(θm)

will be Gaussian-like white noise, the probability of getting a
detection significance larger than S is about erfc(S/

√
2)/2 (Jenet

et al. 2005).
Our aim is to determine the ability of a given pulsar timing

array configuration to detect a GW background. To do this,
we calculate the expected value for the detection significance
S by using a second set of Monte Carlo simulations. These
second Monte Carlo simulations are similar to the first ones, but
instead of calculating the average value for C(θ ), we inject white
noise for each pulsar, to represent the intrinsic pulsar noise and
instrumental noise, and we calculate the expected value of S.
We summarize the following steps here.

1. Generate a large number of GW sources (104) to simulate
the required GW background.

2. Calculate the timing residual for each pulsar as described
above and add white Gaussian noise.

3. Calculate the measured correlation c(θm) using
Equation (20) and calculate the detection significance S
using Equation (21).

4. Repeat steps 1–3 and average over the detection signifi-
cance S. The converged S is the value needed to estimate
the detection significance.

The results for the expectation value of S, as a function of GW
amplitude Ac for various pulsar timing array configurations, are
presented in Figure 3. We have also compared simulations from
several different pulsar samples with the same number of pulsars
to make sure such S is not sensitive to the detailed configuration
of the pulsar samples.

Two features of the curves in Figure 3 are worth noting. First,
the minimal detection amplitude of a GW background becomes
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Figure 3. Expected GW background detection significance using a pulsar timing
array with 20 pulsars, observed for 5 years, with 100 ns timing noise. The
graviton mass, in units of electron volts, is labeled above each curve. The x-axis
is the amplitude for the characteristic strain of the GW background (f0 = 1 yr−1,
α = −2/3), while the y-axis is the expected detection significance S.

larger, when a massive graviton is present, i.e., the leading edge
of the S–Ac curve shifts rightwards as mg is made larger. This
tells us that in order to detect a massive GW background, one
needs a stronger GW background signal or a smaller pulsar
intrinsic noise than in the case of a massless GW background.
As previously noted, this effect is mainly due to the reduction
of the pulsar timing response and the reduction of the GW
amplitude at lower frequencies. Figure 3 also tells us when we
can neglect the effect of a massive graviton. It is clear from
Figure 3 that if mg ! 2 × 10−23 eV for a 5 year observation,
the minimal detection amplitude is not reduced by more than
5%. For 10 years of observation, a 5% reduction corresponds to
mg = 10−23 eV.

The second noteworthy feature of the S–Ac curves in Figure 3
is that of the saturation level of detection significance. Due to
the pulsar distance term of Equation (11) (the term involving the
D), the detection significance achieves a saturation level when
the GW-induced timing residuals are much stronger than the
intrinsic pulsar timing noise (Jenet et al. 2005). From Figure 3,
we note that the saturation level of detection significance is large,

Tes$ng'the'proper$es'of'gravitons'with'the'SKATPTA'

Polariza3on!modes!–!Spin!2?! Dispersion!rela3on:!massive!graviton?!

Lee et al.( 2008) 

Lee et al. (2010) 
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Radio'Astronomy'Sensi$vity'
!
Sensi3vity:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Gain:!
!
!
!
!
!
!

Most!Receivers!are!already!at!the!quantum!limit!=!Tsys!already!minimal!
Need!to!find!other!ways!to!improve!sensi3vity:!

ντντ ΔG
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ΔA
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.
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min ==
k
AG eff

2
=

• !Increase!gain!=!collec3ng!area!=!bigger!telescopes!!
• !Increase!bandwidth!(despite!increasing!man-made!RFI!)!
• !Enable!longer!integra3on!3me!=!cover!more!sky!per!minute!!



A'Revolu$on'in'Radio'Astronomy'
• !Go(digital!((Ability!to!sample,!digitze!&!process!wide!bandwidths!

• !Use!of!commodity!compu3ng!power!(incl.!GPUs)!and!FPGAs!

• !Ways!of!obtaining!“cheap”!collec3ng!area!

• !Replacing!hardware!(i.e.!metal)!with!electronic!and!so\ware!

• !Build!“radio!cameras”!to!increase!“field-of-view”!on!sky!and!even!!

• !!!allow!to!look!in!(some3mes)!vastly!different!direc3ons:!



Aperture'Arrays'&'Focal'Plane'Arrays'

=!phased!array!in!focus!of!dish!=!phased!array!on!ground!

Focal!plane!array!
(FPA)!

Field-of-View!

Primary!beams!

Airey!volume!

NEW:!HUGE!Field-of-View!and!mul3ple!beams!within!FoV!!



Aperture'Arrays'&'Focal'Plane'Arrays'

=!phased!array!in!focus!of!dish!=!phased!array!on!ground!

Focal!plane!array!
(FPA)!

Field-of-View!

Primary!beams!

Airey!volume!

NEW:!HUGE!Field-of-View!and!mul3ple!beams!within!FoV!!



New'technology:'Huge'increase'in'phase'space'

Sensi$vity'(Area/Bandwidth)'

Ra
di
o'
Fr
eq

ue
nc
y' • !Sampling!large!bandwidths!(20-50%)!

• !Providing!huge!FoVs!(>30!sq-deg)!
!!!hence!huge!survey!speed!!

• !Large!frequency!range,!e.g.!opening!
• !!!low-frequency!sky!!
• !Brute-force!increases!in!!
• !!!!collec3ng!area!!
• !Digital!signal!processing!
• !Huge!compu3ng!power…!

!!!New!science!and!new!discoveries!!



HPC!as!integral!part!of!telescope!–!and!beyond!

#  Severe!requirements!for!opera3on!and!long-term!storage:!!
-  Raw!data!rate!!!~1!PB/s!–!many!3mes!the!global!internet!traffic!today!!
-  A\er!on-line!processing,!s3ll!need!to!archive!about!3!EB/year!

#  SKA!as!a!„leading!edge“!HPC!applica3on!
-  200!Pflops!(2019)!
-  ca.!2.5!Eflops!(2024)!

#  Central!Signal!Processing!(CSP)!and!Science!Data!Processing!(SDP)!

Technology Opportunity – Architect, Design and 
Integrate Real-Time Data  Handling, HPC and Big Data  

Cray Inc. –  Jan 2014 4 

# 2013 estimate by 
SKA South Africa 

MeerKAT Pre-Cursor 
2014-15 

SKA Phase 1 
2017-19 

SKA Phase 2 
Est. 2020-24 

Data into CSP  2 Tbps 50 Tbps up to 5 Pbps 

Data into SDP 0.4 Tbps 20 Tbps up to 500 Tbps 

Into Storage 35 Gbps 300+ Gbps up to 2 Tbps 

Computing load 200 TFlops 30+ PFlops 3+ EFlops 

…
 

Incoming Signals from 
Dishes and Arrays 
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Switch 
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Science 
Archive 

A No-Stop* Data Streaming, Analysis, Storage and Distribution Architecture  

SKA 
One observatory South Africa – 2/3 
One observatory In Australia -1/3 

R
esearchers 
W

orldw
ide 

* - No-Stop means the data never stops incoming, must be either handled or dropped in bit bucket 
*Does  not  mean  “Non-Stop”,  h/w,  s/w  fail-over and silent error detection are not required 

# -  more information in further slides. 

Open Skies 
Merit Based 
Distribution 

To 
Researchers 

Analyse Signals to  
extract Data from Noise 

Process Data to 
Create Visibilities 

Archive Visibilities 
for Distribution 



Si$ng''
• !Southern!hemisphere!(for!astronomical!reasons)!
• !Far!away!from!popula3on!centres!and!harmful!radio!interference!
• !Rigorous!site!decision!process!over!many!years!–!decided!in!April!2012!
• !Southern!Africa!and!Western!Australia!



The'SKA:'Two'sites,'one'telescope'



250,000 element 
 Low Frequency  Aperture Array 

Phase'I'='10%'SKA'

254 dishes 
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as
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I':
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3'

• 50 MHz             100 MHz                           1 GHz                     10 GHz 

• S
ci

en
c

e 

• Cosmic Dawn & Reionization • Pulsars • Cosmology & 
• Galaxy Evolution 

€650M!capital!cost!
(capped)!+!10-12%!!
opera3on!costs!
!
!
Two!sites:!SA+AUS!
Two!antennae!types!
Freq.!50!MHz!–!3!GHz!
Construc3on:!2013-2023!
Early!science:!2020!



250,000 element 
 Low Frequency  Aperture Array 

Phased'construc$on'

254 dishes 
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50 MHz             100 MHz                           1 GHz                     10 GHz 

>250,000 element 
Low Frequency  Aperture Array 

2500 dishes 

Mid Frequency Aperture 
Array 

Sc
ie

nc
e Cosmic Dawn & Reionization Pulsars Cosmic Magnetism Cradle of Life Cosmology & 

Galaxy Evolution 

Costs!not!yet!determined!–!use!SKA1!!
Construc3on!a\er!success!of!SKA1!



MeerKAT'–'first'step'towards'SKA'
It!will!find!pulsars!–!and!will!3me!all!Southern!ones!with!unprecedented!sensi3vity!
•  MeerKAT!–!first!light!based!on!16!dishes!–!completed!in!2017!
!!!!!!-!Increases!sensi3vity!in!Southern!hemisphere!by!factor!~5!
!!!!!!-!More!sensi3ve!than!Effelsberg!or!GBT!and!similar!to!VLA!
!!!!!!-!MeerTime!(PI!Bailes,!TRAPUM!(PIs!Stappers/Kramer)!

First!light!of!ini3al!16-telescope!array:!
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The'ul$mate'system:'PSRTBH'
•  We'd!like!to!trace!the!space3me!around!a!black!hole!–!ideally!in!a!clean!way!!
•  In!a!perfect!world,!we!have!a!clock!around!it…!
•  …in!a!nearly!perfect!world,!we!have!a!pulsar!!
!
•  BH!proper3es!from!spin-orbit!coupling:!

[Wex!&!Kopeikin!1999;!Liu!2012;!Liu(et(al.(2014!]!

BH(mass(with(precision(<(0.1%�
BH(spin(with(precision(<(1%�
Cosmic(Censorship:(S(<(GM2/c�

Where!or!how!do!we!find!one?!
!!!!-!Find!"all"!pulsars!with!the!SKA!
!!!-!or!look!where!you!know!a!black!hole!to!be...�

With!a!fast!millisecond!pulsar!!
about!a!10-30!M"BH,!we!!
prac3cally!need!the!SKA:�
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A'wellTknown'superTmassive'Black'Hole'

Radio (8.5 GHz)

X-ray (0.5−7 keV)

IR (1.25 µm)

N

E

N

E

N

E

Mass:!

Spin:!
 [ Genzel et al. 2003, 2008; 
   Aschenbach et al. 2004; 
   Belanger et al. 2006;  
   Aschenbach 2010 ] 

![!Gillesen!et!al.!2008!]!

From!astrometry!of!orbi3ng!stars::!

MPE/Cologne!UCLA!

From!Wharton!et!al.!(2013)!
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'Rela$vis$c'effects'for'a'pulsar'orbit'around'Sgr'A*'
Semi-major!axis:! !!!!!!!!!!!72!AU!=!860!RS!
Pericenter!distance:! !!!!!!!!!!!36!AU!=!430!RS!
Pericenter!velocity: !!!!!!!!!!!0.042!c!(~!20!×!Double!Pulsar)!
!
Pericenter!advance:!
!1pN: !2.8!!!!!deg/yr,!!!!! !ΔL!~!1.8!AU/yr!
!2pN: !0.014!deg/yr, !ΔL!~!1,400,000!km/yr!
!
Einstein!delay:!
!1pN: !15!min!
!2pN: !1.6!s!
!
Propaga3on!delay!(i!=!0°!/!i!=!80°):!
!Shapiro!1pN: !!!!!!!!46.4!s!!!/!!246.9!s!
!Shapiro!2pN: !!!!!!!!!0.2!s!!!!!/!!!!!!!8.0!s !!
!Frame!dragging: !!!!!!!!!0.1!s!! !!/!!!!!!!6.5!s!
!Bending!delay!(P!=!1s):!!!!!!0.2!ms!/!!!!!!4.2!ms!
!
Lense-Thirring!precession:!
!Orbital!plane!!ΩLT!!: !0.052!deg/yr,!!ΔL!~!107!km/yr!
!Similar!contribu3on!to!
Geod.!precession!1.4!deg/yr!

→ 

Pulsar!in!a!0.3!yr!eccentric!!
(e=0.5)!orbit!around!Sgr!A*!
!
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Full'3DTdirec$on'of'BH'spin'from'pulsar'orbit'
-!We!can!measure!the!mass!of!Sgr!A*!to!precision!of!~!1M"!

-!!Orbital!varia3on!of!pulsar!orbit!due!to!Lense-Thirring!gives!2-D!projec3on!(Liu!et!al.!2012)!

-!Rela3ve!mo3on!of!pulsar!orbit/SGR!A*!to!SSB!gives!3rd!direc3on!(Psal3s,!Wex!&!MK!'15)!!

 !!Full!3-D!orienta3on!plus!magnitude!to!about!~0.1%.!!

S

Υ

K0

r

φ

λ

Pb=1yr,!e=0.8,!i=60o,!ω=45o!

Ω=0o,!!!Ω!=90o! PWK15!



Tes$ng'the'noThair'theorem'

Pulsar!in!a!0.1!yr!orbit!around!Sgr!A*:!
!-!Secular(precession!caused!by!quadrupole!is!2!orders!of!magnitude!below!!
!!!!frame!dragging,!but!it!is!not!separable!from!frame-dragging!
-!Fortunately,!quadrupole!leads!to!characteris@c(periodic(residuals!!!Q!to!about!1%!

No-hair!theorem!!⇒!!Q!=!-S2/M(((units!where!c=G=1)!

PWK15!

A!single!(even!normal)!pulsar!is!sufficient!�

Χ=1� Χ=0.2�
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Par$al'visibility'&'External'perturba$ons'

•  Even!in!case!of!stellar!perturba3ons!–!which!will!act!away!from!periapsis!–!!
!!!!we!can!use!par3al!orbit!observa3ons!!!
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Blocked!in!the!op3cal!–!but!visible!at!radio!frequencies!!
See!Falcke!et!al.!(2000)!for!the!ini3al!idea!how,we!could!see!the!„shadow“!

Image by H. Falcke 

RS =
2Gm

c2
= 3km⇥m(M�)

2.6!x!1010!m!

Image'of'the'shadow'of'the'event'horizon'



Image'of'the'shadow'of'the'event'horizon'

-!the!shorter!the!wavelength,!the!smaller!the!radio!source!(scaIering!)!
-!at!λ=1.3!mm!the!radio!source!becomes!the!size!of!the!event!horizon:!
-!the!event!horizon!shadow!should!be!50!µas!in!diameter!!
-!global!mm-wave!VLBI!(EHT)!with!ALMA!has!the!resolu3on!to!study!it!!
-!see!Dimi3ris!talk!!!

? 
smaller wavelengths (higher frequencies) 

technology progress (GHz � THz) 

wavelength 

angular size 

Figure by Heino Falcke 



Combining'pulsars'with'other'methods'

From!Event!Horizon!Telescope/BlackHoleCam!imaging!observa3ons:!
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Moscibrodzka!et!al.!(2014)!
BHC!funded!by!ERC!Synergy!Grant:!
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Combining'image'and'pulsars'

A: face-on 
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•  Space!3me!is!probed!at!different!distances!(far-field!&!near-field)!
•  Impact!of!possible!dark!maIer!near!BH!will!be!seen.!
•  Different!systema3c!uncertain3es!(and!degeneracies):!!!!
!!!!!!!!!!-!Stars!+!pulsar!orbit!precession!give!spin!
!!!!!!!!!!-!Pulsar!3ming!gives!quadrupole!moment!
!!!!!!!!!!-!EHT!shadow!may!reveal!devia3on!from!Kerr!value!
Combina3on!will!lead!to!uncorrelated!measurement!of!spin!and!quadrupole!moment!

Psal3s,!Wex!&!MK!(2016)!



!
Fundamental!Physics!in!Radio!Astronomy!
Max-Planck-Ins3tut!für!Radioastronomie!

Summary'
•  Unfortunately,!Einstein!did!not!live!to!see!discovery!of!pulsars!–!and!their!usage!
•  Pulsars!probe!gravity!for!strongly!self-gravita3ng!bodies!providing!unique!tests!
•  Measurements!are!usually!clean!and!precise!–!confirming!GR!so!far!
•  Tight!constraints!on!alterna3ve!theories!which!need!to!pass!binary!pulsar!tests!
•  We!have!seen!new!never-seen-before!rela3vis3c!effects!in!the!Double!Pulsar!
•  New!"most-rela3vis3c"!binary!pulsar!discovered!–!stay!tuned!
•  Beau3ful!new!results!for!rela3vis3c!spin-precession!–!stay!tuned!
•  Direct!detec3on!of!gravita3onal!waves!maybe!soon!–!also!using!pulsars!
•  Ul3mately,!we!will!probe!BH!proper3es!(plus!image!)!for!extreme!tests!of!GR!
•  Future!telescopes!-!especially!the!MeerKAT!&!SKA!-!will!allow!so!much!more!!
!


