

Status of Super Kamiokande-Gd

@Saclay November 13 2017

Hiroyuki Sekiya

ICRR: Institute for Cosmic Ray Research, University of Tokyo IPMU: Kavli Institute for the Physics and Mathematics of the Universe NNSO: Next Generation Neutrino Science Organization, University of Tokyo

Total 75 pages

Detectors that observed 1987A

Liquid scintillators

 $\rightarrow \nu + e$

- Kamiokande-II
 - 2140 ton FV
 - Water Cherenkov
 - > 8.5MeV

• IMB-3

......

- $^\circ~\sim 5000$ ton FV
- Water Cherenkov
- > 28 MeV

BAKSAN

- Total 330ton
- Liquid Scintillator
- > 10 MeV
- Essentially, inverse beta decay events.

$$\bar{\nu}_e + p \to e^+ + n$$

Supernova neutrinos from 1987A

• The only detected SN neutrinos are from LMC(50kpc)

- The obtained binding energy is almost as expected, but large error in neutrino mean energy. No detailed information of burst process.
- We need energy, flavor and time structure.

Neutrinos should play the leading role in core collapse supernovae "standard" CCSN by Hideyuki Suzuki

Many models... Need data!

Classification of SNe

Туре		Spectral feat	ure		Light curve	mechanism		
		Н	Si	He		thermonuclear	Core collapse	
I	la	×	0			0		
	Ib	×	×	0			0	
	Ic	×	×	×			0	
П	IIP	0			Plateau		0	
	IIL	0			Linear		0	
	lln	O(nallow)					0	

30 years ago

• SN1987A

$\Delta T \sim 3$ hours

http://www.cbat.eps.harvard.edu/iauc/04300/04316.html

Circular No. 4316

Central Bureau for Astronomical Telegrams INTERNATIONAL ASTRONOMICAL UNION Postal Address: Central Bureau for Astronomical Telegrams Smithsonian Astrophysical Observatory, Cambridge, MA 02138, U.S.A. TWX 710-320-6842 ASTROGRAM CAM Telephone 617-495-7244/7440/7444

SUPERNOVA 1987A IN THE LARGE MAGELLANIC CLOUD

W. Kunkel and B. Madore, Las Campanas Observatory, report the discovery by Ian Shelton, University of Toronto Las Campanas Station, of a mag 5 object, ostensibly a supernova, in the Large Magellanic Cloud at R.A. = 5h35m.4, Decl. = -69 16' (equinox 1987.2), 18' west and 10' south of 30 Dor and possibly involved with the association NGC 2044. The discovery was made around Feb. 24.23 UT on a 3-hr exposure with a 0.25-m astrograph beginning on Feb. 24.06, and the object had evidently brightened by at least about 8 mag since the previous night. An independent suspected sighting was made visually by Oscar Duhalde, also at Las Campanas, around Feb. 24.23.

F. M. Bateson, Royal Astronomical Society of New Zealand, informs us that the object was discovered independently by Albert Jones, Nelson, on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69 18', equinox 1950.0) at mag 6.5-7.0 (in clouds); he estimated mv = 5.1 on Feb. 24.46. B. Moreno and S. Walker, Auckland Observatory, obtained V = 4.81, B-V = +0.085, U-B = -0.836 on Feb. 24.454 UT.

R. H. McNaught, Siding Spring Observatory, communicates the following visual magnitude estimates by G. Garradd (G) and himself (M): Feb. 24.455, 4.8 (M); 24.472, 4.8 (M); 24.635, 4.4 (G); 24.679, 4.5 (M); 24.717, 4.4 (M). McNaught obtained the following precise position with the University of Aston Hewitt Satellite Schmidt camera: R.A. = 5h35m50s.22, Decl. = -69 17'59".2 (equinox optical 1950.0, uncertainty 2"). The object appears on films from the previous night: Feb. 23.443, 6.0; 23.445, 6.2. He also notes the **23.44** UTC position of a blue star, of mv about 12 and not obviously variable during the past century (through Feb. 22.4): R.A. = 5h35m50s.12, Decl. = -69 17'58".0 (equinox 1950.0; x = 15447, y = 9261 in the Harvard LMC system). Films by Garradd confirm that the field was identical down to mag 14.5 on Jan. 24 and Feb. 22.

B. Warner, University of Texas, reports that a spectroscopic observation by J. Menzies on Feb. 24.9 UT with the 1.9-m reflector at the South African Astronomical Observatory shows the 615-nm dip, indicating that the object may be a supernova of type I.

Hiroyuki Sekiya

Saclay

SN1987A@Kamiokande

Super-Kamiokande

50kton pure water Cherenkov detector

The SN detector

Super Kamiokande IV

Supernova at 10 kpc

events in 32kton

Livermore: ApJ.496,216(1998)

Livermore

Nakazato: ApJ.Suppl. 205 (2013) 2

Nakazato

20M_{sun}, trev=200msec, z=0.02

Hiroyuki Sekiya

If it happens now@Super-K

- SN simulation @10kpc (RA=0, decl=0), generated by Wilson model
- SNwatch: Real-time supernova neutrino burst monitor Astropart. Phys. 81(2016)39
 - In several minutes, alarm to shifts, automatic e-mail and phone call to the experts

Announcements

SURGE:

Supernova Urgent Response Group of Experts

SNEWS: SuperNova Early Warning System

http://snews.bnl.gov/

<u>Super-K</u> (Japan), <u>LVD</u> (Italy), <u>Ice Cube</u> (South Pole), <u>KamLAND</u> (Japan), <u>Borexino</u> (Italy) <u>Daya Bay</u> (China), and <u>HALO</u> (Canada).

 IAU CBAT: International Astronomical Union Central Bureau for Astronomical Telegrams

http://www.cbat.eps.harvard.edu/

• ATEL: The Astronomer's telegram

http://www.astronomerstelegram.org/

GCN: The Gamma-ray Coordinates Network https://gcn.gsfc.nasa.gov/

SNEWs level "3" confirmed alarm

SNEWS level "O"

Anyway... 30 years has been passed

Supernova neutrino from z=5 Diffuse Supernova Neutrino Background(DSNB)

• 10¹⁰ stellar/galaxy × 10¹⁰ galaxies × 0.3% (become SNe) ~ O(10¹⁷)SNe

Status of DSNB search

- More than 1 order BG reduction is needed!
- Neutron tagging efficiency (by proton) is low... RI BG and low trigger efficiency

The Gadolinium project

- To identify $\overline{v_e} p$ events by neutron tagging with Gadolinium.
- Large cross section for thermal neutron (48.89kb)
- Neutron captured Gd emits 3-4 γs in total 8 MeV
 Well above most of BG from RIs and the SK trigger threshold
- 90% of Gd capture efficiency at 0.1% loading
- $Gd_2(SO_4)_3$ was selected to dissolve $\rightarrow 0.2\%$ loading

In Super-K, it corresponds to 100 tons of loading

Beacom and Vagins PRL93,171101 (2004)

Expected signal

DSNB flux: Horiuchi, Beacom and Dwek, PRD, 79, 083013 (2009)

 It depends on typical/actual SN emission spectrum

DSNB events number with 10 years observation

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T _{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

- Total (positron) energy MeV
- First observation is within SK-Gd's reach!
- Further BG reduction with topological cuts (NN,..) are expected.

Remaining BG: atmospheric neutrino

Hiroyuki Sekiya

SK-Gd for SN burst

• If $\overline{v_e}$ can be tagged, directional events (v+e scattering events) are enhanced. Pointing accuracy will be improved. For 10kpc SN ~5° \rightarrow ~3° (@90%C.L.)

R&D items and recent progresses

1st level Environmental Safety

2nd level Minimize negative impacts to current physics programs at SK

3rd level

Further investigate physics capability with n-tagging

Stopping the SK leakage

- Estimation of the leak location
- Development of leak-fixing method
- Reduction of RIs from Gd₂(SO₄)₃ powder
 - Test of Ra removal resins
 - Material screening with HP-Ge detectors
 - High sensitivity measurement with ICP-MS
 - Test with the EGADS demonstrator
 - Continuous monitoring of the water quality
 - Continuous monitoring of Gd concentration
 - Demonstration of Gd-captured neutron signal/QBEE upgrade
- Construction of the new water system
- Gd gamma measurements and improved simulation of Gd capture

Super-K structure

Made of SUS304

SK water leakage

- SK water is leaking at ~1 ton/day.
- In order to survey the location of the leakage, by changing the water level of the inclined pit (access tunnel to the bottom of SK), water leak rate was precisely measured from Nov. 2016 to Mar. 2017
- Changes water pressure to the tank Assuming just one leakage point,

$$\Phi_{leak}(z) = \begin{cases} a \times \sqrt{z_{SKtop} - z} & (z > z_{leak}) \\ a \times \sqrt{z_{SKtop} - z_{leak}} & (z < z_{leak}) \end{cases}$$

Data indicates that the leak location is near the bottom of SK detector

Lot

Leak-fixing method

- Paint all the welding lines with 2 sealing materials
 - Bio-seal 197:

Fill pinholes and cracks in steel plates

• Poly-urea based sealant:

Newly-developed, flexible and low-background

- Tests for the new sealant:
 - Mechanical strength
 - No problem after applying 5 atm pressure in Gd-loaded water for 6 months so far.
 - Passed the JIS standard for attachment
 TOC Elusion
 - Effect in light yield less than 2.4%

Radon emanation

- $^\circ~\sim 0.3~mBq/m^2,$ less than the 20 inch PMTs
- No problem for solar neutrino measurement

Most suspicious; Anchors of the PMT frame

Mock-up simulation

The new sealant

High viscosity version for wall

Low viscosity version for floor

Development of the sealant

• MineGuard[™] is widely used in Kamioka and SNOLab.

Wall of SK area

Lining of SNO detector

- Base material
 - Poly-urethane
- Two types of product
 - Paint type
 - Spray type
- For paint type, CaCO₃ is necessary for increasing viscosity

Fatal problem of MineGuard

• A chain of organic units joined by urethane links (-NHCOO-)

Poly-urea based type

- Stronger for H₂O
- The cocktails were screened by Ge.
- CaCO₃ is RI source, SiO₂ is used.

New product "MineGuard C6"

RIs in typical 5N $Gd_2(SO_4)_3 \cdot 8H_2O$ powder

• With considerations of 100tons-availability

Chain	Main sub-chain isotope	Radioactive concentration (<i>mBq/kg</i>)
238U	²³⁸ U	50
	²²⁶ Ra	5
²³² Th	²²⁸ Ra	10
	²²⁸ Th	100
235U	²³⁵ U	32
	²²⁷ Ac/ ²²⁷ Th	300

RI BG estimations for DSNB itself

- Expected signal: ~5 events/year/FV
 - prompt signal (e+): 10 20 MeV
 - delayed signal from neutron capture

• BG

²³⁸U Spontaneous Fission:

- Assuming 50 mBq/kg of ²³⁸U
- 5-10⁻⁷ SF/decay

•
$$N[E_{\gamma} \ge 10.5 MeV] = \int_{10.5}^{\infty} \frac{1}{1.4} e^{-\frac{E}{1.4}} dE = 5.4 \cdot 10^{-4}$$

• 28% of SFs with only 1 neutron

~ 5.5 [γ (E γ >10.5 MeV) + 1n] / year / FV

SFs with $E_{\gamma}>10$ MeV

More than 1 order of U reduction

RI BG estimations for Solar neutrinos

- Current SK 3.5MeV threshold final data sample (~BG from Rn in FV) ~200events/day/FV
- Neutron BG from ²³⁸U
 - 90% can be captured and emit γ cascade
 - 36% of neutron-captured γs escape from standard solar cuts in the current analysis
 ~320events/day/ FV

RI BG estimations for Solar neutrinos

• β , γ BG from ²³²Th ²²⁶Ra

- Solar cuts efficiencies
 - ²⁰⁸TI: 0.21% ²¹²Bi: $< 2x10^{-4}$ % ²¹⁴Bi: 0.01%
- Decay intensities:

²⁰⁸TI: (100x36%) mBq/kg ²¹²Bi: (100x64%) mBq/kg ²¹⁴Bi: 5 mBq/kg ~3 x 10 ⁵ events/day/ FV ... Fatal BG!!

4 order of Th/Ra reduction

Low RI $Gd_2(SO_4)_3$ development

• Intensively developing pure powder with several companies.

Low RI $Gd_2(SO_4)_3$ evaluation

Collaboration with underground Labs.

~1 mBq/kg : Ge detectors in Canfranc, Boulby, LNGS and Kamioka

~0.1mBq/kg : ICP-MS in Kamioka

• 3 companies had reached U goal, B#2 has reached Th goal for the first time!

Chain	238U			232Th			235U	
Isotope	²³⁸ U		²²⁶ Ra	²³² Th	²²⁸ Ra	²²⁸ Th	²³⁵ U	²²⁷ Ac/ ²²⁷ Th
Goal*	< 5		< 0.5	< 0.05	< 0.05	< 0.05	< 3	< 3
Detector	Ge	ICPMS	Ge	ICPMS	Ge	Ge	Ge	Ge
CompanyA #1	< 13	0.6	0.7 ± 0.4	1.8	< 0.39	1.7 ± 0.4	< 1.3	< 3.1
CompanyA #2	-	<0.04	-	0.09	-	-	-	-
CompanyB #1	< 25	0.2	< 0.6	0.2	< 0.7	0.9 ± 0.3	< 3.1	< 6.1
CompanyB #2**		<0.04		0.02				
CompanyC	< 10	<0.04	< 0.3	0.06	< 0.2	< 0.3	< 0.3	< 1.2
*Goal is for 0.2 **Under meas	2% solı uremer	ution ht by Ge	in Canfran	С			unit [m	Bq/kg (Gd ₂ SO

EGADS

Evaluating Gadolinium's Action on Detector Systems

- To study the Gd water quality with actual detector materials.
- The detector fully mimic Super-K detector;
 SUS frame, PMT and PMT case, black sheets, etc.
- Tests for Hyper-K; 13 HPDs

200 m³ tank with 240 PMTs

Water quality and $Gd_2(SO_4)_3$ concentration in EGADS

Hiroyuki Sekiya

November 13 2017

Hiroyuki Sekiya

Saclay

November 13 2017

37

Inspection after 3 years operation

• Everything looked beautiful and shiny with 0.2% Gd₂(SO₄)₃ water

Bottom region as of Nov 3 2017

• Everything looked beautiful and shiny with 0.2% Gd₂(SO₄)₃ water

Bacteria in EGADS degrade the WT

Surface of PMT/blacksheets

Hiroyuki Sekiya

Bacteria in SK-IV

Intentional water stagnation in FV

Hiroyuki Sekiya

Saclay

Bacteria-rich,

According to literatures

- Pseudomonas genus
 - Aerobic
 - Need P,K,Na,Mg,Ca,Fe,Al...

- Many of them make fluorescent dyes (fluorescein) which absorb blue lights (peak 494nm) and emit green lights (peak 521nm).
- On the wall(surface; tyvek, blacksheet, FRP, acrylic), there should be their nests!
- Top half region water: Air-rich, but what else is different from the water in bottom half? what is the nutrition for the bacteria?

SK-Gd water system

- Dissolving system
- Pretreatment system
- Re-circulation system

120t/h recirculation! (currently 60t/h)

SK-Gd water system

Upgraded plumbing in SK

• For doubled recirculation flow rate and more symmetric inlets/outlets

Hiroyuki Sekiya

Saclay

November 13 2017

Flow simulation

In dissolving phase, water temperature affects Gd concentration

Hiroyuki Sekiya

Saclay

November 13 2017

Hiroyuki Sekiya

Saclay

November 13 2017

Hiroyuki Sekiya

Saclay

Gd effects on T2K (Preliminary MC study)

Negative impacts

- Change of reconstruction performance w/ degraded water
- Contamination of n-Gd events into decay-electron sample

Positive impacts

- anti-v/v separation w/ neutron-tagging
- Improving for energy reconstruction w/ neutron counting?
- Improving neutrino interaction measurements

Degraded water transparency

• EGADS WT may be nothing to do with $Gd_2(SO_4)_3$, but ~8% loss of light yield assumed

Water quality based on EGADS data

8% degrade : 90% due to absorption and 10% due to scattering

Reconstruction performance was checked by single particle events of muon and electron (CCQE events with 1-Ring reconstructed by fitter)

Distributions

Vertex resolution

- Momentum resolution
 - Slightly biased but it can be retuned.

• PID

It should be OK, we have been used 8%-degraded data in SK.

Hiroyuki Sekiya

T2K event selection

 Final sample can be further divid into neutrino-like and antineutri like sample using n-tag informat

+ Vı VI р

	v _e CC0π Selection	ν _μ CC0π Selection			
divided	1-Ring, FCFV , Evis > 30 MeV				
utrino- mation	PID: e-like	PID: μ-like			
	E_{vis} > 100 MeV, E_{rec} < 1.25 GeV	$p_{\mu} > 200 \text{ MeV}$			
t	#(decay-e) = 0	#(decay-e) <= 1			
Conventional cuts	π ⁰ rejection by kinematics	π ^{+/-} rejection by kinematics			
Further separation w/ n-tag	Yes No $\overline{v_e}$ -like v_e -like Sample Sample	Yes No $\overline{v_{\mu}}$ -like v_{μ} -like Sample Sample			

Neutron tagging: under development w/ machine learning

- Initial selection
 - 1 < dt < 200 (µsec)
 - 7 < N10 < 50, N200 < 140
- NXX=number of PMT hits in XXns
- Multivariate analysis w/ Boosted Decision Tree (BDT)
 - TMVA/ROOT
 - Inputs
 - Basic hit variables:
 - time dt
 - NXX
 - Neutron fitter variables:
 - vertex position, energy, fit goodness
 - Isotropy variables
 - isotropy of PMT hits in space

Zero neutron cut (Preliminary)

v, anti-v separation

Saclay

In anti-v mode (preliminary)

• $\overline{\nu}_{\mu}$ disappearance sample

 \overline{v}_{e} appearance sample

δ_{cp} dependence in v_e appearance (preliminary)

• Fraction of n-tagged event provides another handle to constrain δ_{CP}

Hiroyuki Sekiya

Saclay

Timeline (SK Plan)

- 3 steps (T_0, T_1, T_2) to get 0.2% concentration
- T2K and SK agreed to set T_0 in 2018
 - In JPARC PAC meeting, T₀ was decided on June. 1st 2018.

Detailed 2018 schedule of SK refurbishment

• Day-by-day schedule ... In total, 6.5 months are required to resume SK physics run.

calendar days	1st month	2nd month	3rd month	4th month	5th month	6th month	7th month
Item						*****	
Large process		V-34.10 V-38.34 V-36.32 V-0-22.78 V-10.34	V+12.89 V+06.52 V=15.01 V=06.84	╘╺╌╧┥┿┽╸┟╺╿┍┥┍┥┍┥┿╎╼┟╎╸╎┥╸╎╴┥╎┥╎╴┥╴╎╴┥			
Top Z0+42.0 Water level: observation Z0+41.4	V+41.40 V+30.00 V+37.36 V+36.22	2V+22.66 V+28.44 V+24.20 V+20.66 V+17.	13 17-10.77 17-04.40 17-00.00				1 17-35.88 17-38.09 177-41.40 1111
				MATOR LOVAL			
bottom ZO+ 0.0							
1. Preparation 1 Local office installation / various adjustm							
2. Preparation above the tank before drain water							
1 Remove ID and 0D entrance covers, put tempo 2 Constuct clean room on the entrances							
3 Setup light/electricity 4 Setup ventilation/exhaust		Daration					
5 UF318 WEEGE (+41, 6-++39, 0)							
3. Mater level (+39.0) 1 Setup scaffold in the 00 top region							
3 Setup light/ventilation/exhaust							
5 +41.4 clean up seat section, remove rust 6 Costing the back Parall							
Ddry wipe, solvent, bakker+primer+1st paint Creeve tape, 2nd paint+remove bakker, inspection							
7 Drain water (+39.0-++37.35)							
4. Water level (+37.35) 1 Construct 00 floating floor							
2 Construct ID floating floor 3 Adjustment light/electricity/exhaust							
4 Renove 00 white typec 5 Remove rust							
6 Setup rails for power line of gondola 7 Coating the barreal wall	38H-U						
Ddry wipe, solvent, bakker+primer+1st paint Zremove tape, 2nd paint+remove bakker, inspection	n	<u></u>					
S Exchange ID top PMT 9 Exchange ID/00 barrel PMT							
10 Drain water (+37, 35-++36, 22)		1					
5. water level (+36.22) 1 Setup two gondolas, 00 barrel 2 Setup 1 light (alternative light (alternative)	<u> </u>						
3 Remove Out to the type:							
5 Costing the barrel wall Oldry wine entywart bakkerer immediat paint							
(2) reverse apply 2nd paint+remove bakker, inspection 5) Furthermon 10/00 harral SMT							
7 Drain water (+36.22-+34.10)	┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊						
6. Mater level (+34.10, 32.68-0.0) 1 Setup light/electricity/exhaust				Main coau	anca		
2 Remove 00 white tyvec 3 Remove rust					CIICC		
4 Coating the barrel wall (Ddry wipe, solvent, bakker+primer+1st paint		36H 34H 32H 30H 28H 26H 24H 22H 20H18H	16H 14H 12H 10H 6H 6H 4H 2H 0.7H 0H				
(2)remove tape, 2nd paint+remove bakker, inspection 5 Exchange ID/00 barrel PMT	n.			N harrel la	eak-tixina		
6 Drain water Only water level (+2.99)					can inning		
8 Remove ID floating floor		╶╴╴╲					
 Finish drain water (-42m) Preparation for bot Upandline value for order pressure adjustment 							
2 Setup electricity/light 3 Construct class room on the bottom							
4 Release M/H on the bottom 5 Remove white tyres on the bottom				N Preparat	ion ior dollo	ITTI WOLK	
6 Setup scaffold and lifter for bottom PMT ex							
 Coating on the bottom PMT exchange including barrel SM1 							
2 Goating welding line on the bottom (3)dry wipe, solvent, bakker+primer+1st paint							
Zremove tape, 2nd paint+remove bakker, inspection 3 Coating attachment of the frame	R		·····	<u>_</u>		<i>c</i> :	
Upary wipe, set sheat, bakker, BioSeal Zholvent + primer + 1st paint When even				↓ · · · · · · · · · · · · · · · · · · ·	sottom leak-	TIXING	
Gist floating							
P. Restoration for supply water							
1 Remove scaffold and lifter 2 Misch the tank, drain water							
3 Put white tyves on the bottom 4 Remove light/electricity				╪╪╪╪╪ <mark>┙</mark> ┊╝		ΟΟΙΙΟΠΗ	
5 handling valve for outer pressure adjustmenhandli 6 close the valve for drain vater, start supp				▋			
7 Close M/H on the bottom 8 Remove clean room on the bottom				<i>\</i>	L. V. IIIIIIIIIIIIIIIIIIIIIIIIIIIIII		E FINISHIND TO
9 supply water							
1 O. Restoration above the tank 1 Remove small gondora					Alotos fillicos O		
2 Remove circular gondra, light 3 Restore the covers					n vvater tilling &	purilication	╔┼┍╲╓┅┊╄┿╡┊┇╊┫╧╝╲┊┊┊┊╡
4 Remove clean room 5 Remove light/electricity						•	
6 Remove ventilation/exhaust							··· ··· ··· ·························

SK-Gd

- SK-Gd project tries to catch neutrinos from past SNe before Hyper-K running.
- A lot of progresses made recently on leak fixing, background reduction and water system construction, and further preparation is ongoing for the SK refurbishment in 2018.

More Global Timeline Hyper Kamiokande

Japan-based seamless program to get timely results

Hyper Kamiokande

- 650m underground in Kamioka
- 10 x Super-K FV
- 1.3MW neutrino beam from J-PARC, and natural neutrino sources
- Photo-sensors with double single-photonsensitivity

HK site

Hiroyuki Sekiya

After T2K:

• With $>5\sigma$ significance, Hyper-K will measure $CP \delta w$ precision of < 20 degree.

		signal		BG					m. (.)	
		$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \text{ CC}$	$\overline{\nu}_{\mu}$ CC	$\nu_e \ { m CC}$	$\overline{\nu}_e ~ \mathrm{CC}$	NC	BG Total	lotal
ν mode	Events	1643	15	7	0	248	11	134	400	2058
	Eff.(%)	63.6	47.3	0.1	0.0	24.5	12.6	1.4	1.6	
$\bar{\nu}$ mode	Events	206	1183	2	2	101	216	196	517	1906
	Eff. (%)	45.0	70.8	0.03	0.02	13.5	30.8	1.6	1.6	-

expected number of event in v_e / \overline{v}_e appearance (10 years)

Confirm/exclude the PMNS framework and CPV origin.

0.2

0.4

0.6

0.8

Proton decay

• Background elimination is still possible.

Hyper-K is only realistic approach to proton lifetime

Hiroyuki Sekiya

beyond 10³⁵ years

Supernovae

The SN detector

- 260k ton total
- 220k ton ID for SN observation

Nakazato:
ApJ.Suppl.205 (2013) 2 Nakazato Nakazato $\bar{\nu}_e p \rightarrow e^+ n$ 21300 $\nu + e^- \rightarrow \nu + e^-$ 1200 160 CC 410

Supernova at 10 kpc

events in 220kton

statistical error invisible!

ande	DUNE
amiok	with
per-K	neline
Hy	L I I

Year	DUNE	Hyper-Kamiokande			
2017	Far detector cavern excavation				
2018	Prototype detector test @CERN	Licensing procedure, Preparatory construction, Geological survey			
2019		Access tunnel construction &			
2020		Detector cavern excavation			
2021	Start 1 st detector (10kt) construction				
2022	+				
2023	Start 2 nd detector (10kt) construction	Tank liner construction,			
2024	Commissioning of two detectors (3 rd and 4 th detectors in stage)	Photo-sensor installation			
2025		Water filling			
2026	Start neutrino beam delivery (1.2MW)	Start detector operation & neutrino beam (1.3MW)			

The very important milestone in Aug. 2017

http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu4/toushin/1388523.htm

- Hyper-K has been listed in the MEXT Roadmap2017
 - Ministry of Education, Culture, Sports, Science and Technology
 - The funding agency
- 7 projects are listed:
 - Genome, HL-LHC, HK, SPICA, LiteBIRD, atto-second pulse laser, and photon factory
- HK got highest evaluation result (a,a)
 - 5 projects got (a,a)

What's next in Japan

- FY2018 general account budget was request by MEXT in Aug. Draft budget will be announced by MoF in Dec.
 - Currently we are asked to wait until Dec.
 - Big projects in Japan sometimes get startup budget before construction start like the case for Super-K

Organization Proto-collaboration

Gifu University (Japan) High Energy Accelerator Research Organization (KEK) (Japan) Kobe University (Japan) Kyoto University (Japan) Miyagi University of Education (Japan) Nagoya University (Japan) Okayama University (Japan) Osaka City University (Japan) Tohoku University (Japan) Tokai University (Japan) University of Tokyo, Earthquake Research Institute (Japan) University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory (Japan) University of Tokyo, Institute for Cosmic Ray Research, Research Center The California State University Dominguez Hills (USA) for Cosmic Neutrinos (Japan) University of Tokyo (Japan) University of Tokyo, Institute for the Physics and Mathematics of the Universe (Japan) Tokyo Institute of Technology (Japan) Boston University (USA) Chonnam National University (Korea) Dongshin University (Korea) Duke University (USA) Imperial College London (UK) INFN and Dipartimento Interateneo di Fisica di Bari (Italy) INFN-LNF (Italy) INFN and Università di Napoli (Italy) INFN and Università di Padova (Italy) INFN Roma (Italy) Institute for Nuclear Research (Russia) Iowa State University (USA)

14 Countries, 71 Institutes, ~300 members and growing ~75% international collaborators

IRFU, CEA Saclay (France) Laboratoire Leprince-Ringuet, Ecole Polytechnique (France) Lancaster University (UK) Los Alamos National Laboratory (USA) Louisiana State University (USA) National Centre for Nuclear Research (Poland) Pontificia Universidade Catolica do Rio de Janeiro (Brazil) Queen Mary, University of London (UK) Royal Holloway University of London (UK) Seoul National University (Korea) Seoyeong University (Korea) State University of New York at Stony Brook (USA) STFC Rutherford Appleton Laboratory (UK) Sungkyunkwan University (Korea) TRIUMF (Canada) University Autonoma Madrid (Spain) University of British Columbia (Canada) University of California, Davis (USA) University of California, Irvine (USA) University of Edinburgh (UK) University of Geneva (Switzerland) University of Kivy (Ukraine) University of Hawaii (USA) University of Liverpool (UK) University of Oxford (UK) University of Pittsburgh (USA) University of Regina (Canada) University of Rochester (USA) Universidade de Sao Paulo (Brazil) University of Sheffield (UK) University of Toronto (Canada) of Warsaw (Poland)

Hiroyuki Sekiya

Organization

- Japan takes responsibility of the detector cavern & tank, the half of inner detector PMTs, J-PARC upgrade, and facility for the near detector system.
- UTokyo leads the Hyper-K, KEK leads J-PARC

International organization
NNSO - The host organization in UTokyo

Launched on October 1st

 "In particular, it aims to advance what will become its flagship facility, the Hyper-Kamiokande project."

www.nnso.jp

Saclay

5 days ago

Inauguration Ceremony on November 8th

Final remark

- Both SK-Gd and Hyper-K have ready-to-go design.
- The seamless program will have rich physics with worldleading science outputs.
- Open for international participants

Extra slides

Difficult part

- Neutrino interactions in transportation/trapping
 - SN cannot burst without neutrino.
 - NC coherent scattering in high density radius

- Makes the calculation complicated
- In ultra high density matter
- Even Solar MSW has not yet been directly observed.. ^{超新星ニュートリノをニュートリノ振動}
 H resonance: ρ_H ~ 3 · 10³g/cm³ (上)⁻¹

Saclay

非断熱 (ONeMg core の ECSN 親星) 断熱的 (Fe コアの CCSN 親星)

77

Hiroyuki Sekiya

November 13 2017

CEvNS was observed in 2017

Science 03 Aug 2017:eaao0990

Hiroyuki Sekiya