Deep Underground Xenon Observatory in China: the PandaX Experiment

Jianglai Liu Institute of Nuclear and Particle Physics Shanghai Jiao Tong University

Composition of the universe

Evidence of dark matter

Galaxy rotational curve

Gravitational lensing

Large structure formation

Bullet cluster

Galactic halo

Local density around us: 0.3(0.1) GeV/cm³

Elementary particles?

- Most "popular": weakly-interacting massive particle = WIMP
- Detectable in laboratory experiment!

WIMP direct detection

- The solar system is cycling the center of galaxy with 220 km/s speed
- DM direct detection: wait for DM interacting atomic nucleus in the detector, and detect its recoil (Goodman & Witten, 1985)

Detection signal

Up-to 10s of keV of nuclear recoil energy Almost exponential spectrum (low threshold ~keV important)

Most sensitive experiment is approaching 1 evt/100kg/year

Where we are?

Dual phase xenon experiments

Dual phase xenon detector is

Large target

Low energy calorimeter

3D camera

Epeca Contraction

XENON100, 60 kg, completed 2012, Gran Sasso XENON1T commissioning

LUX, 250 kg, running, Sanford Lab LZ(multi-ton) in preparation Signal/bkg discriminator

Underground experiments

- Every second there are 10⁸ dark matter passing through us
- Our body has 10²⁹ atoms

- Less <1 nucleus is hit <u>per</u> year!
- But our body is hit 10⁸/day by environmental background radiation!
- Hide detector in deep underground lab, and put massive shield

China Jinping Underground Lab

Ongoing experiments in Italy, the United States and Japan are now being joined the PandaX (see <u>'Dark and deep</u>'). Installed in the deepest laboratory in the world, 2, mountain of <u>JinPing</u> in Sichuan province, PandaX will this year begin monitoring 1 hopes to scale the tank up to 1 tonne by 2016, which would mean that the experimentation any other dark-matter search. "We want to demonstrate that world-class rese China," says Xiangdong Ji, a physicist at Shanghai Jiao Tong University in China.

PANDAX Usable xenon: 120 kilograms Status: Yet to take data. Plans for tonne-scale experiment in 2016 at a cost of \$15 million.

XMASS: Xe detector for weakly interacting massive particles; LUX: Large Underground Xenon detector; PANDAX: Particle and Astrophysical Xenon Time Projection Chamber

PandaX Experiments

PandaX-I: 120 kg DM experiment 2009-2014

PandaX-II: 500 kg PandaX-xT: **DM** experiment 2014-2017

multi-ton (~4-T) DM experiment 2017- or 2018-

PandaX-III: 200 kg to 1 ton HP gas ¹³⁶Xe **OvDBD** experiment 2016-

PANDAX = Particle and Astrophysical Xenon Experiments

PandaX collaboration

Started in 2009, ~50 people

- Shanghai Jiao Tong University (2009-)
- Peking University (2009-)
- Shandong University (2009-)
- Shanghai Institute of Applied Physics, CAS (2009-)
- University of Science & Technology of China (2015-)
- China Institute of Atomic Energy (2015-)
- Sun Yat-Sen University (2015-)
- Yalong Hydropower Company (2009-)
- University of Maryland (2009-)
- Alternative Energies & Atomic Energy Commission (2015-)
- University of Zaragoza (2015-)
- Suranaree University of Technology(2016-)

First delivery of PandaX equipment to Jinping

PandaX apparatus

PandaX-I results

Phys. Rev. D 92, 052004(2015)

- Completed in Oct.
 2014, with 54.0 x 80.1
 kg-day exposure
 - Data strongly disfavor all previously reported claims
- Competitive upper limit for low mass WIMP among xenon experiments

PandaX-II

- New inner vessel with clean SS
- New and taller TPC
- More 3" PMTs and improved base design with split -ve and +ve HV
- New isolated skin veto region

Detector construction

Putting all together

- Run8+run9=98.7 days, exposure:3.3x10⁴ kg-day
- Largest dual phase xenon experiment producing science data

Results from PandaX-II run 8

 Cut-and-count analysis with 2 candidates and 3.2(0.7) expected background

 Low mass region: competitive with SuperCDMS 2014

 High mass region: similar exclusion limit as XENON100 225-day

306 x 19.1 kg-day

Major upgrade in run 9

Items	Status in Run 9		
Krypton level	Reduced by x10		
Exposure	Increased x4 (79.6 vs 19.1 day)		
ER calibration	Using tritium calibration		
NR calibration	Statistics x6		
Analysis	Improved position reconstruction		
Background	Accidental background suppressed more than x3 using BDT		

Typical single scattering event

Extensive calibration program

Internal/external ER peaks:

- Detector uniformity corrections
- Light/charge collection parameters

- Low rate AmBe neutron source:
 ⇒ Simulate DM NR signal
- CH₃T injection: tritium beta decays
 ⇒ Simulate ER background

Electron lifetime evolution

Dominated the uniformity correction (but well self-calibrated)
Built into the DM and background signal model

Extraction of detector parameters

$$E_{ee} = W \times \left(\frac{\text{S1}}{\text{PDE}} + \frac{\text{S2}}{\text{EEE} \times \text{SEG}}\right)$$

• W = 13.7 eV

- Gaussian fits to all ER peaks in data
- Uncertainty on each data point estimated using energy nonlinearity
- Linear fit in S1/E vs S2/E to extract PDE and EEE

NR calibration

- 162.4 hours of AmBe data taken, with ~3400 low energy single scatter NR events collected
- NR median curve and NR detection efficiency determined

NR detection efficiency

- NR efficiency obtained by data/MC(NEST) ratio
- S1 [3,45] PE, S2
 [100_{raw}, 10000_{corr}] PE
- Adopted 1.1 keV_{nr} threshold
- NR efficiency function agrees with that obtained in tritium ER calibration

ER calibration with tritium

- 18.0 hours of tritium data taken, with ~2800 low energy ER events collected in the FV
- 9 events leaked below NR median, $(0.32 \pm 0.11)\%$
- Consistent with Gaussian expectation

Low energy rate in run 9

Item	Run 8 (mDRU)	Run 9 (mDRU)
85 Kr	11.7	1.19
127 Xe	0	0.42
222 Rn	0.06	0.13
220 Rn	0.02	0.01
Detector material ER	0.20	0.20
Total	12.0	1.95

- Events selected in the FV with energy <10 keV_{ee}
- ~2 mDRU in the FV on average, lowest reported background level in dual phase xenon
- Decrease over time due to ¹²⁷Xe decay

- 0.43% β decay with delayed ^{85m}Rb γ deexcitation
- Uniformly distributed
- Significantly reduced (x10) after the distillation

integrated rate around 30 keV_{ee}

Average ¹²⁷Xe rate in the DM search region: 0.42±0.10 mDRU

Accidental background

Isolated S1 and S2 were selected and randomly paired to determine accidental distribution

Further suppressed this background by x3 using boosted decision tree (BDT) technique

Final candidates (run 9)

Gray: all Red: below NR median Green: below NR median and in FV

- 389 total candidates found in the FV (329 kg)
- 1 below NR median
- Outside FV, edge events more likely to lose electrons, leading to S2 suppression

Final candidates (run 9)

Final candidate (run 8)

Summary of final candidates

	ER	Accidental	Neutron	Total	Total
				Expected	observed
Run 8	622.8	5.20	0.25	$628 {\pm} 106$	734
Below	2.0	0.33	0.09	$2.4{\pm}0.8$	2
<u>NR median</u>	277.0	14.0	0.01	202 ± 46	200
Run 9	311.9	14.0	0.91	393 ± 40	389
Below	1.2	0.84	0.35	2.4 ± 0.7	1
NR median		0.01	0.00		-

Combined exposure: 33000 kg-day

SI cross section limit

90% limit (PLL, CL_s), SI isoscalar elastic DM-nucleon

Minimum exclusion: $2.5 \times 10^{-46} \text{ cm}^2 @ 40$ GeV/c^2 , improved x10 from run 8, >x2 from LUX 2015

 More constraining result could be obtained with a tuned NR model (in some aspects agreeing better with NR calibration).
 Conservatively used
 NEST model for official results

SI cross section limit

90% limit (PLL, CL_s), SI isoscalar elastic DM-nucleon 10^{-42} WIMP-nucleon cross section (cm²) This work (Run8+Run9) This work (Run8+Run9), tuned NEST PandaX-II Commissioning (Run8) 10⁻⁴³ XENON100, 2012 LUX 2015 LUX IDM16 10^{-44} 10⁻⁴⁵ 10⁻⁴⁶ 10^{3} 10^{2} 10 WIMP mass (GeV/c^2) Released at IDM on July 21, arXiv:1607.07400 on July 26, accepted by PRL on Aug. 16

LUX 332-day results presented at IDM (arxiv:1608.07648) with similar exposure and limit (slightly more constraining than PandaX towards high mass)

This is the first low background result from PandaX-II, a long life (~500 live-day) ahead of this!

PandaX new home: CJPL-II

8 experimental Halls, 14(H)x 14(W)x65(L) m each.

B4, PandaX site!

PandaX in CJPL-II

A large experimental infrastructure to host multiple dark matter and double beta detectors

To achieve an extremely low background environment, use ultrapure water contained in a large SS water tank with 25(I)x13(w)x13(h), 3400 ton capacity

3-40 ton LXe DM experiment

HP Xe136 experiment (multiple detectors)

Swimming pool under 2400 m

OvDBD

Normal double-β decay: rare but allowed 2nd order standard model process Zero-neutrino double- β decay:

- Neutrino is Majorana
- Lepton number violation
- Neutrino absolute mass

Return of 1920's

High pressure ¹³⁶Xe TPC

- 0vDBD signal: two electrons emitting from the same vertex with a summed energy at the Q value
- HP xenon:
 - Excellent energy resolution
 - Tracking ability: at 10 atm,
 2-beta track length about
 30 cm with two Bragg
 peaks, discrimination with
 gamma background⇒
 smoking gun for discovery

PandaX-III

- TPC: 200 kg, 10 atm, symmetric, double-ended charge readout with cathode in the middle
 - Charge readout plane: tiles of square microbulk Micromegas (MM) modules with X, Y strips
 - The largest low-background high pressure TPC
- Four more upgraded modules for a ton scale experiment

Microbulk micromegas

Invented at Saclay

- Microbulk MicroMegas films made of Copper and Kapton only (radio-pure)
- 20 cm by 20 cm
- XY strip readout; 3mm pitch size; 128 channel
- 3% energy resolution at 2.5 MeV

Double side Cu-coated (5 μ m) Kapton foil (50 μ m) Construction of readout strips/pads (photolithography) Attachment of a single-side Cu-coated kapton foil (25/5 μ m) Construction of readout lines Etching of kapton Vias construction 2^{nd} Layer of Cu-coated kapton Photochemical production of mesh holes Kapton etching / Cleaning 2 (2010): P02001

Prototype TPC @ SJTU

- 16 kg of Xenon at 10 bar (active mass within TPC) with one readout plane
- Study MM performance in a 0.5 m² array
- To study the energy calibration of TPC

 To develop algorithm of 3D electron track reconstruction and topological identification

7 MicroMegas

Electronics

ASIC AGET chips: generic electronics for TPC from CEA-Saclay

- 350 nm CMOS, mature technology
- 64 channel multiplex
- 512 sampling point per channel
- 12 bit ADC
- Dynamic range up to 10 pC
- Sampling rate: 1 MHz to 100 MHz

Ensure high energy resolution

AGET-based electronics are being tested and studied at Zaragoza, USTC, and SJTU

α tracks from prototype

Jianglai Liu, CEA-Saclay particle physics seminar

PandaX-III project

China: Shanghai Jiao Tong University, University of Science and Technology of

Summary and outlook

- Many exciting physics opportunities in PandaX at the world deepest CJPL
- PandaX-II has reached the forefront of the DM search, and will continue PandaX-II data taking till end of 2017
- The collaboration is going forward in preparation for PandaX-xT and PandaX-III!
- Welcome more collaborators!