New Results from the Axion Dark Matter Experiment

CEA Saclay

LLNL-PRES-747684

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

- What's an axion?
- How do we look for axions?
- Challenges of working with small signals.
- Results from the first run.
- Going forward.

Dark Matter

- Observations hint at the existence of a form of matter that we cannot see in our current detectors.
- Galaxy and star cluster rotation curves do not match what is expected from the observable matter distribution.
- Adding a non-interacting mass to the galaxy allows the theory to match observation. This mass is 'dark matter'.

Image source: Katherine Freese, Caltech https://ned.ipac.caltech.edu/level5/Sept17/Freese/Freese2.html

- The Bullet Cluster is the result of two star clusters colliding.
- Gravitational lensing shows the majority of the cluster mass is separate from gaseous matter.
- Weakly interacting massive particles(WIMPs) have been a favored solution with candidates coming from theories such as super symmetry.
- With recent results from dedicated detectors and the LHC, WIMPs are now running out of places to hide.

Strong CP Problem

QCD Lagrangian

$$L_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$$
$$d_n \approx \theta \ e \frac{m_q}{m_n^2}$$

2

Neutron dipole moment

• The strong force should be able to violate charge parity symmetry but appears not to.

- CP violation would lead to a neutron dipole moment of 10⁻¹⁸e m.
- Experimental upper limits of the neutron dipole moment 10⁻²⁸e m.

What are Axions?

- Peccei and Quinn introduced their solution to the strong CP Problem in 1977. It promotes the CP-violating term θ to be it's own dynamical field.
- As with other global fields, this also predicts an associated pseudo-scalar boson, the axion.
- The axion has a two photon interaction which is used for searches.
- $g_{A\gamma\gamma}$ Axion photon coupling
- E Electric field
- B Magnetic field
- $\varphi_{A}-\text{Axion Field}$

$$_{A\gamma\gamma} = -g_{A\gamma\gamma} \boldsymbol{E} \cdot \boldsymbol{B} \phi_A$$

Axion Dark Matter

- Axions are created non-thermally in the early universe via the misalignment mechanism.
- At high energies the axion is massless with the field value set at some initial value $\theta_a = \theta_a^0$
- Once the axion wavelength becomes comparable to the Hubble scale the axion mass becomes significant and the field starts to oscillate.
- The oscillations are damped and therefore the field approaches $\theta_a = 0$

Axion cosmology revisited, Olivier Wantz and E. P. S. Shellard, Phys. Rev. D 82, 123508

Axion Dark Matter

- The misalignment mechanism results in a high number density of low mass particles with a small coupling to the SM.
- This provides the necessary conditions for structure formation in the universe.
- Due to the high number density, the particles can be easily represented as a classical field.
 - $-\,$ Wavelength of ~100m
 - Coherent over ~1000km

Parameter Landscape

Motivation	General Properties				
 Provides a natural solution to the strong CP problem. In the 10⁻⁶-10⁻²eV range also provides a dark matter candidate. 	 Light weakly coupled stable particle. Fundamental pseudo-scalar particle. 				
Photon Coupling	Mass and Couplings				
 Couples to two photons via a Primakoff conversion. Magnetic fields facilitate the conversion from axion to photons. 	Generically: $m_a \propto g_{aii} \propto 1/f_a$ $10^{-6} eV < m_a < 10^{-2} eV$				

The Haloscope

Lawrence Livermore National Laboratory

The ADMX

Lawrence Livermore National Laboratory

Scanning Masses

Finding a Signal

- To calibrate the detector a 'synthetic axion' signal could be injected into the cavity. This both verified the electronics and the analysis procedure.
- KSVZ axions produce a clear signal.
- DFSZ axions are not visible in the raw spectra but combining spectra over all observations reveals the peak.

The Signal

 The signal to noise ratio is given by the Dickie Radiometer equation.

$$T = T_{\text{phys}} + Tpre + \frac{T_{\text{postamp}}}{\text{Gain1}}$$

• Axion power is proportional to the cavity characteristics, the magnetic field and the resonant mode.

$$P_{sig} \propto B^2 V Q_{cav} C_{mode}$$

- Integration time depends on the experimental cadence.
 - Step size.

P_{sig}

- Operational frequency.
- Currently limited to the range of minutes.

The Signal

 The signal to noise ratio is given by the Dickie Radiometer equation.

$$T = T_{\text{phys}} + Tpre + \frac{T_{\text{postamp}}}{\text{Gain1}}$$

Axion power is proportional to the cavity characteristics, the magnetic field and the resonant mode.

$$P_{\rm sig} \propto B^2 V Q_{\rm cav} C_{\rm mode}$$

- Integration time depends on the experimental cadence.
 - Step size.

P_{sig}

 $k_R \mathbf{I}$

- Operational frequency.
- Currently limited to the range of minutes.

Experimental Cadence

- 1. The cavity frequency is scanned over a region until the desired SNR is achieved
- 2. We then examine the combined power spectrum for signs of excess
- Excess power regions can be statistical fluctuations, synthetically injected signals, RF interference, or axions
- 4. Excess power regions are rescanned to see if they persist
- 5. Persistent candidates are subjected to confirmation tests

The Signal

 The signal to noise ratio is given by the Dickie Radiometer equation.

 Noise temperature is the sum of the thermal noise and amplifier noise.

$$T = T_{\text{phys}} + Tpre + \frac{T_{\text{postamp}}}{\text{Gain1}}$$

 Axion power is proportional to the cavity characteristics, the magnetic field and the resonant mode.

$$P_{\rm sig} \propto B^2 V Q_{\rm cav} C_{\rm mode}$$

- Integration time depends on the experimental cadence.
 - Step size.

Psig

 k_R 7

- Operational frequency.
- Currently limited to the range of minutes.

Cavity Form Factor

$$C_{\text{mode}} = \frac{\left(\int_{V} dV \ E \cdot B\right)^{2}}{V B^{2} \int_{V} dV E^{2}}$$

- The cavity form factor is a function of the mode structure of the cavity.
- TM010 has the maximum form factor of ~0.7.
- The majority of modes have a negligible form factor.
- Due to the tuning rod ADMX typically achieves ~0.4

The Signal

 The signal to noise ratio is given by the Dickie Radiometer equation.

 Noise temperature is the sum of the thermal noise and amplifier noise.

$$T = T_{\text{phys}} + T_{\text{amp}} + \frac{T_{\text{postamp}}}{Gain_{\text{amp}}}$$

• Axion power is proportional to the cavity characteristics, the magnetic field and the resonant mode.

$$P_{\rm sig} \propto B^2 V Q_{\rm cav} C_{\rm mode}$$

- Integration time depends on the experimental cadence.
 - Step size.

sig

- Operational frequency.
- Currently limited to the range of minutes.

Cryogenics

- Cryocooler
 - Actively cools baffle to 40K
 - First heatsinking stage
- Two 1K pots
 - Large 1K pot for the shielding, gearbox and electricals.
 - Small 1K pot for Dil Fridge
- Dil fridge was custom built by Janis Research Company
- 800 μW of cooling at 100 mK
- Cools the resonator and amplifiers.

Quantum RF electronics.

ADMX Tunable MSA

Sean O'Kelley, Clarke Group, UC Berkeley

UC Berkeley

Lawrence Livermore National Laboratory LLNL-PRES-747684

Quantum RF electronics.

- The scan rate of ADMX is inversely proportional to the system noise squared. To achieve this, quantum limited amplifiers are used.
- Microstrip squid amplifiers(MSAs) are used for low frequency(0.5-2GHz) searches.
- The MSA works by having DC squid amplifiers attached to a microstrip resonator.
- Produced by the John Clarke Group at UC Berkley.

Quantum RF electronics.

- For frequencies above 1GHz Josephson parametric amplifiers are more suitable.
- A pump tone is used to excite squid loops which in turn amplify the incoming signal.
- Produced by the Siddiqi Group at UC Berkeley
- Testing of the quantum electronics took place at Livermore before being shipped to the experiment.

Classic example of parametric amplification is a child on a swing

Complexity

Lawrence Livermore National Laboratory

First Results of Gen 2

First Results of Gen 2

Lawrence Livermore National Laboratory

Going forward

- Currently ADMX is scanning 700-890 MHz
- We anticipate faster frequency coverage in the future due to:
 - Higher magnetic field
 - More stable quantum electronics
 - Lower temperatures
 - Reduced engineering overheads.
- Speed up of ~6x

Going Forward

ADMX Sidecar

- Sidecar is a small cavity that lives above the main ADMX cavity.
- Operating range of 4-6GHz in the fundamental mode.
- Currently testing piezo actuators for motion control.
- Currently insensitive to QCD axions but still searching for ALPs.

- Modes other than the TM010 have none zero form factors.
- The TM020 has a form factor of ~0.1.
- Testing operation using the Sidecar cavity.
- Extends the scannable range to 6.4-7.2GHz

ADMX Sidecar Exclusion

High Frequency Operations

Cavity Readout Using Qubits

Cavity Readout Using Qubits

Diverse Dark Matter

- Up until now we have assumed axions make up 100% of dark matter.
- Dark matter could be an entire 'hidden sector' reducing the available signal power.
- Light Shining through a Wall experiments overcome dark matter distribution by producing the species.
- Suffers a penalty of the coupling factor squared.

Diverse Dark Matter

Conclusion

- Axions are well motivated additions to the standard model.
- ADMX Gen 2 has searched with sensitivity to the DFSZ axion over 2.7-2.8 ueV
- ADMX is the first and only experiment with DFSZ sensitivity in the ideal dark matter axion mass range
- Over the next 2 years ADMX will search for dark matter axions up to 8.2 ueV
- R&D currently taking place to enable searches up to 40 ueV

Watch this space...

ADMX G2 at U. Washington, Scientific American, 2015

Lawrence Livermore National Laboratory

Collaborating Institutions: UW, UFL, PNNL FNAL, UCB, LLNL LANL, NRAO, WU, Sheffield

The ADMX collaboration gratefully acknowledges support from the US Dept. of Energy, High Energy Physics DE-SC0011665 & DE-SC0010280 & DE-AC52-07NA27344

Also support from PNNL and LLNL LDRD programs and R&D support from the Heising-Simons institute.

Power transfer increased by coherence cavity E-field and axion field

Weak coupling -- takes many swings to fully transfer the wave amplitude. Number of swings = cavity Quality factor.

Narrowband cavity response \rightarrow iterative scan through frequency space.

*Slide from Aaron Chou (FNAL)

Axion Hunting

	10										
	9										
С	8										
0	7										
u	6										
р I	5										
i i	4										
n	3										
g	2										
-	1										
		1	2	3	4	5	6	7	8	9	10
	Mass										
	-										

Axion Hunting

Axion Hunting

