DE LA RECHERCHE À L'INDUSTRI

Superconducting Magnets for HL-LHC and beyond

Hélène Felice SACM/LEAS

With contribution and material borrowed from: Clément Lorin, Franck Borgnolutti (SACM), Luca Bottura, Ezio Todesco, P. Ferracin, Juan Carlos Perez, Lucio Rossi (CERN)

MAGNETS FOR PARTICLE ACCELERATOR: WHAT ARE WE AFTER?

FIELD TARGETS

12 T range

Seminar December 5th 2016

- Beyond 2 T => use of superconducting material
 - zero electrical resistance at cryogenic temperature
 - operate below a critical surface defined with • 3 parameters: field, current and temperature.

Beyond the critical surface, the superconductor quenches = transition to a normal conducting state

High Field reachable but high complexity

DE LA RECHERCHE À L'INDUSTR

MAGNET TECHNOLOGY OVERVIEW

Material Science: conductor, insulation

Electrical Engineering

- Magnetic FEM analysis
- Field quality requirements = field purity
- Magnet testing
 - Magnetic measurements
 - Diagnostics...

Mechanical Engineering

- Coil fabrication tooling
- Coil and magnet handling tooling
- Support structure
- LHe containment...

Thermal analysis and Cryogenics

- Protection in case of quench
- Cryostating

MATERIAL AVAILABLE TO MAGNET ENGINEER

Whole Wire Critical Current Density (A/mm², 4.2 K)

~250\$/kg

MATERIAL AVAILABLE TO MAGNET ENGINEER

MATERIAL AVAILABLE TO MAGNET ENGINEER

Pole

0

-5 -10

-15 -20

-25

-30

-35 -40

-45

-50

Azimuthal stress (MPa)

HANDLING THE MAGNETIC FORCES: THE PRESTRESS

Typical Lorentz forces in a $\cos\theta$ or $\cos2\theta$

- Azimuthal => accumulation of the forces at the midplance
- Radial => motion of the coil outward

HANDLING THE MAGNETIC FORCES: THE PRESTRESS

Typical Lorentz forces in a cos\theta or cos 2\theta

- Azimuthal => accumulation of the forces at the midplance
- Radial => motion of the coil outward

Pre-stress

 Application during assembly (and cooldown) of an azimuthal force on the coils to minimize motion during excitation

TRADITIONNAL APPROACH LHC STATE OF THE ART

The collars are used:

- Since the Tevatron
- In most accelerator and R&D magnets
- They are composed by stainless-steel or aluminum laminations few mm thick and locked around the coils using a press
- By clamping the coils, the collars provide
 - coil pre-stressing;
 - rigid support against Lorentz forces (it can be self-supporting or not);
 - precise cavity (tolerance \pm 20 μ m).

Rossi

Collaring process- Courtesy of Paolo Ferracin

FIELD TARGETS

LHC
HE-LHC
FCC-hh
FCC-hh

27 km, 8.33 T
27 km, 20 T
80 km, 20 T
100 km, 16 T

14 TeV (c.o.m.)
33 TeV (c.o.m.)
100 TeV (c.o.m.)
100 TeV (c.o.m.)

Image: Comparison of the second s

Courtesy of Lucio Rossi, CERN

DE LA RECHERCHE À L'INDUSTRIE

CONTENT OF THE UPGRADE

current to the magnets from the new service galleries to the LHC tunnel.

Courtesy of Lucio Rossi, CERN

ZOOM ON THE MAGNETS FROM LHC TO HL-LHC (INITIAL BASELINE)

Replacement of IR magnets in IP1 and IP5 with larger aperture (~twice) to allow a β^* reduction (~one fourth) therefore an increase in Luminosity

ZOOM ON THE MAGNETS INITIAL BASELINE

DE LA RECHERCHE À L'INDUSTR

CO THE ZOO OF MAGNETS FOR HL-LHC

Seminar December 5th 2016

DE LA RECHERCHE À L'INDUSTRIE

ZOOM ON THE MAGNETS NEW BASELINE: SUMMER 2016 => COST REDUCTION

Activities at CEA to design, manufacture and test MQYY short model and prototypes are maintained Seminar December 5th 2016

SACM CONTRIBUTION TO HL-LHC: MQYY

NbTi conductor

- 36 Strands cabled together
- Insultation is 0.105 microns of polyimide
- Provided by CERN
- Objective
 - Integrated gradient of 440 T.m
 - Double aperture magnet

DE LA RECHERCHE À L'INDUSTRI

MAGNETIC DESIGN

Aperture	90 mm	
Nominal Gradient	120 T/m	
MQYY Magn. length at 1,9 K (MQYYM)	3,7 m (1,2 m)	
MQYY Nominal Current (MQYYM)	4590 A (4550)	
Peak field	6,4 T	
Margin on the loadline	23 %	
Differential inductance	2 x 37,5 mH	
Cable type	MQM	
MQYYM / MQYY outer diameter	360 / 614 mm	

0.710 0.373 0.036

ROXIE_{10.2}

Seminar December 5th 2016

M. Segreti, CEA

DE LA RECHERCHE À L'INDUSTRIE

MECHANICAL SUPPORT STRUCTURE DESIGN

- Support structure to contain the Lorentz forces an minimize motion
 - to avoid quench
 - To avoid field distorsion
- Self standing collar structure applying prestress to the coil

QUENCH PROTECTION

- Importance to protect the magnet in case of quench
- Large stored energy: 0.4 MJ per aperture
- Objective: to spread the energy during quench
 - to minimize the temperature increase in the winding
 - To minimize the peak voltage

Simulation Results		
With protection heaters		
Hot Spot	≈130ł	
Voltage to ground	≈135\	

DE LA RECHERCHE À L'INDUSTR

Cea

COIL FABRICATION STEPS

Seminar December 5th 2016

DE LA RECHERCHE À L'INDUSTR

ASSEMBLY PLAN FOR THE MQYYM

- Test of MQYYM in the vertical cryostat at CEA-Saclay (Bld 198)
- \Rightarrow 8 m cryostat equipped with a 3 m long « sock » (tank)
- \Rightarrow Adaptation of an existing top plate
- \Rightarrow Saturated LHe bath at 1,9 K 23 mbar
- \Rightarrow Magnetic measurements
 - \Rightarrow Cold system provided by CERN
 - \Rightarrow Adaptation on CEA test station under development

In 2015: a program to build two prototypes in the industry using EU funds has been launched (M. Losasso, I. Bejar Alonso)

QUACO is a **PreCommercial Procurement** (PCP)

Principle:

- R&D project in industry lead by a consortium of EU labs: CEA, CIEMAT, NCBJ and CERN
- Industries are in competition in 3 phases. At each end of phase, a company is eliminated.
- In Spring 2020, two companies will have produced two prototypes (one per company)
- The magnetic design and protection are given, mechanical structure and tooling have to be proposed by the company

MAGNET INNOVATION IN HL-LHC

Seminar December 5th 2016

Q1/Q3 : ~4 meter magnets provided by US labs

Q2a/Q2b : ~7 meter magnets provided by CERN

Large R&D program started around 2004 in the US: LHC Accelerator Research **Program** in order to prove Nb₃Sn technology was a viable solution for high field magnets

DIFFICULTIES RELATED TO NB₃SN CONDUCTOR IN A NUTSHELL

- Sensitivity to mechanical strain
- Preload application becomes critical to minimize the peak mechanical stress in the winding

Bottura and Godeke, Rev. Accel. Sci. Techn. 5 25 (2012)

1ST CHALLENGE: NB₃SN COIL FABRICATION

2ND CHALLENGE: APPLYING THE PRELOAD WITHOUT DEGRADING THE CONDUCTOR

Classical collar approach:

Preload overshoot

Objectives of a new concept

- Prevent any overshoot of the pre-stress on the conductor
- Apply a gradual and tunable preload to the coil
- Allow magnet disassembly

 A new concept developped at LBNL (~2000), implemented in the LHC accelerator Research Program (2003-2014)and now chosen as baseline for the low beta quad of the LHC High Luminosity upgrade DE LA RECHERCHE À L'INDUSTRI

FAMILY TREE TOWARD MQXF FOR HL-LHC

Seminar December 5th 2016

33

U.S. LARP

Lawrence Berkeley

National Laboratory

IMPACT OF MECHANICAL STRESS ON MAGNET PERFORMANCE

Performance above 90% reached with 220-250 MPa of estimated compressive azimuthal stress in the high field region A limit has been set for maximum stress in the conductor

SHELL-BASED SUPPORT STRUCTURE MOTIVATION AND CONCEPT

• Shell-based support structure often referred as "bladder and keys" structure developed at LBNL for strain sensitive material

LBNL

for strain sensitive material

Shell-based support structure also called • "bladder and keys" structure developed at

SHELL-BASED SUPPORT STRUCTURE CONCEP

 Shell-based support structure also called "bladder and keys" structure developed at LBNL for strain sensitive material

SHELL-BASED SUPPORT STRUCTURE CONCEPT

 Shell-based support structure also called "bladder and keys" structure developed at LBNL for strain sensitive material

Ca SHELL-BASED SUPPORT STRUCTURE CONCEP

 Shell-based support structure also called "bladder and keys" structure developed at LBNL for strain sensitive material

Ca SHELL-BASED SUPPORT STRUCTURE CONCEPT

 Shell-based support structure also called "bladder and keys" structure developed at LBNL for strain sensitive material

SHELL-BASED SUPPORT STRUCTURE CONCEP

 Shell-based support structure also called "bladder and keys" structure developed at LBNL for strain sensitive material

NB₃SN MAGNET IN HL-LHC: SUMMARY

Q1/Q3: 4 meter magnets provided by US labs

Q2a/Q2b : 7 meter magnets provided by CERN

KEY CHALLENGES

- Coil technology
- Quench performance

The success of MQXF is a major milestones in magnet development toward higher energy machine

DE LA RECHERCHE À L'INDUSTRIE

Future Circular Collider

More beam energy... => More field, more forces => More magnets

Example of questions among the magnet community :

Is there a "stress wall"? Making high field magnets out of reach?

DE LA RECHERCHE À L'INDUSTRIE

16 T TARGET: A WORLWIDE EFFORT NON EXHAUSTIVE EXAMPLES

- Relying on Nb₃Sn only
- Wide-range study, based on the same design assumptions

DE LA RECHERCHE À L'INDUSTRI

16 T TARGET: A WORLWIDE EFFORT NON EXHAUSTIVE EXAMPLES

CCT at LBNL

Two superimposed coils, oppositely skewed, achieve a pure cosine-theta field and eliminate axial field.

22 THE 20 T FRONTIER

- CEA is involved in 2 R&D projects on HTS magnets for accelerators:
- Insert EuCARD: Dipolar HTC insert decoupling technological topics.
- Insert EuCARD 2: Dipolar HTC insert with Accelerator quality features (aperture+ field quality)
- Same conductor technology: REBCO(Rare-earth Barym copper oxide):

Seminar December 5th 2016

Courtesy of F. Borgnolutti, M. Durante, CEA

LA RECHERCHE A L'INDUSTRIE

THE 20 T FRONTIER: EUCARD INITIATIVE AND CERN-CEA COLLABORATION

Courtesy of F. Borgnolutti, M. Durante, CEA

 $\circ~$ No requirements on field quality

=> Test in preparation at Saclay – foreseen early 2017

FP7 EuCARD2 WP10 Collaboration with CERN, INPG, INFN, TUT, DTI

Design fabrication and test of a small accelerator dipole in **REBCO** Objective : 5 T (self field) in a 40 mm aperture, 4.2 K, with accelerator field quality.

Stacked tapes Block Design (INPG)

20 T TARGET : COS THETA - CEA APPROACH

Layout	Unit	Cosϑ A
Іор	kA	11.68
Вор	Т	5
Bpeak	Т	5.7
lc	kA	14.4
LL margin	(%)	20
T margin	К	20

WELL I IS IN

- Roebel Cable
- o Coil impregnation
- \Rightarrow Coil fabrication in 2017

Seminar December 5th 2016

Courtesy of C. Lorin, M. Durante, CEA

- Looking for new physics calls for new magnet technology
- Moving from R&D magnets (even successful ones) to accelerator-ready magnets takes times and money and worldwide effort
- At CEA, we are presently covering
 - NbTi technology
 - Some Nb₃Sn technology: more to come with a CEA/CERN collaboration under finalization
 - HTS technology