Real time triggering and reconstruction at LHCb, its upgrade and the future

Renato Quagliani(LPNHE, Paris)

Outline

Introduction LHCb

The LHCb trigger evolution during years

The LHCb trigger in Run III

Plans for the HL-LHC

R. Quagliani

The LHCb detector

2018 event : PU = 1-2

2018 event : PU = 1-2

Ζ

The LHCb detector

ATLAS/CMS efficient trigger using a O(100kHz) read-out with ~straightforward E_T requirements. Trigger at hardware level is crucial. Also higher PU but looking to very rare events.

LHCb signal rate @LHC with PU=1, 45 kHz bb and 1 MHz cc bar. Can be efficient with 1 MHz read-out

Few highlights from LHCb Run I and Run II

≈^{× 2.0}

1.5

1.0

0.5

0.0

Constrain the CKM angles

Angular distributions in FCNC decays

+++ Pentaquark, $B_{s/d} \rightarrow \mu\mu$ (B.F. 10^{-9 /-10})

R. Quagliani

Few highlights from LHCb Run I and Run II

Constraint the CKM angles

Hints of NP in FCNC transitions?

No New Physics discovered so far. Higher and higher precision needed. We need more and more data.

+++ Pentaquark, $B_{s/d} \rightarrow \mu\mu$ (B.F. 10^{-9 /-10})

LHCb

R. Quagliani

20th May 2019

The LHCb detector

Carge cross section of b and c quark production in pp collision.

I event (Run I / Run II) ~ 50 kB

The success of LHCb in Run 1/2 relied on few ingredients

Solution: $\sigma_{IP} \sim 20 \ \mu m \ (p_T > 2 \ GeV/c), \epsilon_{tracking} > 96 \%, \ \Delta p/p \sim 0.5-1\%.$ Solution: Excellent particle identification (PID): ϵ_{K} -ID ~95%, ϵ_{μ} -ID ~97% Excellent decay time resolution: $\sigma_{\tau-decay} \sim 45$ fs for *b* hadrons

An incredible versatile detector able to efficiently select and record very rare processes and very frequent ones.

(true for all experiments but...) The trigger in LHCb plays a critical role

The b/c hardons signatures

riangless m ~ 5.28 GeV, daughters p_T O(IGeV) riangless τ ~ I.16 ps , FD ~ I cm riangless τ ~ I.16 ps , FD ~ I cm

- 𝔅 Detached muons from B→J/ΨX
- $^{\mbox{\tiny CP}}$ Or highly displaced tracks with high p_T

I.86 GeV, daughters p_T O(I GeV) ∇ ~0.4 ps , FD ~ 0.4 cm ∇ Also as 'secondary' from B decays

Key ingredient for efficient triggering and event topology identification

Primary vertex finding, High P_T tracks reconstruction, Optimal MuonID
 Cabibbo Suppressed and Cabibbo Favoured decays ID (requires precise PID)
 Inclusive triggering using MVAs on 1&2 track signatures

Challenges in flavour physics

© Detection of collisions and the originating particles.

See Event reconstruction within available budget

Be Huge rate of signal of interest. O(TB/s) and a limited storage capability [few GB/s]

• How to maximise and keep as flexible as possible the physics outcome of the experiment?

Solution of the second second

• What if all events can be of interest [Run III and LHC]?

Solution and analysis have to be fast!

Maximise the physics outcome requires a sophisticated trigger

The LHCb trigger evolution/revolution during years

The LHCb trigger: 2011-2012

Operates at PU I [~45kHz of bb expected for 40 MHz bunch crossing rate at LHC]

We Hardware stage based trigger (output | MHz)

- Selection of events based on multiplicity
- Calorimeters ET
- Image: Muon(s) p⊤ tresholds.

Software trigger running on HLT farm

- ☞ **2 stages** : HLTI and HLT2.
- W HLTI: partial reconstruction reducing rate for
 full event reconstruction (HLT2)
- Buffer 20% of L0 selected events to disk for later processing during beam downtime
- Final output rate of 5 kHz storing ~65kB/event

The LHCb trigger: deferring to disk

Operates at PU I [~45kHz of bb expected for 40 MHz bunch crossing rate at LHC]

Deferred trigger concept (from 2012)

- Stable beams only 30-50% of the time.
- Image: Disks costs much less than CPU.
- Buffer events allow for out of fill processing allowing an effective 3x more powerful farm.
- Implemented begin 2012

The LHCb trigger: deferring to disk evolution in Run2

- HLTI accepted events written to disk in-fill at 100 kHz (2 weeks contingency).
- Perform real-time alignment and calibration of the whole detector with the buffered data from HLT I reconstruction.
- © Offline-like reconstruction available on-line in HLT2.

From 5 PB to 10 PB available in Run II, more powerful CPUs optimisation of Reconstruction

The LHCb trigger: Real time alignment and calibration

A fully aligned and calibrated detector in real-time (few hours)

The offline-quality PID information and optimal performance achieved within the trigger system

R. Quagliani

The LHCb trigger: Real time alignment and calibration

Asynchronous processing of HLT2 allows to optimally use farm resources.

The LHCb trigger: bandwidth optimization

Real-time candidate reconstruction and building possible with no loss on precision at trigger stage.

TURBO lines in Run 2

Run 2 composed one 528 trigger lines and 50% are Turbo
 25% of the rate is Turbo but it counts for only 10% of the bandwidth
 Many analysis would not be possible without Turbo

Short recap

2011

End of Run 2

All this serves as proof of concept and preparation of the Run III data taking.

First issue when facing Run III condition

Run I and II

 $\mathcal{L}_{inst} = 4 \times 10^{32} cm^{-2} s^{-1}$ $\mathbb{P}U = 1.1 - 1.8$ $\mathbb{P}3 (\text{Run I}) + 5 (\text{Run II}) \text{ fb}^{-1}$

Run III target

$$\mathcal{L}_{inst} = 20 \times 10^{32} cm^{-2} s^{-1}$$

PU = 7.6 ☞ 50 fb⁻¹ in 10 years

Solution :

- Get rid of L0 hardware trigger
- A full 30 MHz software trigger adopted
- All detector read-out at collision rate.
- Image of DAQ system
- Upgrade detectors to cope for higher occupancy

Issue 1 : 1 MHz read-out limit

Scaling of trigger yields with current LHCb

First issue when facing Run III condition

Issue 2 : too many interesting signal to save

Rate of signal for 2-track combinations [after HLT1]

~ I MHz to disk [100 GB/s] of interesting signals with a 30 MHz full event reconstruction at the higher luminosity

Not affordable data tape rate and loss of power for inclusive triggers

Real Time Analysis, fully reconstruct the decay of interest in the online trigger

R. Quagliani

20th May 2019

The big plan for Run III [2021]

The path towards Run III

Full construction and installation of new detectors for the upgrade [during LS2] is on-going now

Partial event reconstruction (HLTI) must be able to run at 30 MHz and provide enough information to reduce the event rate [0.5, 1 MHz]

Series Displaced physics can be efficiently selected using high-PT displaced tracks from collision

☞ Full "Run 3 physics" also requires lower P_T and prompt tracks

Still working on a reliable estimate of the cost of the full reconstruction which includes also the 500+ selections required for the real time analysis program. Numbers expected by end of this year

The upgrade of the LHCb detectors for tracking

Velo Pix

- 2-D pixel sensor @-20°C: direct x-y measurement.
- See Fast tracking on raw data.
- S.I mm distance from interaction point (8.2 mm current VELO)

Simplify reconstruction via a direct 3D measurement. 3D line finding algorithm. Vectorisation of the algorithm on-going

LHCb detector upgrade : Upstream tracker

Upstream tracker (UT)

- See Larger acceptance in central region
- Reduced thickness
- $rightarrow Improved \sigma_{x-z} \sim 50 \ \mu m$
- Fast VELO tracks validation
- ^{Cer} Velo-UT tracking: Δp/p ~15-30%

allows to reduce search window in

forward tracking.

UT plane section

R. Quagliani

28th March 2018

LHCb detector upgrade : Sci-Fi

The LHCb software framework revolution

HLTI will be executed in real-time at 30 MHz and it is composed from a small set of crucial

algorithms

The real-time reconstruction trigger system for the LHCb upgrade

To enable multi-threading, LHCb has introduced a new multi threaded framework to perform event reconstruction at collision rate.

High-throughput software for the LHCb upgrade

The multi-thread framework brings a 20% extra speed-up in the reconstruction sequence.

Since 2018 : algorithms have been deeply reworked to allow faster and faster reconstruction

Partial reconstruction sequence : physics handles

R. Quagliani

28th March 2018

Velo Tracking for the upgrade in a nutshell

Testing, monitoring, testing

R. Quagliani

20th May 2019

Track fit : Parameterized Kalman

Much faster than the default Kalman Filter using simple parameterization to propagate through magnetic field and material effects. Polynomials used to parameterise the jump from Upstream to Downstream magnet region.

Moderate loss in precision for HLTI purposes.

Run III trigger recap

LHCb signal rate has changed the definition of trigger

respective respectiv

 \bigcirc Reduce rate \rightarrow reduce bandwidth

Parallel groups are also developing the HLTI on GPU and part of data preparation with FPGA [not covered in the talk]

Estimated HLT1 efficiency for Upgrade

Hlt1 efficiency estimates for Upgrade

In whatever scenario, there is a significant gain in trigger efficiency, as expected

from exploration and New Physics searches to precision and characterisation of New Physics?

• Huge motivation for a flavour experiment at the ultimate precision

- Also an "ultimate" data and reconstruction challenge, as x 100 more complex event reconstruction and data-selection
 - R. Quagliani

Many ideas to fight the 100 times harder (w.r.t. Run III) challenge in signal rate A unique opportunity to boost further the physics reach of the experiment

Magnet-side stations to boost physics using slow decay products $D^* \to D(\pi K)\pi_{\text{slow}}: \text{ gain } 21 \%.$ $\Lambda_b \to \Lambda_c^* \mu \nu, \Lambda_c^* \to p \pi_{\text{slow}} \pi_{\text{slow}}: \text{ gain } 60 \%.$ $B \to D^* \tau \nu: \text{ gain } 26 \%.$ $\Sigma_b \to \Lambda_b \pi_{\text{slow}}: \text{ gain } 29 \%.$

$$B \rightarrow \tau \tau$$
: gain: 24 %.
 $B \rightarrow nK$: gain 10 - 50 %.

Many ideas to fight the 100 times harder (than Run III) challenge in signal input rate. The mighty tracker (downstream the dipole). Pixel sensors + Scintillating Fibers.

A pixelled detector in the central region measuring x-y-z directly

At 10 times higher luminosity than Run III, necessity of a PU suppression system, which can be achievable with high resolution timing detectors, especially in the Velo and T-Stations

R&D, design and studies on going.

20th May 2019

Conclusions

- The LHCb trigger system has evolved a lot during data taking.
- This has been possible to the choice of making it fully "software-based"
- The Run II alignment and calibration and TURBO lines development is used as a proof of concept of the Run III trigger
- In Run III, a similar strategy to Run II will be used, but facing big challenges, which are not yet solved.
- Perform the reconstruction upfront at software level at an input rate of 30 MHz.
- LHCb is on the road to deliver the trigger system, aiming at not applying tight selections.
- IHCb has expressed interest for a further upgrade for the HL-LHC.

LHCb and triggering

Why triggering?

- LHCb produces ~ I TB/second : I5kPB/year with O(10) M€/year resources
 - LHCb data cost: **O(600€/PB)**
- By comparison, Facebook processes 180 PB/year with
 O(500) M€/year resources
 - Facebook data cost: **O(2.700.000€ / PB)**

A problem of signal saturation

Hardware triggers hit a limit of effectiveness!

R. Quagliani

Run III trigger scheme

Necessity of Upgrading the Downstream tracker

Current downstream tracker

Scintillating Fibre Tracker (Sci-Fi) CERN-LHCC-2014-001

40% occupancy expected in Outer Tracker

3 stations x 4 planes (x/u/v/x) of 6 stacked 2.4 m long scintillating fibres.

Scintillating fibers diameter: 250 µm

Read-out by Silicon-Photon multipliers (250 µm channel pitch)

SiPM + FE electronics + cooling in "Read-out box"

R. Quagliani

20th May 2019

Data Rate and the PRECISE revolution

Necessity of a PRECISE revolution

- Full detector : 30 MHz readout
- Full tracker reconstruction : 30 MHz in off-theshelf x86 processing units
- <u>Not only suppress background, but distinguish</u> <u>signal from signal</u>
- LHCb signal rates and precision physics program require a real-time alignment and calibration of the detector!
- Run II [2015-2018]: first real time alignment and calibration, as proof of concept for the upgrade.
- Run III [2021 2025++] : real time event reconstruction (at collision rate) and analysis.
 A 100 times bigger data challenge!

Track reconstruction at LHCb

For the HLTI: partial reconstruction

Daughters of b and c hadron decays (long) No needs to be efficient in all the phase space, identify signature is enough.

For the HLT2 : full reconstruction

All Daughters of b and c hadron decays (long)

T-Tracks seed the reconstruction of

Daughters of long-lived particles such as K_s and Λ^0 (downstream)

- 2 Crucial algorithms for the partial event reconstruction and the full Event reconstruction:
- **VELO** tracking and **T-Tracks** finding algorithm : I am the author of both of them
- <u>The physics reach of the upgrade depends on how well those 2 performs</u> in terms of tracking efficiencies and timing!

Velo-UT tracking

Propagate VELO track to UT correcting for integrated B field

- Search for doublets and propagate
- Find 3-4 hits matching predictions using also y-z plane information
- ☞ Estimation of q/p

$$\frac{q}{p} = \frac{1}{\int \left| d\overrightarrow{l} \times \overrightarrow{B} \right|_x} \cdot \left(\frac{t_{x,f}}{\sqrt{1 + t_{k,f}^2 + t_{y,f}^2}} - \frac{t_{x,i}}{\sqrt{1 + t_{x,i}^2 + t_{y,i}^2}} \right)$$

The forward Tracking

 \square Hits are pre-selected according to the min pT requirement

- ☞ The lower the min p_T requirement, the wider the window, the larger the amount of hits used for each seed track, the slower the algorithm.
- Series For each seed track, all p⊤ compatible hits are projected to a reference place and a cluster search is performed to find the matching SciFi hits.

Kalman Filter

Prediction: propagate a track state to another track state

- Solution Filtering: compare propagated track state to actual measurement. Minimisation of χ^2 based on residual.
- See Evaluate best estimate of new track state (also reject/accept measurement)
- Iterate over all measurements
- Smoothing: perform previous steps in the opposite direction using the prediction and filtering
- Material interactions accounted for enlarging the errors when propagating states

Tracks behaviour in LHCb and pattern recognition

p_T-kick method is heavily used in LHCb for patter recognition (PR).

(typically B_x and B_z assumed to be negligible at any z in pattern recognition)

Example of the p_T -kick used in the matching algorithm

$$\frac{q}{p} = \frac{1}{\left| \overrightarrow{l} \times \overrightarrow{B} \right|_{x}} \cdot \left(\frac{t_{x,f}}{\sqrt{1 + t_{x,f}^{2} + t_{y,f}^{2}}} - \frac{t_{x,i}}{\sqrt{1 + t_{x,i}^{2} + t_{y,i}^{2}}} \right)$$

Set used to estimate q/p.

- Used to open search windows according to momentum requirements.
 Used to quantify matching quality
 - of reconstructed segments.

Throughput dependence on detector occupancy

Almost all algorithms scales linearly with the occupancy.

Exception done for the forward tracking, which is currently implementing a tracking strategy oriented for HLT2 purposes.

Throughput dependence on tracking scenario

Image The displaced-tight p⊤ track reconstruction scenario is almost fitting in the 30 MHz computing budget and it fulfills the B physics scientific program.

Prompt physics and multi-hadron final state B physics will suffer in tightest scenario.

Factor 2 in throughput gained since biannual upgrade review document thanks to the optimization of the various algorithms.

Forward Tracking algorithm

28th March 2018

Seed track: VELO or VELO-UT depending if fast (HLT I) or best (HLT2) sequence

Search windows based on p-kick method

I hit + Seed track: allows to know expected track motion in bending plane in all T-stations.

Hough-Clusters: project all measurements to reference plane and find accumulation of them

R. Quagliani

Forward tracking and Hough Clustering (ID)

p_T-kick method

Matching algorithm

Seed tracks: T-Track state (S_T) from Seeding and Velo Track state from Velo Tracking (S_V)

Selection
Matching of them building a χ² matching at z_{bending} plane and Neural Net based selection

$$\chi^2_{match'} = \left(\overrightarrow{S}_V^K(z_{mag}) - \overrightarrow{S}_T^K(z_{mag})\right)^T \cdot \left(C_{VELO}^K + C_T^K\right)^{-1} \cdot \left(\overrightarrow{S}_V^K(z_{mag}) - \overrightarrow{S}_T^K(z_{mag})\right)$$

PID using RICH detectors

Add PID information to tracks using RICH detectors

$$m = \frac{p}{c\beta\gamma} \quad \text{from tracking} \quad \frac{1}{n\beta}$$
ring radius

- Rings used to assign PID likelihood.
- (offline) Info combined with other sub-detectors into a Neural Net PID probability

Vectorization leads to around a factor 8 speed-up.

 Table 3.2: Performance of vectorized Rich's Ray Tracing

28th March 2018

TURBO and TURBO ++

Store on disk only high level object for the decay mode of interest. Turbo worked quite well in Run II : few analysis published after I week of data taking.

Towards the upgrade:Turbo++ introduced in 2016

Turbo++ able to persist arbitrary variables on any reconstructed object

Can save HLT candidate + any reconstructed objects

Custom binary serialization and compression per event

Event size of 50 kB including minimal subset of raw data

Allow to do new things on HLT output

Run II trigger

Figure 2.1: A schematic diagram showing the amount of CPU dedicated to the HLT1 and HLT2 activity during various states of the LHC collider.

- Stable beams ~50% of the time
- Buffer events to disk and process between fills

- Run II
 - Defer 100% of HLT 1 accepted events
 - More efficient use of buffers due to larger real-time reduction
 - \circ $\:$ Save 100% of events at 150 kHz instead of 20% at 1 MHz $\:$
 - Use HLT 1 output for calibration and alignment
 - 10 PiB in farm (half in 2015)

LHCb L0 trigger in Run I

LHCb 2012 Trigger Diagram

 $p_T^{12} > 1.296 \, \text{GeV}/c$

 $E_T > 3.6 \,\mathrm{GeV}$

 $E_T > 2.5 \,\mathrm{GeV}$

 $E_T > 2.5 \,\mathrm{GeV}$

Muon Stations

Reduce 40 MHz input rate to 1 MHz.

Selection performed at Hardware level using information from Muon Stations (p_T muons), hadronic & electromagnetic Calorimeters (HCAL and ECAL) + Scintillating Pad Detector (SPD) and preshower (PS) measure the E_T and event multiplicity.

 $p_T^{12} > 1.6 \, \text{GeV}/c$

 $E_T > 3.5 - 3.74 \, \text{GeV}/c$

 $E_T > 2.5 - 2.86 \, \text{GeV}/c$

 $E_T > 2.5 - 2.96 \, \text{GeV}/c$

R. Quagliani

L0DiMuon

L0Hadron

L0Electron

LOPhoton

< 900

< 600

< 600

< 600

z

highest 2x2

cluster to

candidate

L0 trigger

and perform

build

 $\mathbb{C} = \mathbf{E} \times \sin(\theta)$

ECAL/HCAL

Why a mighty tracker for HL-LHC and even before?

Current Velo

The 3 triggers comparison

maybe 10