Probing fermion flavour structure with rare and exotic Higgs boson processes

Rustem Ospanov for the ATLAS collaboration

University of Manchester

Saclay, November 21st, 2016

Standard Model

- Standard Model (SM) is a renormalizable quantum field theory of 12 fermions with 3 forces mediated by spin-1 gauge bosons
- Electroweak gauge symmetry is spontaneously broken by Brout-Englert-Higgs mechanism
- Predicts neutral scalar particle

"[The Higgs boson is] a particle needed for theories to work" - Gerard 't Hooft

The Higgs boson discovery at the LHC in 2012

2013 Nobel Physics Prize to François Englert and Peter Higgs

The Higgs boson discovery completes the SM, making it self-consistent up to the Planck energy scale

Gravitational lensing - "bullet cluster"

What is the origin of the dark matter?

Probing fermion flavour structure with Higgs boson

Rustem Ospanov

What is the origin of the fermion mass hierarchy? Why do neutrinos have mass?

Outline of this presentation

Higgs boson mass

- Higgs boson phenomenology at LHC
- Searches for $H \rightarrow \mu\mu$ decays
- Searches for flavour violating $H \rightarrow \mu \tau$ decays
- Searches for $t\bar{t}H$ production
- Searches for flavour violating top-Higgs coupling

Standard Model with ATLAS detector

- SM provides excellent description of experimental data
- ▶ Main reference processes for detector calibration: Z, J/ ψ , Υ
- ▶ LEP: *m*_Z = 91.1876 ± 0.0021 GeV

$H \rightarrow \gamma \gamma$: discovery channel

 κ_W - H to W coupling

- For the mass measurement, categorise events by photon conversion status and photon η
- Fit $f(m_{\gamma\gamma})$ to measure m_H : $f(m_{\gamma\gamma}) = B(p) + \mu \times S(m_H, \theta_{\text{syst}})$
 - B background shape
 $$\begin{split} B &\sim e^{p_1 \cdot m_{\gamma\gamma} + p_2 \cdot m_{\gamma\gamma}^2} \\ \mu &\text{- signal strength (SM } \mu = 1) \\ \theta_{\text{syst}} &\text{- systematic uncertainty} \end{split}$$

 κ_t - H to top quark coupling

$H \rightarrow ZZ^* \rightarrow 4I$: discovery channel

Higgs boson mass: ATLAS

Channel	Mass measurement [GeV]
$H \rightarrow \gamma \gamma$	$125.98 \pm 0.42 (\text{stat}) \pm 0.28 (\text{syst}) = 125.98 \pm 0.50$
$H \rightarrow ZZ$ llll	$124.51 \pm 0.52 (\mathrm{stat}) \pm 0.06 (\mathrm{syst}) = 124.51 \pm 0.52$
Combined	$125.36 \pm 0.37 (\text{stat}) \pm 0.18 (\text{syst}) = 125.36 \pm 0.41$

 $m_{H}^{4/}$ and $m_{H}^{\gamma\gamma}$ are compatible at 4.9%

Probing fermion flavour structure with Higgs boson

Higgs boson mass: ATLAS and CMS combination

ATLAS: $\Delta_{
m syst}(m_H^{4\mu}) pprox$ 10 MeV LEP: $m_Z = 91.1876 \pm 0.0021$ GeV

- ► Higgs boson mass is a free parameter of SM LHC: m_H = 125.09 ± 0.24 GeV
- All other Higgs boson properties are predicted by SM
 - Width, spin and parity
 - Couplings to gauge bosons and fermions
 - Production cross-sections and decay branching ratios
 - Perturbative corrections to SM parameters up to the Planck energy scale
- SM is self-consistent but not complete (and perhaps not natural)
 - Gravity
 - Dark matter and dark energy
 - Baryon asymmetry
 - Neutrino masses

Rich LHC programme to measure Higgs boson properties and to search for new phenomena in Higgs sector

Higgs boson production at LHC

 $\begin{array}{l} \mbox{Gluon fusion (ggF)} \sim 88\% \\ \mbox{N}^3 \mbox{LO}(\mbox{QCD} \sim 10^5 \mbox{ diagrams}) + \mbox{NLO}(\mbox{EW}) \\ \sigma_{\mbox{theory}} \sim 7\% \end{array}$

 $\propto \kappa_V$

 $\propto \kappa_t$

Probing fermion flavour structure with Higgs boson

Standard Model Higgs boson decays

- $\mathcal{B}_f = \frac{\Gamma_f}{\Gamma_H}$, $\Gamma_H^{SM} = 4.1 \text{ MeV}$
- 7 accessible channels for m_H = 125.09 GeV:

Branching ratio	[%]
H ightarrow bb	58.1 ± 1.9
H ightarrow WW	21.5 ± 0.9
H ightarrow au au	6.26 ± 0.35
H ightarrow ZZ	2.73 ± 0.11
$H ightarrow \gamma \gamma$	0.227 ± 0.011
$H ightarrow Z \gamma$	0.154 ± 0.014
$H ightarrow \mu \mu$	0.022 ± 0.001
H ightarrow ee	$\sim 5\cdot 10^{-7}$

Couplings to fermions: $\kappa_f \propto \frac{m_f}{VEV}$ Couplings to W and Z: $\kappa_V \propto \frac{m_V^2}{VEV}$

Narrow width approximation:

$$\sigma(i \to H \to f) = \sigma_i \times \mathcal{B}_f = \sigma_i \times \frac{\Gamma_f}{\Gamma_H}$$

Experiments observe events:

$$N_{\text{expected}} = \mathcal{L} \cdot A \cdot \epsilon_{exp} \cdot \sigma_i \cdot \mathcal{B}_f$$

 $\ensuremath{\mathcal{L}}$ - integrated LHC luminosity

A - detector acceptance

 ϵ_{exp} - detector efficiency

Measure signal strengths - observed rates normalised by SM prediction:

$$\mu_i \times \mu^f = \frac{\sigma_i}{\sigma_i^{\mathsf{SM}}} \times \frac{\mathcal{B}_f}{\mathcal{B}_f^{\mathsf{SM}}}$$

Higgs boson production and decay measurements

\mathcal{B}_f/σ_i	ggF	VBF	VH	tīH		
H ightarrow bb		\checkmark	\checkmark	\checkmark		
$H \rightarrow WW$	\checkmark	\checkmark	>	\checkmark		
$H \rightarrow \tau \tau$	\checkmark	\checkmark	>	\checkmark		
$H \rightarrow ZZ$	\checkmark	\checkmark	\checkmark	\checkmark		
$H \rightarrow \gamma \gamma$	\checkmark	\checkmark	>	\checkmark		
$H \rightarrow Z\gamma$	\checkmark	\checkmark	>	\checkmark		
$H ightarrow \mu \mu$	\checkmark	\checkmark				
$H \rightarrow \mu \tau$	\checkmark					
✓ - current measurement						

✓ - current search

Higgs boson production and decays with LHC Run 1

- Combined signal yield: $1.09 \pm 0.07(\text{stat}) \pm 0.08(\text{syst})$
- Measured VBF significance: 5.4σ
- Measured $H \rightarrow \tau \tau$ significance: 5.5 σ

Probing fermion flavour structure with Higgs boson

Higgs boson production cross-section

Decay channel		Total cross section $(pp \rightarrow H + X)$)
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$
$H \rightarrow \gamma \gamma$	35^{+13}_{-12} pb	$30.5^{+7.5}_{-7.4}$ pb	37^{+14}_{-13} pb
$H \rightarrow ZZ^* \rightarrow 4\ell$	33^{+21}_{-16} pb	37^{+9}_{-8} pb	81 ⁺¹⁸ ₋₁₆ pb
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	33.3 ^{+5.5} _{-5.3} (stat.) ^{+1.7} _{-1.3} (syst.) pb	$59.0^{+9.7}_{-9.2}$ (stat.) $^{+4.4}_{-3.5}$ (syst.) pb
SM predictions [7]	$19.2\pm0.9~\rm{pb}$	$24.5 \pm 1.1 \text{ pb}$	$55.5^{+2.4}_{-3.4}$ pb

Particle masses and Higgs boson

- Search for rare Higgs boson processes to measure flavour structure of SM
- Search for exotic Higgs boson decays to probe for BSM physics

"Evidently the Higgs system knows something that we do not know: the difference between the generations" - Martinus Veltman.

Outline of this presentation

- Higgs boson mass
- Higgs boson phenomenology at LHC
- Searches for $H \rightarrow \mu \mu$ decays
- Searches for flavour violating $H \rightarrow \mu \tau$ decays
- Searches for $t\bar{t}H$ production
- Searches for flavour violating top-Higgs coupling

Search for $H \rightarrow \mu \mu$

Background model:

 $B = f \cdot (BW * GS) + (1 - f) \cdot C \cdot \frac{e^{-A \cdot m_{\mu\mu}}}{m_{\mu\mu}^3}$

BW = Breit-Wigner PDF, GS = Gaussian

- Search for narrow $\mu^{\pm}\mu^{\mp}$ resonance: $f(m_{\mu\mu}) = B(p) + \mu \times S(m_H, \theta)$
- Irreducible Z/γ^* background
 - Z resonance, continuous γ*, plus interference terms
 - PDF and NLO no analytic form
- Empirical background function is fitted in sidebands
- Subdominant tt and di-bosons backgrounds suppressed with LT and b-jet vetos

Search for $H \rightarrow \mu \mu$

- 7 event categories:
 - Di-muon $p_T^{\mu\mu} (p_T^H > p_T^{Z/\gamma^*})$
 - Muon η (motivated by p_T^{μ} resolution)
 - VBF production

$|\eta_{\mu}| < 1$ for both muons

$|\eta_{\mu}|>1$ for at least one muon

Search for $H \rightarrow \mu\mu$: ATLAS VBF category

- ▶ 14 input variables using muons, MET, HT and di-jet information
- ▶ BDT > 0.7 results in 51.3 (2.4)% efficiency for VBF signal (total background)
- 38% ggF contamination
- Use simplified background function

Search for $H \rightarrow \mu \mu$

Central medium p_T

Event yields for $120 < m_{\mu\mu} < 130$ GeV

	Signal[125]	Z+jets	Top	Di-boson	Total background	S/\sqrt{B}	Data
Central, low $p_T^{\mu\mu}$	4.0	3404	6	10	3419	0.07	3552
Non-central, low $p_T^{\mu\mu}$	10.8	13184	23	45	13252	0.09	14262
Central, medium $p_T^{\mu\mu}$	9.0	2872	49	31	2952	0.17	2883
Non-central, medium $p_T^{\mu\mu}$	23.9	10255	177	157	10590	0.23	11269
Central, high $p_T^{\mu\mu}$	6.6	1128	106	27	1261	0.19	1272
Non-central, high $p_T^{\mu\mu}$	15.4	3939	334	106	4379	0.23	4264
VBF	2.5	78	7	1	85	0.28	117

Probing fermion flavour structure with Higgs boson

Rustem Ospanov

Non-central high p_T

Search for $H \rightarrow \mu \mu$

• $H \rightarrow \mu\mu$ decay for $m_H = 125.09$ GeV is excluded at 95% CL:

- ATLAS observed (expected): 4.4 (5.5)×SM with 13 TeV data
- ATLAS observed (expected): 3.5 (4.3)×SM with 7+8+13 TeV data
- Sensitivity is dominated by statistical uncertainty on measured background

Outline of this presentation

- Higgs boson mass
- Higgs boson phenomenology at LHC
- Searches for $H \rightarrow \mu \mu$ decays
- \blacktriangleright Searches for flavour violating $H \rightarrow \mu \tau$ decays
- Searches for $t\bar{t}H$ production
- Searches for flavour violating top-Higgs coupling

Charged Lepton Flavour Violation

- Charged Lepton Flavour Violating (CLFV) Higgs boson couplings:
 μ-e, τ-μ and τ-e
- CLFV couplings are negligible in SM but present in many BSM models
- ▶ $\mathcal{B}(H o \mu e) < O(10^{-8})$ constrained by null results for $\mu o e\gamma$ search
- $\mathcal{B}(H \to \mu \tau) < O(0.1)$ constrained by $\tau \to \mu \gamma, e\gamma$ (and other results)
- \blacktriangleright LHC is sensitive to $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ decays at percent level
 - ▶ In Run 1 CMS observed 2.4 σ excess with best fit $\mathcal{B}(H \rightarrow \mu \tau) = 0.84^{+0.39}_{-0.37}\%$

Search for $H \rightarrow \mu \tau$

- Split by visible decays of τ lepton into hadrons (τ_h) or electron (τ_e)
 - $H \rightarrow \mu \tau_h \nu$
 - $H \rightarrow \mu e \nu$
- Signal categories by background type

Search for $H \rightarrow \mu \tau$

Search for $H \rightarrow \mu \tau$

- Search for broad $m_{\mu\tau}$ resonance with (fine tuned) cut-based analyses
- Reconstruct $m_{\mu\tau}$ using Missing Mass Calculator

Search for $H \rightarrow \mu \tau$: backgrounds

- Mis-id leptons from multi-jet and W+jet backgrounds measured from data:
 - Multi-jet from same sign events
 - W+jet from dedicated control region
- ▶ Irreducible $Z/\gamma^* \to \tau \tau$
 - τ_h embedding with $Z \rightarrow \mu \mu$
- Di-boson and tt from simulation

W+jet control region for fake τ_h

Search for $H \rightarrow \mu \tau$: results

			Obs. (%)	Exp. (%)	Best fit (%)
ATLAS	8 TeV	${\cal B}(H o \mu au)$	< 1.43	< 1.01	$0.53^{+0.51}_{-0.51}$
CMS	13 TeV	${\cal B}(H o \mu au)$	< 1.20	< 1.62	$-0.76^{+0.81}_{-0.84}$
CMS	8 TeV	$\mathcal{B}(H o \mu au)$	< 1.51	< 0.75	$0.84^{+0.39}_{-0.37}$

CMS 13 TeV and ATLAS 8 TeV results neither rule out nor confirm 8 TeV CMS excess

Probing fermion flavour structure with Higgs boson

Rustem Ospanov

Search for $H \rightarrow \mu \tau$: results

			Obs. (%)	Exp. (%)	Best fit (%)
ATLAS	8 TeV	${\cal B}(H o \mu au)$	< 1.43	< 1.01	$0.53^{+0.51}_{-0.51}$
CMS	13 TeV	${\cal B}(H o \mu au)$	< 1.20	< 1.62	$-0.76^{+0.81}_{-0.84}$
CMS	8 TeV	$\mathcal{B}(H o \mu au)$	< 1.51	< 0.75	0.84 ^{+0.39} 0.37

CMS 13 TeV and ATLAS 8 TeV results neither rule out nor confirm 8 TeV CMS excess

$$\begin{split} \Gamma(H \to \mu\tau) &= \frac{m_H}{8\pi} (|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2) \\ \mathcal{B}(H \to \mu\tau) &= \frac{\Gamma(H \to \mu\tau)}{\Gamma(H \to \mu\tau) + \Gamma_{SM}} \\ \end{split}$$

$$\begin{aligned} \mathsf{CMS at 13 TeV:} \\ \sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 3.16 \times 10^{-3} \end{aligned}$$

Outline of this presentation

- Higgs boson mass
- Higgs boson phenomenology at LHC
- Searches for $H \rightarrow \mu \mu$ decays
- Searches for flavour violating $H \rightarrow \mu \tau$ decays
- Searches for $t\bar{t}H$ production
- Searches for flavour violating top-Higgs coupling

Is the electroweak vacuum stable?

Figure from arXiv:1608.02555

Search for $t\bar{t}H$ production at 13 TeV

- Measure directly magnitude and phase of the top quark Yukawa coupling
 - Non-zero phase implies CP violation
- ► 3 *t*t̄*H* analyses:
 - $H \rightarrow bb$
 - $\blacktriangleright H \rightarrow WW, \tau\tau, ZZ$
 - $\blacktriangleright \ H \to \gamma \gamma$

- ▶ Search for $t\bar{t}H$ with $H \rightarrow WW, \tau\tau, ZZ$ decays
- ▶ 4 analysis channels selected by number of leptons and jets

Higgs boson decay mode $A \times \epsilon$							
Category	WW^*	au au	ZZ^*	Other	$(\times 10^{-4})$		
$2\ell 0\tau_{\rm had}$	77%	17%	3%	3%	14		
$2\ell 1\tau_{\rm had}$	46%	51%	2%	1%	2.2		
3ℓ	74%	20%	4%	2%	9.2		
4ℓ	72%	18%	9%	2%	0.88		

 \blacktriangleright 2 same sign electron or muon with ≥ 1 b-tagged jets and ≥ 5 jets

- Main irreducible backgrounds estimated from MC: ttW, ttZ
- Main detector background estimated from data:
 - Non-prompt electrons and muons from B hadron decays
 - Wrong sign electrons

Post-fit event yields

	$2\ell 0\tau_{had} ee$	$2\ell 0\tau_{had} e\mu$	$2\ell 0\tau_{had} \mu\mu$	$2\ell 1\tau_{had}$	3ℓ	4ℓ
$t\bar{t}W$	3.2 ± 0.9	10.4 ± 2.9	7.4 ± 1.8	1.0 ± 0.5	6.5 ± 1.5	
$t\bar{t}(Z/\gamma^*)$	1.53 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.7 ± 0.4	11.3 ± 1.9	1.08 ± 0.20
Diboson	0.40 ± 0.26	2.6 ± 1.5	0.8 ± 0.5	0.21 ± 0.15	1.9 ± 1.0	0.04 ± 0.04
Non-prompt leptons	9 ± 4	11 ± 4	8.9 ± 3.3	1.9 ± 1.6	15 ± 4	0.17 ± 0.10
Charge misreconstruction	7.2 ± 1.4	7.6 ± 1.8		0.25 ± 0.03		
Other	0.83 ± 0.16	2.3 ± 0.6	1.5 ± 0.4	0.66 ± 0.16	3.4 ± 0.8	0.12 ± 0.05
Total background	22.2 ± 3.4	39 ± 5	21 ± 4	5.7 ± 1.7	39 ± 5	1.42 ± 0.24
$t\bar{t}H$ (2.5 × SM)	5.3 ± 1.8	13 ± 4	7.6 ± 2.5	4.0 ± 1.2	16 ± 5	1.5 ± 0.5
Data	26	59	31	14	46	0

Probing fermion flavour structure with Higgs boson

Combined search for $t\bar{t}H$ at 13 TeV

 \blacktriangleright Combined $t\bar{t}H$ significance is 2.8 σ relative to the background only hypothesis

Outline of this presentation

- Higgs boson mass
- Higgs boson phenomenology at LHC
- Searches for $H \rightarrow \mu \mu$ decays
- Searches for flavour violating $H \rightarrow \mu \tau$ decays
- Searches for $t\bar{t}H$ production
- Searches for flavour violating top-Higgs coupling

Flavour Changing Neutral Currents in top quark sector

- Flavour Changing Neutral Currents (FCNC) processes in the top quark sector are suppressed in the SM but may be enhanced in some models
- ► Generic searches for top FCNC processes at HERA, LEP, Tevatron and LHC:
 - Limits on $\mathcal{B}(t \to qX)$ with $X = \gamma, Z, H$
 - Limits on production, for example: $qg \rightarrow t$
- ▶ Here, focus on searches for top-Higgs FCNC decays via:
 - $t\overline{t} \rightarrow tqH \rightarrow Wb + u(c)H$
- Study clean or high rate Higgs boson decay modes:
 - $\blacktriangleright \ H \to \gamma \gamma$
 - ▶ $H \rightarrow bb$
 - $H \rightarrow WW, ZZ, \tau\tau \rightarrow$ multi-leptons

Flavour Changing Neutral Currents in top quark sector

Search for $t \rightarrow qH$: $H \rightarrow bb$

- ATLAS uses 9 categories for jets and b-jets
 - tt → Wb + uH most sensitive ch.: 4 jets, 3 b-jets
 - tt → Wb + cH most sensitive ch.: 4 jets, 4 b-jets
- Construct signal and background probabilities computed using reconstructed top and Higgs boson masses, and b-tagging weights

9 categories for jet and b-jet multiplicity

ATLAS search for $t \rightarrow qH$: $H \rightarrow bb$

Events / 0.05 Events / 0.05 ATLAS ATLAS Data Data √s=8 TeV. 20.3 fb⁻¹ →WbHc (BR = 1%) →WbHc (BR = 0.17%) 50 50 √s=8 TeV. 20.3 fb⁻¹ tī+liaht-iets tt+light-iets i. 4 b i, 4 b ī+bb tī+bb Pre-fit Post-fit 40 40 Non-tt Non-tt Total Bkg unc. Total unc. 30 30 20 20 10 10 0 Data / Bkg Data / Pred 1.5 1.25 0.5 0.75 0. 0.3 0.5 0.6 0.8 0.9 0 0.6 0.8 0.9 .2 0.4 D n

 Signal and background probabilities computed using reconstructed top and Higgs boson masses, and b-tagging weights

4 jet, 4 b-jet pre-fit

4 jet, 4 b-jet post-fit

Search for $t \rightarrow cH$ and $t \rightarrow uH$: results

- $\blacktriangleright~H\to\gamma\gamma$ sensitivity is dominated by statistical uncertainty
- ▶ Systematic uncertainties are important for $H \rightarrow WW^*$ and $H \rightarrow bb$

Search for $t \rightarrow qH$: results

			Obs. (%)	Exp. (%)
CMS	8 TeV	$\mathcal{B}(t ightarrow cH)$	< 0.40	< 0.43
ATLAS	8 TeV	$\mathcal{B}(t ightarrow cH)$	< 0.46	< 0.25
CMS	8 TeV	$\mathcal{B}(t ightarrow uH)$	< 0.55	< 0.40
ATLAS	8 TeV	$\mathcal{B}(t ightarrow uH)$	< 0.45	< 0.29

 $\blacktriangleright \ \mathcal{L}_{FCNC} = \lambda_{tcH} \overline{t} H c + \lambda_{tuH} \overline{t} H u + h.c.$

$$\begin{split} \mathcal{B}(t \to qH) &= (\lambda_{tcH}^2 + \lambda_{tuH}^2)/(g^2 \cdot |V_{tb}|^2 \cdot \chi^2) \\ g &= 2m_W/\nu, \, x = \text{kinematic factor,} \end{split}$$

ATLAS: $|\lambda_{tqH}| = (1.92 \pm 0.02) \sqrt{\mathcal{B}(t
ightarrow qH)}$

• ATLAS observed: $|\lambda_{tcH}| < 0.13$ and $|\lambda_{tuH}| < 0.13$

Summary and outlook

- LHC experiments have performed extensive searches for rare and flavour violating Higgs boson processes
- ▶ $\mathcal{B}(H \to \mu\mu) < 3.5 \times \text{SM}$ already rule out universal Higgs boson couplings to the leptons
- \blacktriangleright CMS observes a mild excess in $H\to\mu\tau$ search with 8 TeV data not yet ruled out or confirmed by new 13 TeV data
- ▶ $\mathcal{B}(t \to qH) \lesssim 0.5\%$ strict limits on top-Higgs FCNC processes
- ATLAS approaches SM sensitivity for $t\bar{t}H$ production
- New 13 TeV results are becoming available expect significant improvements with forthcoming Run 2 results

Thank you!

BACKUP

 $H \rightarrow \gamma \gamma$

 $f(m_{\gamma\gamma}) = B(p) + \mu imes S(m_H, heta_{
m syst})$

B - background shape $B \sim e^{p_1 \cdot m_{\gamma\gamma} + p_2 \cdot m_{\gamma\gamma}^2}$ μ - signal strength (SM $\mu = 1$)

Fit $f(m_{\gamma\gamma})$ to measure m_H

Higgs boson mass: systematic uncertainty

LEP: $m_Z = 91.1876 \pm 0.0021 \text{ GeV}$

▶ 2 same sign electron or muon with $1\tau_{had}$, ≥ 1 b-tagged jets and ≥ 4 jets

▶ 3 electron or muon with \geq 1 b-tagged jets and \geq 3 jets

Higgs boson at 13 TeV

Search for $H \rightarrow \mu\mu$: ATLAS VBF category

- 14 input variables: muons, MET, HT and di-jet
- BDT > 0.7 results in 51.3 (2.4)% efficiency for VBF signal (for total background)
- ▶ 38% ggF contamination

Search for $H \rightarrow \mu \mu$: $m_{\mu\mu}$ spectra

Search for $H \rightarrow \mu\mu$: ATLAS systematic uncertainty

	Signal[125]	Z+jets	Тор	Di-boson	Total background	S/\sqrt{B}	Data
Central, low $p_T^{\mu\mu}$	4.0	3404	6	10	3419	0.07	3552
Non-central, low $p_T^{\mu\mu}$	10.8	13184	23	45	13252	0.09	14262
Central, medium $p_T^{\mu\mu}$	9.0	2872	49	31	2952	0.17	2883
Non-central, medium $p_T^{\mu\mu}$	23.9	10255	177	157	10590	0.23	11269
Central, high $p_T^{\mu\mu}$	6.6	1128	106	27	1261	0.19	1272
Non-central, high $p_T^{\mu\mu}$	15.4	3939	334	106	4379	0.23	4264
VBF	2.5	78	7	1	85	0.28	117

Event yields for 120 GeV $< m_{\mu\mu} <$ 130 GeV

Experimental and theory uncertainty

	ggF signal	VBF signal
Experimental		
Luminosity	2.9%	
Muon efficiency	1%	
Muon momentum resolution	<1%	
Muon trigger	<1%	
Muon isolation	2%	
Jet energy scale	-	5%
Theoretical		
Higgs branching ratio	1.23%	b
QCD scales	4%	0.8%
PDFs and α_s	1.9%	2.1%
ggF contribution to VBF	22% (VBF region only)	-
Multi-parton interactions	9%	4%
Higgs $p_{\rm T}$ distribution	22% for $p_{\rm T} < 10 {\rm ~GeV}$ 13% for $p_{\rm T} > 10 {\rm ~GeV}$	-

Background modelling uncertainty

Categories	Spu. sig.	Spu./Signal[125]
Central low $p_{\rm T}^{\mu\mu}$	21	5.3
Non-central low $p_T^{\mu\mu}$	74	6.9
Central medium $p_{\rm T}^{\mu\mu}$	20	2.2
Non-central medium $p_{\rm T}^{\mu\mu}$	43	1.8
Central high $p_T^{\mu\mu}$	18	2.8
Non-central high $p_{\rm T}^{\mu\mu}$	35	2.3

Search for $H \rightarrow e\tau$: results

- Similar search for $H \rightarrow e\tau$ decays by both experiments
- CMS also searched for $H \rightarrow e \mu$ decays

			Obs. (%)	Exp.(%)
ATLAS	8 TeV	${\cal B}(H o e au)$	< 1.04	< 1.21
CMS	8 TeV	${\cal B}(H o e au)$	< 0.69	< 0.75
CMS	8 TeV	${\cal B}(H o e\mu)$	< 0.035	< 0.048

Search for $t\bar{t}H$

	$2\ell 0\tau_{had} ee$	$2\ell 0\tau_{had} e\mu$	$2\ell 0\tau_{had} \mu\mu$	$2\ell 1\tau_{had}$	3ℓ	4ℓ
$t\bar{t}W$	3.2 ± 0.9	10.4 ± 2.9	7.4 ± 1.8	1.0 ± 0.5	6.5 ± 1.5	_
$t\bar{t}(Z/\gamma^*)$	1.53 ± 0.29	4.3 ± 0.9	2.6 ± 0.6	1.7 ± 0.4	11.3 ± 1.9	1.08 ± 0.20
Diboson	0.40 ± 0.26	2.6 ± 1.5	0.8 ± 0.5	0.21 ± 0.15	1.9 ± 1.0	0.04 ± 0.04
Non-prompt leptons	9 ± 4	11 ± 4	8.9 ± 3.3	1.9 ± 1.6	15 ± 4	0.17 ± 0.10
Charge misreconstruction	7.2 ± 1.4	7.6 ± 1.8		0.25 ± 0.03		_
Other	0.83 ± 0.16	2.3 ± 0.6	1.5 ± 0.4	0.66 ± 0.16	3.4 ± 0.8	0.12 ± 0.05
Total background	22.2 ± 3.4	39 ± 5	21 ± 4	5.7 ± 1.7	39 ± 5	1.42 ± 0.24
$t\bar{t}H$ (2.5 × SM)	5.3 ± 1.8	13 ± 4	7.6 ± 2.5	4.0 ± 1.2	16 ± 5	1.5 ± 0.5
Data	26	59	31	14	46	0

Probing fermion flavour structure with Higgs boson

Rustem Ospanov