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Galactic Cosmic Rays

• Standard paradigm:
Galactic CRs accelerated in
supernova remnants

4 sufficient power: ∼ 10−3 ×M�
with a rate of ∼ 3 SNe per century

[Baade & Zwicky’34]

• galactic CRs via diffusive shock
acceleration?

nCR ∝ E−γ (at source)

• energy-dependent diffusion through
Galaxy

nCR ∝ E−γ−δ (observed)

• arrival direction mostly isotropic

CR diffusion

source
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Galactic Cosmic Ray Anisotropy

Cosmic ray anisotropies up to the level of one-per-mille at various energies
(Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS-γ; IceCube; HAWC)

Anisotropy = Relative Intensity - 1

32NDINTERNATIONALCOSMICRAYCONFERENCE,BEIJING2011

Figure1:Two-dimensionalrelativeintensitymapintheequatorialcoordinatesystemof5TeVgalacticcosmicrays
observedbytheTibetair-showerexperiment.
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Figure2:(a)ThesiderealdailyvariationobservedbytheTi-
betexperimentat6.2TeVfromDecember2001toNovember
2003.Thebest-fitfunctionwiththreeFouriercomponentsis
shownbytheblackline.(b)Theanti-siderealdailyvariation
observedbytheTibetexperimentat6.2TeVfromDecem-
ber2001toNovember2003.Thebest-fitsinusoidalcurveis
shownbytheblackline.
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Figure3:TimedependenceofthemaximumdepthofLoss-
ConeobservedbytheTibetexperimentat4.4,6.2,12TeV
(a)andtheMatsushiroundergroundmuonobservatoryat
0.6TeV(b)[4],alongwithMilagro’sdatarepresentedby
blueopeninversetrianglesandthebest-fitlinearfunctionto
Milagro’sdata.ThedataandtheirerrorsbytheMatsushiro
undergroundmuonobservatoryaremultipliedbythree,to
compensatefortheattenuationoftheamplitudeinthesub-
TeVenergyregion.Alltheerrorbarsin(a)and(b)arethe
linearsumsofthestatisticalandsystematicerrors.
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[e.g. review by MA & Mertsch’16]
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Galactic Cosmic Ray Anisotropy

Cosmic ray anisotropies up to the level of one-per-mille at various energies
(Super-Kamiokande; Milagro; ARGO-YBJ; EAS-TOP, Tibet AS-γ; IceCube; HAWC)
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Energy-Dependence

Large-scale (dipole) anisotropy has strong energy dependence
with phase-flip around 100 TeV.

[IceCube & IceTop’16]
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Time-Dependence

No significant variation of TeV-PeV anisotropy over time scales of O(10) years.
No. 1, 2010 TEMPORAL VARIATIONS OF MULTI-TeV CR ANISOTROPY 123
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Figure 2. CR intensity variation in the local sidereal time frame for CRs with the modal energy around 5 TeV in the nine phases of Tibet III array. Top: two-dimensional
intensity map of each phase; Bottom: one-dimensional projection averaged over all declinations. In bottom plots of each panel, the red crosses in each plot show the
intensity variation over each phase respectively, while the dashed blue lines represent the intensity averaged over all nine phases of Tibet III array.

The observation period of Tibet III array covers more than a
half of the 23rd solar activity cycle from the maximum to the
minimum. So it implies that the sidereal anisotropy of multi-TeV
GCRs is insensitive to the solar activity. It disagrees with the
recent result of Milagro experiment (Abdo et al. 2009), which
shows an increase in the amplitude of the sidereal anisotropy
with time while the phase remains stable.

4. CONCLUSIONS

In this work, we investigate temporal variations of the large-
scale sidereal anisotropy of GCR intensity using the data of
Tibet III Air Shower Array from 1999 November to 2008
December. Totally ∼4.91 × 1010 CR events are used. The data
are divided into nine intervals, each in a time span of about one
year. We find that, in the multi-TeV energy range, the sidereal
anisotropy is fairly stable year by year over all nine phases
of Tibet III array, which covers more than a half of the 23rd
solar cycle from the maximum to the minimum. It indicates that
the anisotropy in this energy range appears insensitive to solar
activities. This feature can give some constraints on the origin
of the sidereal anisotropy, which has no convincing and widely
accepted explanations so far.

The collaborative experiment of the Tibet Air Shower Arrays
has been performed under the auspices of the Ministry of
Science and Technology of China and the Ministry of Foreign
Affairs of Japan. This work was supported in part by Grants-in-
Aid for Scientific Research on Priority Areas (712) (MEXT),
by the Japan Society for the Promotion of Science (JSPS), by
the National Natural Science Foundation of China, the Chinese

Academy of Sciences and the Ministry of Education of China.
C.F. is partially supported by the Natural Science Foundation of
Shandong Province, China (No. Q2006A02).
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Dipole Anisotropy at 8 EeV 

0.38

0.42

0.46

k
m

-2
 sr

-1
 y

r
-1

-90

90

360 0

Figure 2: Map showing the fluxes of particles in equatorial coordinates. Sky map in equatorial
coordinates, using a Hammer projection, showing the cosmic-ray flux above 8 EeV smoothed
with a 45� top-hat function. The Galactic center is marked with an asterisk and the Galactic plane
is shown by a dashed line.

Table 2: Three dimensional dipole reconstruction. Directions of dipole components are shown
in equatorial coordinates.

Energy
[EeV]

Dipole
component dz

Dipole
component d?

Dipole
amplitude d

Dipole
declination dd [�]

Dipole right
ascension ad [�]

4 to 8 �0.024 ± 0.009 0.006+0.007
�0.003 0.025+0.010

�0.007 �75+17
�8 80 ± 60

8 �0.026 ± 0.015 0.060+0.011
�0.010 0.065+0.013

�0.009 �24+12
�13 100 ± 10

studies that found that the effects of higher-order multipoles are not significant in this energy
range [25, 29, 30], the dipole components and its direction in equatorial coordinates (ad, dd) can
be estimated from

d? ' ra

hcos di , dz '
bj

cos `obshsin qi , ad = ja, tan dd =
dz

d?
, (3)

[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.
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[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.
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Anisotropy Reconstruction
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Reconstruction Methods

8 data is strongly time-dependent:

• detector deployment/maintenance
• atmospheric conditions

(day/night, seasons)
• power outages,. . .

8 local anisotropies of detector:

• detector geometry
• mountains
• geo-magnetic fields,. . .

• two analysis strategies:

• Monte-Carlo & monitoring
(limited by systematic uncertainties)

• data-driven likelihood methods
(limited by statistical uncertainties)

Searching for All-Scale Anisotropies in the Arrival Directions of Cosmic Rays above the Ankle 5

nti with a Gaussian beam with an appropriate angu-
lar size. This procedure will only affect the small-scale
anisotropy that is present in the data, but undistinguish-
able from the noise introduced by Poisson fluctuations.

Instead of smoothing the original event map to ac-
count for the limited statistics in cosmic ray data above
the ankle, it is also possible to adapt the maximum-
likelihood method to account for a smoothing scale in
the relative intensity. This can be done by an expansion
of the anisotropy into spherical harmonics (13) that is
truncated at a maximum moment `max. We discuss the
case of a general truncation scale `max in Appendix B
and concentrate hear on the dipole anisotropy, `max = 1.
In this case, it is convenient to work with the expansion

dIdipole(a, d) = dxx(a, d) + dyy(a, d) , (21)

where x(a, d) = cos a cos d and y(a, d) = sin a cos d.
These basis functions correspond to the projection of
the unit vector n into the equatorial plane. The relation
to spherical harmonics is x =

p
2p/3(Y1�1 � Y11) and

y = i
p

2p/3(Y1�1 + Y11) and therefore a1�1 = �a⇤11 =p
2p/3(dx + idy). Note that the third component of n

perpendicular to the equatorial plane is proportional to
Y10, which is not accessible by this data-driven method
as explained in section 3. The dipole (21) automatically
satisfies the normalisation condition Âa dIa = 0.

With this ansatz for the relative intensity, the maxi-
mum likelihood solution (d?x, d?y , N ?, A?) for a d?x ⌧ 1
and d?y ⌧ 1 is given by Eqs. (19) and (20) together with
the simple matrix equation (see Appendix A for details)

Â
ti

nti

✓
x2

ti xtiyti
xtiyti y2

ti

◆✓
d?x
d?y

◆

' Â
ti

✓
(nti � N ?

t A?
i )xti

(nti � N ?
t A?

i )yti

◆
. (22)

Here, we again make use of the notation xti ⌘
x(R(tt)n0(Wi)), etc. As before, the non-linear system of
equations (19), (20), and (22) can only be solved via an it-
erative reconstruction method outlined in Appendix A.

Another advantage of the likelihood-based dipole
reconstruction method is the simplicity of estimating
the significance of the observation. The maximum-
likelihood ratio between the best-fit dipole anisotropy
and the null hypothesis, I = 1, defines the maximum-
likelihood test statistic

l = 2 ln
L(n|d?x, d?y , N ?

t , A?
i )

L(n|0, 0, N (0)
t , A(0)

i )
. (23)

According to Wilks (1938), data following the null hy-
pothesis has a distribution in l that follows a two-
dimensional c2-distribution. The p-value of the ob-
served data, i.e., the probability of a false positive iden-
tification of the dipole anisotropy, is simply given by
p = e�l/2.
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FIG. 1.— Arrival time of events with E > 8 EeV in terms of modified
Julian days (top) and sideral time (bottom). The horizontal thin line in
the lower plot indicates the mean number of events per 20min.

We can also use the maximum likelihood (15) to es-
timate the parameter uncertainties, sx/y, of the dipole
amplitudes d?x/y. The derivation for the covariance ma-
trix for general `max is discussed in Appendix B. For
the case of the dipole anisotropy it can be well approxi-
mated as

s�2
x ' Â

ti
nti(xti)

2 � Â
t

(N ?
t )2

Âi nti

✓
Â

j
A?

j xt j

◆2

, (24)

with an analogous equation for the uncertainty sy of
the second component dy. The first term of expres-
sion (24) is approximately Ntot/2, where Ntot is the to-
tal event number. This corresponds to the naive first
order approximation

p
2/Ntot of the uncertainty. How-

ever, the second term increases the error in the dipole
reconstruction. It is accounting for the fact that the sta-
tistical power of the data is also used to separately deter-
mine the background rate. As we will see in the follow-
ing, this will lead to a weaker significance of the Auger
dipole reconstruction compared to the original analysis
in Aab et al. (2017).

5. ANALYSIS OF AUGER DATA

We will now apply the previously discussed methods
to the Auger data at energies above 8 EeV. The Pierre
Auger Observatory (Aab et al. 2015) is located near the
city of Malargüe, Argentina, at a geographic latitude of
F ' 35.2�S and longitude L ' 69.5�W. The 32187 cos-
mic ray events used in this analysis has been recorded

example: Auger data > 8 EeV
[MA’18]
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East-West Method
• Strong time variation of cosmic ray background level can be compensated by

differential methods. [e.g. Bonino et al.’11]

• East-West asymmetry:

AEW(t) ≡ NE(t)−NW(t)
NE(t) + NW(t)

' ∆α
∂

∂α
δI(α, 0)

︸ ︷︷ ︸
if dipole!

+ const︸ ︷︷ ︸
local asym.

• For instance, Auger data > 8 EeV:
Auger E > 8 EeV
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• best-fit dipole from EW method: d⊥ = (8.2± 1.4)% and αd = 135◦ ± 10◦
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Issues with Data-Driven Reconstruction

Equatorial

North

East

South

West

ZenithZenith

relative acceptance at 09:00 LST

0.82 1.65

• ground-based detectors need to be calibrated by CR data

• true CR dipole defined by amplitude A1, and orientation (RA,DEC) = (α1,δ1)

8 observable: projected dipole with amplitude A′1 = A1 cos δ1 and orientation (α1,0)
[Iuppa & Di Sciascio’13; MA et al.’15]
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Issues with Data-Driven Reconstruction

Equatorial
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• ground-based detectors need to be calibrated by CR data

• true CR dipole defined by amplitude A1, and orientation (RA,DEC) = (α1,δ1)

8 observable: projected dipole with amplitude A′1 = A1 cos δ1 and orientation (α1,0)
[Iuppa & Di Sciascio’13; MA et al.’15]
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Take-Away on Dipole Reconstruction

Data-driven methods of anisotropy reconstructions
used by ground-based observatories are

only sensitive to equatorial dipole
(or, more generally, to all m 6= 0 multipoles)

∆δ⊥ ∼
1√
Ntot

N ∼ 4π

Ntot
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Large-Scale Anisotropy
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Cosmic Ray Dipole Anisotropy
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Cosmic Ray Dipole Anisotropy

• Spherical harmonics expansion of relative intensity yields:

I(Ω) = 1 + δ · n̂(Ω)︸ ︷︷ ︸
dipole

+ ∑
`≥2

∑
m

a`mY`m(Ω)

• cosmic ray density nCR ∝ E−ΓCR and dipole vector δ from diffusion theory:

∂tnCR ' ∇(K∇nCR) + QCR︸ ︷︷ ︸
diffusion equation

and δ ' 3K∇nCR
/

nCR︸ ︷︷ ︸
from Fick’s law

• diffusion tensor K in general anisotropic (background field B):

Kij = κ‖B̂iB̂j + κ⊥(δij − B̂iB̂j) + κAεijkB̂k

• relative motion v of the observer in plasma rest frame (?): [Compton & Getting’35]

δ = δ? + (2 + ΓCR)v/c︸ ︷︷ ︸
Compton-Getting effect
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TeV-PeV Dipole Anisotropy

• reconstructed diffuse dipole:

δ? = δ− (2 + ΓCR)β︸ ︷︷ ︸
Compton-Getting

= 3K·∇n?
/

n?

• projection onto equatorial plane: Ü

δ?
EP = (δ?0h, δ?6h)

• strong regular magnetic fields in the
local environment

Ü diffusion tensor reduces to projector:
[e.g. Mertsch & Funk’14; Schwadron et al.’14]

Kij → κ‖B̂iB̂j

• TeV–PeV dipole data consistent with
magnetic field direction inferred by
IBEX data [McComas et al.’09]
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Known Local Supernova Remnants

• projection maps source gradient
onto B̂ or −B̂

Ü dipole phase α1 depends on
orientation of magnetic
hemispheres

• intersection of magnetic
equator with Galactic plane
defines two source groups:

120◦ . l . 300◦ → α1 ' 49◦

−60◦ . l . 120◦ → α1 ' 229◦
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Phase-Flip by Vela SNR?

• 1–100 TeV phase indicates dominance
of a local source within longitudes:

120◦ . l . 300◦

• plausible scenario: Vela SNR [MA’16]

• age : ' 11, 000 yrs

• distance : ' 1, 000 lyrs

• SNR rate : RSNR = 1/30 yr−1

• (effective) isotropic diffusion:

Kiso ' 4× 1028(E/3GeV)1/3cm2/s

• Galactic half height : H ' 3 kpc

• instantaneous CR emission (Q?)
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Position of SNR

Equatorial

Loop I
Vela

Monogem
Geminga

Cygnus Loop

0.01.0
2.0

3.0

Galactic Center

Relative Position of SNRs

Relative position of the five closest known SNRs. The magnetic field direction
(IBEX) is indicated by blue × and the magnetic horizon by a dashed line.
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Phase-Flip by Vela SNR

• 1–100 TeV phase indicates dominance
of a local source within longitudes:

120◦ . l . 300◦

• plausible scenario: Vela SNR [MA’16]

• age : ' 11, 000 yrs

• distance : ' 1, 000 lyrs

• SNR rate : RSNR = 1/30 yr−1

• (effective) isotropic diffusion:

Kiso ' 4× 1028(E/3GeV)1/3cm2/s

• Galactic half height : H ' 3 kpc

• instantaneous CR emission (Q?)
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Small-Scale Anisotropy
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Likelihood Reconstructions

8 Traditional “East-West method” has deficits w.r.t reconstruction of medium- and
small-scale anisotropies.

Ü Alternatively, data can be analyzed to simultaneously reconstruct:

• relative acceptance A(ϕ, θ) (in local coordinates)
• relative intensity I(α, δ) (in equatorial coordinates)
• background rate N (t) (in sidereal time)

• expected number of CRs observed in sidereal time bin τ and local coordinate i:

µτi = µ(Iτi,Nτ ,Ai)

• reconstruction via maximum likelihood:

L(n|I,N ,A) = ∏
τi

(µτi)
nτi e−µτi

nτi!

• Maximum can be reconstructed by iterative methods. [MA et al.’15]

Ü used in joint IceCube & HAWC analysis [IceCube & HAWC’18]
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Likelihood Reconstructions

Equatorial

60◦120◦180◦300◦ 240◦

60◦

30◦

−30◦

−60◦

anisotropy (E > 8 EeV, 45◦ smoothing)

-0.059 0.059

[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Likelihood Reconstructions

Equatorial
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[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Small-Scale Anisotropy

• Significant TeV small-scale
anisotropies down to angular
scales of O(10) degrees.

• Strong local excess (“region A”)
observed by Northern
observatories.

[Tibet-ASγ’06; Milagro’08]

[ARGO-YBJ’13; HAWC’14]

• Angular power spectra of IceCube
and HAWC data show excess
compared to isotropic arrival
directions. [IceCube’11; HAWC’14]

C` =
1

2`+ 1

`

∑
m=−`

|a`m|2

10 HAWC Collaboration and IceCube Collaboration

(A)

(B)

Region A

Region B

Region A

Region B

HAWC FoV

IceCube FoV

HAWC FoV

HAWC FoV

IceCube FoV

HAWC FoV

Figure 5. (A) Relative intensity �Ia (Eq. 2) after subtracting the multipole fit from the large-scale map and (B) corresponding
signed statistical significance Si (Eq. 3) of the deviation from the average intensity in J2000 equatorial coordinates.

The angular power spectrum for the combined dataset

in Figure 7 provides an estimate of the significance of

structures at di↵erent angular scales of ⇠ 180�/`. Biases

are substantially reduced with the likelihood method

and by eliminating degeneracy between multipole mo-

ments with a nearly full sky coverage. The angular

power spectrum can therefore be considered to be the

physics fingerprint of the observed 10 TeV anisotropy,

providing information about the propagation of cosmic

rays and the turbulent nature of the Local Interstellar

Magnetic Field (LIMF) (Giacinti & Sigl 2012; Ahlers &

Mertsch 2017). The large discrepancy between the com-

bined and individual datasets is the result of the limited

sky coverage by each experiment. This systematic e↵ect

will be discussed in Section 7.2. A residual limitation in

this analysis is the fact that ground-based experiments

are generally not sensitive to the vertical component of

the anisotropy as discussed by Abeysekara et al. (2018b)

and Ahlers et al. (2016), as mentioned earlier.

The measured quadrupole component has an ampli-

tude of 6.8 ⇥ 10�4 and is inclined at 20.7 ± 0�.3 above

(and below) equatorial plane. As with the dipole, the fit-

ted quadrupole component from the spherical harmonic

expansion is also missing the m = 0 terms. However,

the combination of a21 and a22 non-vertical quadrupole

components can still provide valuable information. The

experimental determination of the vertical components

of the anisotropy would require accuracies better than

the amplitude of the anisotropy (⇠ 10�3). This be-

comes easier at ultra-high energies where a dipole of

much larger amplitude has been observed (Aab et al.

2017). The full-sky coverage also provides better con-

straints for fitting the ` = 2 and ` = 3 multipole com-

All-Sky Anisotropy of Cosmic Rays at 10 TeV 13

Figure 7. Angular power spectrum of the cosmic ray anisotropy at 10 TeV. The gray band represents the 90% confidence
level around the level of statistical fluctuations for isotropic sky maps. The noise level is dominated by limited statistics for
the portion of the sky observed by HAWC. The IceCube dataset alone has a lower noise level and is sensitive to higher `
components. The dark and light gray bands represent the power spectra for isotropic sky maps at the 68% and 95% confidence
levels respectively. The errors do not include systematic uncertainties from partial sky coverage.

Figure 8. One-dimensional R.A. projection of the relative
intensity of cosmic rays for adjacent � bins in the overlap re-
gion at -20� for HAWC and IceCube data. There is general
agreement for large scale structures. The two curves corre-
spond to di↵erent � bands. The shaded bands correspond
to systematic uncertainties due to mis-reconstructed events,
derived from the relative intensity distributions in adjacent
decl. bands between �25� and �15�.

on Monte Carlo studies, the residual contribution solar
dipole that results from gaps in data taking is estimated
to be of order ⇠ 10�5 for the HAWC dataset, which
is smaller than the statistical error of this analysis. In

the case of IceCube, the detector has an uptime of 99%
(see Aartsen et al. (2017)) reduced to an uptime of
95.4% after selecting full sidereal days. As a result, the

systematic e↵ect of data gaps is smaller (Abbasi et al.
2012).

In addition to variations caused by the anisotropy and

the solar dipole, there may also be local variations in
the detection of cosmic rays caused by changes in atmo-

Figure 9. Angular power spectrum as a function of sky
coverage for ` = {1, 2, 3, 4}. The horizontal axis indicates
the maximum decl. �max, keeping �min = �90� for a dipole
injected horizontally in direction �6h. The partial coverage
of sky produces an artificial quadrupole and octupole that
decrease in power with greater celestial coverage.

spheric conditions, such as pressure and temperature,
and also by changes in the detector. For 10 TeV en-

ergies, HAWC is located below the shower maximum
Xmax for all primary masses. As a result, an increase
in pressure leads to an increase of the atmospheric over-
burden which results in an attenuation of shower sizes.

Atmospheric overburden is related to ground pressure p
as X0 = p/g, where g = 9.87 m s�2 is the local grav-
itational acceleration (Abbasi et al. 2013). In first or-

der approximation, the simple correlation between the

[IceCube & HAWC’18]
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Small-Scale Anisotropies from Heliosphere?

courtesy S. T. Suess
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Small-Scale Anisotropies from Heliosphere?

• Solar potential affects cosmic ray flux (monopole) only at rigidity R . 10 GV.
[Gleeson & Axford’68;Gleeson & Urch’73]

• However, gyroradius of sub-TV cosmic rays smaller than the size of heliosphere:

rg ' 200
( R

TV

)(
B

µG

)−1
AU

• Various effects of cosmic transport and acceleration have been considered:

? hard CR spectra via magnetic reconnection in the heliotail [Lazarian & Desiati’10]

? non-isotropic particle transport in the heliosheath [Desiati & Lazarian’11]

? heliospheric electric fields induced by plasma motion [Drury’13]

? simulation via CR back-tracking in MHD simulation of heliosphere
[Zhang, Zuo & Pogorelov’14; López-Barquero et al.’16]
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Small-Scale Anisotropy from Local Turbulence

CMB temperature fluctuations Cosmic Ray Gradient

Local M
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small scale temperature fluctuations small scale anisotropies [Giacinti & Sigl’12]
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Small-Scale Theorem

• Assumptions:

• absences of cosmic ray sources and sinks
• isotropic and static magnetic turbulence
• initially, homogeneous phase space distribution

• Theorem: The sum over the ensemble-averaged angular power spectrum is constant:

∑
`

(2`+ 1)〈C`(t)〉 = const

• Proof via Liouville’s theorem and angular auto-correlation function. [MA’14]

Ü Wash-out of individual moments by diffusion (rate ν` ∝ `(`+ 1)) has to be
compensated by generation of small-scale anisotropy.

Ü Theorem implies small-scale angular features from large-scale average dipole
anisotropy. [Giacinti & Sigl’12; MA’14; MA & Mertsch’15]
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Comparison to CR Data

Anomalous Anisotropies of Cosmic Rays from Turbulent Magnetic Fields

Markus Ahlers
WIPAC & Department of Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

The propagation of cosmic rays (CRs) in turbulent interstellar magnetic fields is typically de-
scribed as a spatial di↵usion process. This formalism predicts only a small deviation from an
isotropic CR distribution in the form of a dipole in the direction of the CR density gradient or
relative background flow. We show that the existence of a global CR dipole moment necessarily
generates a spectrum of higher multipole moments in the local CR distribution. These anomalous
anisotropies are a direct consequence of Liouville’s theorem in the presence of a local turbulent
magnetic field. We show that the predictions of this model are in excellent agreement with the
observed power spectrum of multi-TeV CRs.

PACS numbers: 98.70.Sa, 96.50.S-, 98.35.Eg

Introduction.—The arrival directions of Galactic cos-
mic rays (CRs) are highly isotropic. This is expected
from a di↵usive propagation of CRs in the interstellar
medium, where the e↵ective scattering in turbulent mag-
netic fields randomizes the particle momenta over time.
Di↵usion theory (including also convective and dissipa-
tive processes) provides an excellent description of Galac-
tic CR fluxes and their chemical abundances, e.g. [1].
In this framework the only deviation from an isotropic
CR arrival direction is in the form of a weak dipole
anisotropy. The phase and strength of this dipole is ex-
pected to be a combined e↵ect of the relative motion of
the solar system with respect to the frame where CRs
are isotropic [2] and the density gradient of CRs in the
direction of their sources [3–5].

Cosmic ray anisotropies up to the level of one-per-mille
have been observed at various energies by the observa-
tories Tibet AS-� [6, 7], Super-Kamiokande [8], Mila-
gro [9, 10], ARGO-YBJ [11, 12], EAS-TOP [13], Ice-
Cube [14–16] and HAWC [17]. The explanation of the
strength and phase of the observed dipole anisotropy is
challenging, but is qualitatively consistent with the dif-
fusive prediction [4]. However, some of the observations
also show significant multi-TeV CR excesses at smaller
angular scales with unknown origin. In particular, a high
statistics sample of multi-TeV CRs seen by the IceCube
observatory [16] shows significant power in small-scale
multipole moments with ` . 20 as shown in Fig. 1.

It has been speculated that localized CR excesses can
be a combined e↵ect of CR acceleration in nearby super-
nova remnants [18] and the local intergalactic magnetic
field structure introducing an energy-dependent mag-
netic mirror leakage [19] or preferred CR transport direc-
tions [20]. Magnetic reconnections in the heliotail [21],
non-isotropic particle transport in the heliosheath [22] or
the heliospheric electric field structure [23] have also been
considered as a source of these small-scale anisotropies.
Another variant considers the e↵ect of magnetized out-
flow from old supernova remnants [24]. More exotic mod-
els invoke strangelet production in molecular clouds [25]
or in neutron stars [26].

In another recent paper [27] it was argued that the
local turbulent magnetic field configuration within a few
scattering lengths from the observer can induce higher
multipole moments in the CR arrival direction from the
existence of a large scale dipole moment. The authors
support this idea via numerical back-tracking of mono-
energetic CRs in a particular realization of random fields
using a global dipole moment as the initial value. This
elegant concept o↵ers the possibility that the study of
higher multipole anisotropies can probe the structure of
the turbulent magnetic field.

However, a quantitative description of this mechanism
has so far not been available. A major challenge consists
of an accurate description of the transition region be-
tween the di↵usive particle transport on large scales and
the local deterministic flow of particles where CR back-
tracking methods are applied. For the discussion of these
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FIG. 1: Angular power spectrum (black dots) at the 68%
confidence level measured with IceCube [16] at median energy
of 20 TeV compared to the model prediction (20) for ⌫T =
0.1 (blue dotted) and ⌫T = 1 (green dashed) as well as the
asymptotic value (21). We also show the power spectrum of
scrambled (i.e. isotropized) data from Ref. [16] (gray crosses).
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Simulation via Backtracking

- 0.10 - 0.05 0.00 0.05 0.10 - 0.3 - 0.2 - 0.1 0.0 0.1 0.2 0.3 - 1.0 - 0.5 0.0 0.5 1.0

Figure 12: Sketch of particle back-tracking in a turbulent magnetic field. For simplicity, we do not consider the presence

of a regular magnetic field. In that case, the CR back-tracking “flow” starts ballistic ⌫T ⌧ 1 (left panel), remains laminar

for ⌫T ' 1 (middle panel), and starts to become turbulent for ⌫T � 1 (right panel).

a large scale anisotropy of the form

4⇡f(t � T, r(t � T ),p(t � T )) ' � + (ri(t � T ) � r�)·r�� 3bpi(t � T )·K·r� . (64)

In principle, the same technique can be applied to the case of small–scale anisotropies from local

turbulence. The appropriate choice of the back-tracking time T is here the effective scattering time-

scale 1/⌫ of magnetic turbulence.

The formation of small–scale anisotropies can be understood in the following thought experiment:

Assume a homogeneous, but anisotropic dipolar state [124]. This means the phase–space density is the

same at every point in space, but its angular dependence is / (bp · �). We also assume, for simplicity,

that the magnetic field is dominated by turbulence. We now back–track particles from the observer for

a fixed amount of time T (see Fig. 12) and exploit Liouville’s theorem to compute the anisotropy map

from the set of trajectories and the assumed distribution. This is equivalent of preparing the system

into the initial state of the assumed distribution and then observing the anisotropy a time T later at

the position of the observer.

At early times, T⌫ ⌧ 1, (cf. middle panel of Fig. 12) the back–tracked particles will have travelled

away from the observer only ballistically and the observed sky map will be the same as the assumed

dipole. However, as T⌫ becomes larger (cf. middle panel of Fig. 12; the details depend on the scales and

strength of the turbulent field), the anisotropy map will show the first small–scale structures: Particles

will have travelled sufficiently far, that particles sent out back–tracking into very different directions

will have experienced different magnetic fields and their momenta will lose correlation. (Compare the

red with the blue trajectory in the middle panel of Fig. 12.) However, neighboring CRs (cf. the red and

orange trajectory) will have experienced similar magnetic configurations and their moment correlate

40

• Consider a local (quasi-)stationary solution of the diffusion approximation:

4π〈 f 〉 ' nCR + (r− 3 p̂ K)∇nCR︸ ︷︷ ︸
1st order correction

• Ensemble-averaged C`’s (` ≥ 1): [MA & Mertsch’15]

〈C`〉
4π
'
∫ dp̂1

4π

∫ dp̂2
4π

P`(p̂1p̂2) lim
T→∞

〈r1i(−T)r2j(−T)〉
︸ ︷︷ ︸

relative diffusion

∂inCR∂jnCR

n2
CR
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Simulation via Backtracking

• simulation in isotropic & static
magnetic turbulence with

δB2 = B2
0

• relative orientation of CR gradient:

• solid lines : B0 ‖ ∇n
• dotted lines : B0 ⊥ ∇n

• diffusive regime at TΩ & 100

• enhanced dipole predicions:

〈C1〉 > C1 for 〈 f 〉

• asymptotically limited by simulation
noise:

N ' 4π

Npix
2TKs

ij
∂in∂jn

n2

2

(4⇡f � n)/n is given as

1

4⇡
C1 =

����
Krn

n

����
2

. (3)

We will see in the following that this relation becomes
modified once we consider corrections of the PSD prod-
uct in the ensemble average. This will also introduce
multipoles at small angular scales, which can be related
to properties of relative di↵usion.

We now study the e↵ect of small local fluctuations of
the PSD around the ensemble average, �f = f � hfi.
According to Liouville’s theorem we can relate the local
(i.e., r = 0) PSD fi = f(0,0,pi) to the contribution
backtracked along CR trajectories to an arbitrary time,

4⇡fi ' 4⇡�f(�T, ri(�T ),pi(�T ))

+ n + [ri(�T ) � 3p̂i(�T )K]rn , (4)

where n and rn denote the local CR density and gradi-
ent and ri(�T ) and pi(�T ) are the position and momen-
tum of a CR (that is at position ri = 0 and p̂i(0) = p̂i

at time t = 0) at backtracking time T . Now, in the
limit of large T the last term in Eq. (4) is dominated
by the third term scaling with the position of the par-
ticle. Also, for two momenta p1 6= p2 we can assume
that the ensemble average of fluctuations are uncorre-
lated, h�f1(�T )�f2(�T )i ' 0, for su�ciently large back-
tracking times when the CR trajectories eventually sep-
arate. In the degenerate case p1 = p2 the two back-
tracked CR trajectories stay correlated over arbitrarily
long backtracking times. It will be su�cient to assume
that h(�f(�T ))2i remains finite. We can then express
the multipole spectrum of the ensemble-averaged rela-
tive intensity as the limit

1

4⇡
hC`i '

Z
dp̂1

4⇡

Z
dp̂2

4⇡
P`(p̂1p̂2)

⇥ lim
T!1

hr1i(�T )r2j(�T )i@in@jn

n2
, (5)

@i being shorthand for @/@xi.
Note that the ` � 1 multipole spectrum is generated

through relative di↵usion: it can be easily seen that the
sum over all ensemble-averaged multipoles of the relative
intensity can be expressed via the symmetric part of the
di↵usion tensor hri(�T )rj(�T )i ! 2TKs

ij in the limit of
large backtracking times T ,

1

4⇡

X

`�0

(2`+ 1)hC`i(T ) ' 2TKs
ij

@in@jn

n2
. (6)

On the other hand, the average monopole contribution
in this limit can be expressed as

1

4⇡
hC0i(T ) ' 2T

⇣
Ks

ij � eKs
ij

⌘ @in@jn

n2
, (7)

where the symmetric part of the relative di↵usion tensor
is defined as

eKs
ij =

Z
dp̂1

4⇡

Z
dp̂2

4⇡

⇥ lim
T!1

1

4T

⌦
�r12i(�T )�r12j(�T )

↵
, (8)
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Figure 1. Evolution of the ensemble-averaged power spectrum
(5) for a CR gradient parallel (solid lines) and perpendicular (dot-
ted lines) to the regular magnetic field and the 3D turbulence
model discussed in the main text. We show results in terms of
the dipole hC1i (black), monopole hC0i (blue), and medium-` mul-
tipoles (green). We also show the asymptotic noise level (9) (red)
and the dipole prediction (3) of standard di↵usion (magenta) eval-
uated by the replacement hr1ir2ji ! hr1iihr2ji in Eq. (5).

with �r12 ⌘ r1 � r2. Therefore, the sum of multipoles
` � 1 is related to the relative di↵usion tensor. For un-
correlated particle trajectories, this expression reduces
to the normal di↵usion tensor. However, particle tra-
jectories with a small relative opening angle will follow
similar trajectories and the relative contribution (8) re-
mains small over long timescales. Note that the multi-
poles in Eq. (5) are expected to be finite in the limit of
large backtracking times since particle trajectories with
arbitrarily small opening angles will eventually become
uncorrelated, hr1i(�T )r2j(�T )i ! 0.

3. SIMULATION

In the following, we will study the development of
small-scale anisotropies via numerical simulations (see
also Giacinti and Sigl (2012); Ahlers (2015); López-
Barquero (2015); Rettig (2015)). We follow the approach
of Giacalone and Jokipii (1999) and define a three-
dimensional (3D) turbulent magnetic field as the sum

�B(r) =
PN

n=1 �Bn cos(knr+�n) with N random phases
�n and wave vectors kn with 3D random orientations, on
top of a regular field B0. The wave vector amplitudes
kn range from kmin to kmax with equal logarithmic steps.
The vectors �Bn have 3D random orientations subject to
the conditions �Bn ? kn and |�Bn|2 / k3

n/(1+ (knLc)
�)

with a coherence scale Lc. We assume a Kolmogorov-
type phenomenology with � = 11/3 and the strength of

[MA & Mertsch’15]
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Simulation vs. Data
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“Via Lactea Incognita”
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Small-Scale Features Above the Knee

• KASCADE-Grande in Karlsruhe,
Germany (49.1◦ N, 8.4◦ E)

• data collected between March 2004
and October 2012

• available via: kcdc.ikp.kit.edu

• three energy bins from Nch cuts:

3

TABLE 1
RECONSTRUCTED DIPOLE ANISOTROPY

East-West (official)© East-West (this work) max-L (this work)´

data Emed
® Nch-range Ntot A1 [10�3] a1 [�] A1 [10�3] a1 [�] A1 [10�3] a1 [�] l p-value

sidereal
– � 105.2 23, 674, 844

2.8 ± 0.8 227 ± 17 2.9 ± 1.3 227 ± 25 2.1 ± 0.9 266 ± 24 5.52 0.063
solar 1.5 ± 0.8 359 ± 32 2.6 ± 1.3 338 ± 28 1.1 ± 0.9 357 ± 40 1.61 0.45

bin 1 2.7 PeV [105.2, 105.6) 17, 443, 774 2.6 ± 1.0 225 ± 22 3.4 ± 1.4 218 ± 25 2.1 ± 1.0 243 ± 27 4.49 0.11
bin 2 6.1 PeV [105.6, 106.4) 6, 084, 275 2.9 ± 1.6 227 ± 30 1.9 ± 2.5 281 ± 76 3.3 ± 1.8 314 ± 31 3.46 0.18
bin 3 33 PeV � 106.4 146, 795 12 ± 9 254 ± 42 24 ± 17 241 ± 41 9 ± 11 299 ± 77 0.57 0.75

® based on Chiavassa et al. (2016) © results presented in Apel et al. (2019) ´ method introduced in Ahlers (2018)

solar and local sidereal time are shown in Fig. 1.

3.1. Large-Scale Anisotropy

We will first study the presence of a dipole anisotropy
in the KASCADE-Grande data using the max-L method
presented in Ahlers (2018). It is important to realize that
this method does not allow to reconstruct anisotropies
that are azimuthally symmetric in the equatorial coor-
dinate system (see Appendix A in Ahlers (2018)). The
reconstructable dipole anisotropy is therefore of the form

dIdipole(a, d) = dx cos a cos d + dy sin a cos d . (5)

With this ansatz for the relative intensity, we can re-
construct the maximum combination (d?x, d?y , N ?, A?) of
Eq. (4) using an iterative method. After a few itera-
tion steps (about 20 in this analysis), the max-L ratio
between the best-fit dipole anisotropy and the null hy-
pothesis,

l = 2 ln
L(n|d?x, d?y , N ?

t , A?
i )

L(n|0, 0, N (0)
t , A(0)

i )
, (6)

allows to estimate the significance of the dipole
anisotropy. Data following the null hypothesis have
a distribution in l that follows a two-dimensional c2-
distribution (Wilks 1938). The p-value of the observed
data, i.e., the probability of a false positive identifica-
tion of the dipole anisotropy, is then simply given by
p = e�l/2. In addition, the best-fit values of N ? and A?

allow to estimate the uncertainties of the best-fit dipole
anisotropy (see Ahlers (2018) for details).

The last four columns of Table 1 show our results on
the dipole anisotropy based on the max-L method for
the combined data binned in local sidereal time (first
row) and solar time (second rows) as well as the three
Nch bins in sidereal time (last three rows). The best-fit
range including the 68% confidence level (C.L.) is ex-
pressed in terms of the amplitude A1 and phase f1 of
the dipole projected onto the equatorial plane. We also
indicate the test-statistic value l and the corresponding
p-value. We find no evidence for a dipole anisotropy in
the individual data sets.

For a better comparison with previous KASCADE-
Grande analyses (Chiavassa et al. 2016; Apel et al. 2019)

(columns 5 & 6) we also study the dipole anisotropy
with the East-West derivative method (columns 7 & 8);
see Appendix A. Note, that the data used in our anal-
ysis deviate from that of Apel et al. (2019), in that we
do not discard events having the largest particle den-
sity measured by station number 15 showing a strong
non-uniform azimuthal distribution in the local coordi-
nate system. The max-L method does not require this
additional cut, since the reconstruction does not rely on
symmetries of the local angular acceptance.

3.2. Medium-Scale Anistotropy

The likelihood-based anisotropy reconstruction al-
lows to study the presence of anisotropies at arbitrary
angular scales by a bin-wise fit of dI in the equatorial
coordinate system. The likelihood is again maximized
by an iterative reconstruction presented by Ahlers et al.
(2016). Similar to Ahlers (2018), we increase the stabil-
ity of the iterative reconstruction by smoothing the data
with a Gaussian symmetric beam with full width half
maximum of 2�. To extract the presence of medium-
scale anisotropies we smooth the resulting anisotropy
and event numbers by a top-hat kernel with radius of
20�. This corresponds to the sum of events and expecta-
tion values over the set Da of data bins within 20� off a
central bin a in the equatorial coordinate system:

ena = Â
b2Da

Â
t

ntb , (7)

eµa = Â
b2Da

Â
t

A?
tbN ?

t I?b , (8)

eµ bg
a = Â

b2Da

Â
t

A?
tbN ?

t I bg
b . (9)

In the absence of strong large-scale anisotropies, the
isotropic background level is simply taken as I bg = 1,
but can in general take on any form that is considered
as the background level. With these definitions we can
express the smoothed anisotropy as

deIa = eµa/eµ bg
a � 1 . (10)

The left panels of Fig. 2 show the reconstructed
anisotropy in the three energy bins with excesses and
deficits indicated by red and blue colors, respectively.
The dashed line indicates the projection of the Galactic
plane onto the celestial sphere.

• Full anisotropy construction in
Northern Hemisphere possible with
max-L method. [MA’19]

2 Markus Ahlers
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FIG. 1.— Distribution of KASCADE-Grande events with Nch � 105.2

over Modified Julian Days (top), solar time (bottom; thin blue line),
and local sidereal time (bottom; thick green line).

where fiso is the angular-averaged isotropic flux level
and I(a, d) is the relative intensity in terms of right as-
cension a and declination d. Cosmic ray diffusion pre-
dicts that the anisotropy dI = I � 1 is subdominant,
|dI| ⌧ 1.

In the local reference system of a ground-based obser-
vatory the arrival directions of CRs are uniquely char-
acterized by their azimuth angle j, zenith angle q, and
local sidereal time t. A unit vector n0(j, q) in the lo-
cal horizontal coordinate system is related to the corre-
sponding unit vector n(a, d) in the celestial equatorial
coordinate system via a coordinate transformation n =
R(t) · n0. The rotation matrix R(t) depends on local side-
real time t and the geographic latitude F of the observa-
tory; see, e.g., Ahlers et al. (2016). At any time, the ob-
servatory’s field of view is limited by a maximum zenith
angle qmax. Over the course of many sidereal days, the
observatory then covers a time-integrated field of view
in the equatorial coordinate system that is characterized
by the declination band, dmin < d < dmax, with dmin =
max(�90�, F � qmax) and dmax = min(90�, F + qmax).

We will assume in the following that the detector ex-
posure E per solid angle and sidereal time t accumu-
lated over many sidereal days can be expressed as a
product of its angular-integrated exposure E per side-
real time (units of cm2 sr) and relative acceptance A
(units of sr�1 and normalized as

R
dWA(W) = 1):

E(t, j, q) ' E(t)A(j, q) . (2)

The same assumption is also implicit in CR background
estimations by direct integration (Atkins et al. 2003) or

time-scrambling (Alexandreas et al. 1993). Note that the
accumulation of data into sidereal bins tends to average
out variations in the relative acceptance that are out of
phase with the length of one sidereal day.

To simplify calculations on the local and celestial
spheres, the sky is binned into pixels of equal area
DW using the HEALPix parametrization of the unit
sphere (Gorski et al. 2005). We follow the convention
in Ahlers et al. (2016) and use roman indices for pixels
in the local sky map and fraktur indices for pixels in the
celestial sky map. Time bins are indicated by greek in-
dices. For instance, the data observed at a fixed sidereal
time bin t can be described in terms of the observation
in local horizontal sky with bin i as nti or transformed
into the celestial sky map with bin a as nta.

The number of CRs expected from within the solid an-
gle DW in the direction n0(ji, qi) and within a sidereal
time interval Dt with central value tt is

µti ' ItiNtAi , (3)

where Nt ⌘ DtfisoE(tt) gives the expected number
of isotropic background events in sidereal time bin t.
The quantity Ai ⌘ DWA(ji, qi) is the binned relative
acceptance of the detector for angular element i, and
Iti ⌘ I(R(tt)n0(ji, qi)) is the relative intensity observed
in the local horizontal system during time bin t. Given
µti, the likelihood of observing nti CRs in time bin t and
local solid angle bin i is given by the product of Poisson
probabilities

L(n|I, N , A) = ’
ti

(µti)
nti e�µti

nti!
. (4)

The maximum-likelihood (max-L) combination of pa-
rameters (I?, N ?, A?) for given data n can be inferred
via an iterative reconstruction method as outlined and
validated in Ahlers et al. (2016) and Ahlers (2018).

3. ANALYSIS OF KASCADE-GRANDE DATA

The KASCADE-Grande experiment located in Karls-
ruhe, Germany (49.1� N, 8.4� E) is a CR observatory
collecting charged particles created in extended CR
air showers. The footprint of the CR shower ob-
served on ground level allows to reconstruct the ar-
rival direction of CRs. The reconstructed number
of charged particles in the shower, Nch, serves as a
proxy of the initial CR energy. The data used in
this analysis was collected between March 2004 and
October 2012 and is available via KCDC (Haungs
et al. 2018) as one of the preselected data products:
ReducedData-GRANDE runs 4775-7398 HDF5. The ar-
rival direction of events in this data set is limited to
zenith angles below 40�. For a comparison to previous
anisotropy studies by the KASCADE-Grande Collabo-
ration (Chiavassa et al. 2016; Apel et al. 2019) we select
high-energy events with Nch � 105.2 and bin the data
into three Nch bins that are listed in the third column of

[MA’19]
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Small-Scale Features Above the Knee4 Markus Ahlers

bin 1 : anisotropy (20� smoothing) bin 1 : pre-trial significance (20� smoothing, smax = 3.09)
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bin 3 : anisotropy (20� smoothing) bin 3 : pre-trial significance (20� smoothing, smax = 4.73)
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FIG. 2.— Mollweide projections in equatorial coordinates of the reconstructed anisotropy (left) and pre-trial significance (right) for the three Nch
bins listed in Table 1. We show the results for a top-hat smoothing radius of 20�. The grey-shaded area indicates the unobservable part of the
celestial sphere. The dashed line indicates the projection of the Galactic Plane. The values of pre-trial significance are shown in units of standard
deviations and indicated in red and blue colors for excesses and deficits, respectively. The location of maximum pre-trial significance is indicated
by the symbol ⇥.

The left panels of Figure 2 show the reconstructed
anisotropy in the three energy bins with excesses and
deficits indicated by red and blue colors, respectively.
The dashed line indicate the projection of the Galactic
plane onto the celestial sphere.

With the expectation values of Eqs. (7)–(9) we can also
define a smoothed significance map as

eSa ⌘
r

2
⇣
�eµa + eµ bg

a + ena log(1 + deIa)
⌘

. (11)

This expression represents the statistical weight of the
anisotropy deIa in each celestial (sliding) bin a. For suf-
ficiently small smoothing scales, eS 2

a can be interpreted
as the bin-by-bin maximum-likelihood ratio of the hy-
pothesis I?a compared to the null hypothesis I bg

a = 1.
Again, the test statistic of data under the null hypothe-
sis is following a one-dimensional c2-distribution and,
in that case, eSa corresponds to the significance in units
of Gaussian standard deviations (Wilks 1938).

The right panels of Figure 2 show the pre-trial signif-
icance (11) of the anisotropy. We follow the convention
to indicate the significance of excesses and deficits by
red and blue colors, respectively. The symbol ⇥ indi-
cates the location of maximum significance. Whereas
the first two bins do not show strong evidence of CR
anisotropies, the last bin shows a local excess at the level

of about 4.7s. However, the significance of this excess
needs to be corrected for trials. We follow the same pro-
cedure as in Ahlers (2018) to estimate the effective num-
ber of trials as Ntrial ' DWFOV/DWbin, where DWFOV
is the size of the observatory’s time-integrated field of
view and DWbin is the effective bin size according to the
top-hat smoothing scale. For the 20� smoothing radius
of the KASCADE-Grande data we obtain Ntrial ' 14.0.
The post-trial p-value can then be approximated as

ppost ' 1 � (1 � p)Ntrial . (12)

Figure 3 shows the post-trial significance map for the
third KASCADE-Grande bin with median energy of
33 PeV in Galactic coordinates. As before, the grey-
shaded region indicates the part of the sky that is not
observable from the location of the experiment. The
dashed circle indicates the 20� smoothing radius around
the location of highest post-trial significance of about
4.2s.

4. DISCUSSION

Our analysis does not uncover significant dipole
anisotropies in the KASCADE-Grande data, as indi-
cated in the last column of Table 1. This is consistent
with official results summarized in Apel et al. (2019)
and shown in columns 5 & 6. The dipole amplitude
in solar time induced by the solar Compton-Getting ef-

[MA’19]

Sidereal anisotropy in the KASCADE-Grande data with median energy of
2.7 PeV (bin 1), 6.1 PeV (bin 2) and 33 PeV (bin 3).
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Small-Scale Feature At the 2nd Knee? 5

bin 3 : post-trial significance (20� smoothing, smax = 4.16)
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FIG. 3.— Mollweide projection in Galactic coordinates of the post-
trial significance of the third Nch-bin for a top-hat smoothing radius of
20�. As before, we express the post-trial significance in units of Gaus-
sian standard deviations after correcting the pre-trial significance via
Eq. (12) and Ntrials ' 14. We indicate the location of the maximum sig-
nificance by the symbol ⇥ and the 20� smoothing radius by a dashed
line.

fect (Compton & Getting 1935) is expected to reach an
amplitude of only 4.5 ⇥ 10�4 (Ahlers & Mertsch 2017),
which is far below the 90% C.L. upper limit of about
2.5⇥ 10�3 inferred by our max-L analysis. On the other
hand, a sidereal dipole anisotropy has been observed in
an analysis of IceTop data at median energy of 1.6 PeV
at the level of 1.6 ⇥ 10�3 (Aartsen et al. 2016). This is
consistent with the best-fit sidereal dipole amplitude ob-
served in the third Nch bin with a median energy of
2.7 PeV.

Our analysis finds – for the first time – 4s evidence
for CR anisotropies on angular scales of 40� at a level
of 3.7 ⇥ 10�2 and a median energy of 33 PeV. The CR
flux associated with the excess can be estimated as
E2fCR(E) ' 1.7 ⇥ 10�7GeVcm�2s�1. As discussed ear-
lier, the origin of medium-scale anisotropies could be
induced by CR streaming in local magnetic fields. The
gyroradius of 33 PeV charged CRs in Galactic magnetic
fields is less than 10 pc, and it is therefore not expected
that this excess is related to the presence of a local CR
source. However, there are two notable exceptions:
i) Neutrons can be produced by CR collisions with gas
and reach a decay length of about 300 pc at 33 PeV. The
corresponding anisotropy from local sources would ap-
pear fuzzy and distorted due to the variance of the neu-
tron’s lifetime and residual magnetic deflections after
neutron decay into protons. Interestingly, the smooth-
ing region of the maximal excess shown in Fig. 3 en-
closes the location of the Cygnus region – a rich region
of gas and star formation in our local Galactic environ-
ment.
ii) Another non-diffusive origin of the excess could be
the presence of a local source of PeV g-rays. These g-
rays would also originate from high-energy CR interac-
tions in the vicinity of their sources. Cosmic ray diffu-
sion before interaction would account for the extended
emission. At 33 PeV, the fraction of an isotropic g-ray

flux in the CR data is below 10�3, which can be inferred
by a search for muon-poor showers (Apel et al. 2017).
This is marginally consistent with the medium-scale ex-
cess at a level of 3.7 ⇥ 10�2, if we account for the finite
extension of the smoothing region. Gamma-ray data at
GeV–TeV energies would allow to further test this hy-
pothesis.

Cosmic ray interactions that yield neutrons and g-
rays will also be visible in high-energy neutrinos. For
instance, if we consider that at least one charged pion
is created in the production of a neutron that carries
about 25% of the energy of neutron, the correspond-
ing flux of PeV muon is expected to reach a level of
E2fnµ+n̄µ(E) ' 1.1 ⇥ 10�8GeVcm�2s�1. This spatially
extended emission could be detectable by neutrino ob-
servatories like IceCube and ANTARES (Illuminati et al.
2019; Aartsen et al. 2019).
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APPENDIX

A. EAST-WEST DERIVATIVE METHOD

The East-West (EW) derivative method (Bonino et al.
2011) accounts for variations in the angular acceptance
and livetime of the detector by studying the derivative
of the relative intensity with respect to right ascension.
At each sidereal time t the CR data is divided into two
bins, covering the east (0 < j < p) and west (�p <
j < 0) sectors in the local coordinate system. The event
numbers observed during a short sidereal time interval
Dt in the east (+) and west (�) sector can be expressed
as

N±(t) ' fisoDtE(t)
pZ

0

dj

qmaxZ

0

dq sin q A(±j, q)I(t, ±j, q) .

(A1)
The EW asymmetry at sidereal time t is then defined as

AEW(t) ⌘ N+(t) � N�(t)
N+(t) + N�(t)

. (A2)

We can write the local detector acceptance as A =
As(1 + dJ ), where As is even under EW reflection,
j ! �j, and dJ is odd. For ground-based observa-
tories we expect that |dJ | ⌧ 1. To first order in the CR

[MA’19]

Small-scale anisotropy of 33 PeV cosmic rays overlaps with Cygnus region.
(gyro radius < 10 pc; neutron decay length ' 300 pc)
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Work in Progress: Rigidity-Dependent KG Analysis

A novel analysis of archival KASCADE data D. Kostunin

Figure 2: Spectra of primary hydrogen (left) and carbon (right) mass groups reconstructed with QGSJet-II.04
using zenith angles beyond KASCADE quality cuts. The statistical uncertainties for heavier mass groups are
too large to allow for a study of systematic e�ects. The zenith bands are selected in order to obtain equal
exposure for each curve. The results indicate that the zenith angle cut might be accurately pushed to O(30�),
thereby increasing the exposure by a factor ' 3.
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Figure 3: Cosmic ray spectra for five individual mass groups and their sum reconstructed from the full
KCDC data (without spectral unfolding) using di�erent hadronic interaction models. We compare our results
to those derived by KASCADE [10] and IceCube/IceTop [9].

4

[Kostuin, Plokhikh, MA, et al. PoS(ICRC2021)319]
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Work in Progress: Rigidity-Dependent KG Analysis

A novel analysis of archival KASCADE data D. Kostunin

R [V] model #tot � [10�3] U [�] ?-value �90 [10�3]

[1015.5, 1016.0] EPOS LHC 897, 294 10.1+5.5
�3.5 251 ± 28 0.10 17.1

> 1016.0 EPOS LHC 79, 140 19.618.0
�8.4 272 ± 48 0.47 44.3

[1015.5, 1016.0] QGSJET-II.04 874, 416 14.3+5.4
�3.9 278 ± 20 0.01 21.1

> 1016.0 QGSJET-II.04 74, 665 18.7+18.5
�8.0 234 ± 51 0.52 44.3

[1015.5, 1016.0] Sibyll 2.3c 753, 824 7.7+5.9
�3.2 261 ± 40 0.33 15.6

> 1016.0 Sibyll 2.3c 65, 097 14.3+20.5
�5.1 278 ± 67 0.71 42.7

Table 1: Reconstructed dipole anisotropy using maximum-likelihood techniques discussed in Refs. [11, 12].
Column 4 and 5 show the best-fit amplitude and phase of the sidereal dipole anisotropy with 68% uncertainty
range. The last column shows the 90% C.L. upper limit on the amplitude.

QGSJET-II-04 / 1015.5V � R � 1016.0V : anisotropy (45� smoothing)

60�120�180�300� 240�

60�

30�

� R � �

-0.0055 0.0055

QGSJET-II-04 / 1015.5V � R � 1016.0V : pre-trial significance (45� smoothing, �max = 2.60)

60�120�180�300� 240�

60�

30�

� R � �
max

-2.6 2.6

Figure 5: Mollweide projections in equatorial coordinates of the reconstructed anisotropy (top) and pre-trial
significance (bottom) for the rigidity bin 1015.5 < R/V < 1016.0 based on QGSJET-II.04. We show the
results for a top-hat smoothing radius of 45�. The grey-shaded area indicates the unobservable part of the
celestial sphere. The dashed line indicates the projection of the Galactic Plane. The values of pre-trial
significance are shown in units of standard deviations and indicated in red and blue colors for excesses and
deficits, respectively. The location of maximum pre-trial significance is indicated by the symbol ⇥. The
anisotropy reconstruction is based on a maximum-likelihood method introduced in Ref. [13].
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Summary

• Observation of CR anisotropies at the level of one-per-mille is challenging.

• Reconstruction methods can introduce bias, sometimes not stated or corrected for.

• Dipole anisotropy can be understood in the context of standard diffusion theory:

• TeV-PeV dipole phase aligns with local ordered magnetic field

4 New method of measuring local magnetic fields

• Amplitude variations as a result of local sources

• Plausible & natural candidate: the Vela supernova remnant

? What is the expected dipole anisotropy in the PV–EV rigidity range?

• Observed CR data shows evidence of small-scale anisotropy.

8 Induces cross-talk with dipole anisotropy in limited field of view

4 Probe of local Galactic environment

? What can learn about our heliosphere from TV small-scale features?

? What is the effect of local (. 10 pc) magnetic turbulence?

? How do we disentangle global CR transport features from local turbulence?
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Evolution Model

• Diffusion theory motivates that each 〈C`〉 decays exponentially with an effective
relaxation rate [Yosida’49]

ν` ∝ L2 ∝ `(`+ 1)

• A linear 〈C`〉 evolution equation with generation rates ν`→`′ requires:

∂t〈C`〉 = −ν`〈C`〉+ ∑
`′≥0

ν`′→`
2`′ + 1
2`+ 1

〈C`′ 〉 with ν` = ∑
`′≥0

ν`→`′

• For ν` ' ν`→`+1 and C̃` = 0 for l ≥ 2 this has the analytic solution:

〈C`〉(T) '
3C̃1

2`+ 1

`−1

∏
m=1

νm ∑
n

`

∏
p=1( 6=n)

e−Tνn

νp − νn

• For ν` ' `(`+ 1)ν we arrive at a finite asymptotic ratio:

lim
T→∞

〈C`〉(T)
〈C1〉(T)

' 18
(2`+ 1)(`+ 2)(`+ 1)
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Non-Uniform Pitch-Angle Diffusion

• stationary pitch-angle diffusion (µ ≡ cos θ) :

vµ
∂

∂z
〈 f 〉 = ∂

∂µ
Dµµ

∂

∂µ
〈 f 〉

• non-uniform diffusion:

Dµµ

1− µ2 6= const

• non-uniform pitch-angle diffusion modifies
the large-scale anisotropy aligned with B0

• small scale excess/deficits for enhanced
diffusion towards µ ' ±1

[Malkov, Diamond, Drury & Sagdeev’10]

• modified large-scale features for enhanced
diffusion at µ ' 0 [Giacinti & Kirk’17]
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Solar Potential
• dipole anisotropy induced by CR diffusion in solar wind:

|Φ| = − β�(r)
3

∂φ

∂ ln p︸ ︷︷ ︸
Compton-Getting

− κ�(r, p)
∂φ

∂r︸ ︷︷ ︸
diffuse dipole

Ü force-field approximation: |Φ| ' 0 [Gleeson & Axford’68;Gleeson & Urch’73]

• local solution related to distribution beyond heliosphere:

φ(r⊕, p(r⊕)) = lim
R→∞

φ(R, p(R))

• p(r) solution of characteristic equation:

∂p
∂r

=
β�(r)

3
p

κr(r, p)

Ü assume Bohm diffusion in heliosphere: κ�(r, p) ' κ0(r)(R/R0)

p(r⊕) = p(∞)− |Z|eV� with V� =
R0
3

∫ ∞

r⊕
dr′

β�(r′)
κ0(r′)︸ ︷︷ ︸

effective “solar potential”

. 1 GV
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Simulated Turbulence

• 3D-isotropic turbulence: [Giacalone & Jokipii’99]

δB(x) =
N

∑
n=1

A(kn)(an cos αn + bn sin αn) cos(knx + βn)

• αn and βn are random phases in [0, 2π), unit vectors an ∝ kn × ez and bn ∝ kn × an

• with amplitude

A2(kn) =
2σ2B2

0G(kn)

∑N
n=1 G(kn)

with G(kn) = 4πk2
n

kn∆lnk
1 + (knLc)γ

• Kolmogorov-type turbulence: γ = 11/3
• N = 160 wavevectors kn with |kn| = kmine(n−1)∆lnk and ∆lnk = ln(kmax/kmin)/N
• λmin = 0.01Lc and λmax = 100Lc [Fraschetti & Giacalone’12]

• rigidity: rL = 0.1Lc

• turbulence level: σ2 = B2
0/〈δB2〉 = 1
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Systematic Uncertainty of CR Dipole
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Compton-Getting Effect
• phase-space distribution is Lorentz-invariant

f (p) = f ?(p?)

• relative motion of observer (β = v/c) in plasma rest frame (?):

p? = p + pβ +O(β2)

• Taylor expansion:

f (p) ' f ?(p) + (p? − p)∇p? f ?(p) +O(β2) ' f ?(p) + pβ∇p? f ?(p) +O(β2)

Ü dipole term Φ is not invariant:

φ = φ? and Φ = Φ? +
1
3

β
∂φ?

∂ ln p

• with φ ∼ p−2nCR ∝ p−2−ΓCR :

δ = δ? + (2 + ΓCR)β︸ ︷︷ ︸
Compton-Getting effect

8 What is the plasma rest-frame? LSR or ISM : v ' 20km/s
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Local Sources

Figure 8. Anisotropy amplitude for ten random realizations of sources in the cylindrical model for
H = 1 kpc (left panel) and H = 2 kpc (right panel).

Figure 9. Phase of the anisotropy in a cylindrical model with H = 1 kpc (left panel) and H = 4 kpc
(right panel).

is dominated by the regular, large scale, distribution of the sources. In both cases, most
realizations lead to an anisotropy that mostly grows with energy. In other words, for large
values of H it becomes harder to explain the anisotropy signal observed at Earth. In this
sense, though not ruled out, large values of H appear to be disfavored. Interestingly enough,
in the case with H = 1 kpc, there are a few realizations that lead to an anisotropy which is
remarkably similar to the observed one.

The trend just described can be illustrated more clearly by using the phase of the
anisotropy vector, as plotted in Fig. 9 for a halo of size H = 1 kpc (left) and H = 4 kpc
(right). For small values of H the phase varies wildly reflecting the occasional dominance of
a nearby recent source. Again, this behavior is reminiscent of that found by the EASTOP
experiment [23], as discussed above. For H = 4 kpc the main contribution to anisotropy
comes from the inhomogeneous source distribution in the Galactic disc, and the energy
dependence of the phase of the anisotropy becomes much more regular, with an offset with
respect to zero that reflects the presence of some nearby source.

– 17 –

Figure 2. Anisotropy amplitude for ten random realizations of sources in the cylindrical model,
assuming δ = 1/3 and a SN rate R = 1/100 yr−1 (R = 1/30 yr−1) on the left (right). The halo
size is H = 4 kpc. The injection spectrum is assumed to have slope (below the cutoff) such that
γ + δ = 2.67. The data points are from [20–22].

impose that the slope γ of the injection spectrum is related to δ through γ + δ = 2.67, in
order to ensure a good fit to the CR spectrum at Earth (see Paper I). The red, staircase line
represents the average amplitude calculated using the 10 random realizations.

In all figures the (black) crosses, the (blue) diamonds and the (orange) stars are taken
from Ref. [20]. The (green) triangles are from EASTOP [21, 23] and the (red) squares are
the Akeno data points [22]. The oblique (red) lines at high energy show the upper limits on
the amplitude of anisotropy from KASCADE and GRANDE [24].

The comparison between the two panels shows that the spread in the anisotropy patterns
is not affected in a significant way by the SN rate. This can be qualitatively understood if
one considers that for H = 4 kpc, the anisotropy signal is already dominated by δA1 (see
§ 5). Looking at Eq. 3.5 one sees that the rate of Supernova explosions R only enters ⟨JCR⟩
(and the same is true for nCR) through the normalization of the probability distribution. It
is then clear that any dependence on R will disappear when δA1 is obtained as the ratio
between ⟨JCR⟩ and nCR. Both panels of Fig. 2 show very clearly the strong dependence
of the strength of anisotropy on the specific realization of source distribution, thereby also
disproving the naive expectation that the anisotropy should be a growing function of energy
with the same slope as the diffusion coefficient D(E). Whenever the small scale contribution
is not negligible, the observed anisotropy can in fact even be a non monotonic function of
energy, with dips and bumps, and with wide energy regions in which it is flat with energy,
quite like what the data show at energies E < 105 GeV. It is interesting however that none
of our realizations of the source distribution leads to anisotropies as low as the one suggested
by the data in the energy region 105 − 106 GeV (contributed by the EASTOP experiment).

Data in this region are in fact somewhat puzzling because they are so low as to suggest
that the Compton-Getting effect [25] leads to a level of anisotropy close to the lowest expected
limit. The Compton-Getting anisotropy is estimated to be between 3 × 10−4 and 10−3

depending on the velocity with which the Earth moves with respect to the rest-frame of the
CR scattering centers. This velocity is not known and the above estimates refer to a velocity
range from a minimum of ∼ 20 km/s to a maximum of ∼ 250 km/s, corresponding to the
motion of the solar system through the Galaxy [26]. It is clear that the measured anisotropy
between 105 and 106 GeV is only marginally consistent with a velocity of few tens of km/s

– 11 –

[Blasi & Amato’12]

• Distribution of local cosmic ray sources (SNR) in position and time induces
variation in the anisotropy. [Erlykin & Wolfendale’06; Blasi & Amato’12]

[Sveshnikova et al.’13; Pohl & Eichler’13]

• variance of amplitude can be estimated as: [Blasi & Amato’12]

σA ∝
K(E)
cH

→ σA
A

= const
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Local Magnetic Field

Solution to the Cosmic Ray Anisotropy Problem

Philipp Mertsch and Stefan Funk
Kavli Institute for Particle Astrophysics & Cosmology,

2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025, USA

In the standard di↵usive picture for transport of cosmic rays (CRs), a gradient in the CR den-
sity induces a typically small, dipolar anisotropy in their arrival directions. This has been widely
advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV
and PeV energies exceeds the measured one by almost two orders of magnitude. Here, we critically
examine the validity of this prediction which is based on averaging over an ensemble of turbulent
magnetic fields. We focus (1) on the deviations of the dipole in a particular random realisation
from the ensemble average and (2) the possibility of a misalignment between the regular magnetic
field and the CR gradient. We find that if the field direction and the gradient direction are close
to ⇠ 90�, the dipole amplitude is considerably suppressed and can be reconciled with observations,
which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in
general does not coincide with the gradient direction, thus hampering the search for nearby sources.

Cosmic rays (CRs) with energies between hundreds of
MeV and at least a few PeV are commonly believed to
be of galactic origin. In the standard picture, the high
degree of isotropy in their arrival directions is interpreted
as evidence for di↵usion as providing the necessary mech-
anism for e�ciently randomising their directions. On the
other hand, in the case of a not perfectly symmetric dis-
tribution of sources with respect to the observer, a small
degree of anisotropy, to first order a dipole in the arrival
direction of cosmic rays, is to be expected. In particular,
a (few) nearby source(s) can have a dominant e↵ect on
the distribution of arrival directions which is why obser-
vation of a dipole anisotropy has been advertised as a
means of discovering these nearby sources [1–3]. Lately,
this idea has gained currency in the context of finding the
necessarily nearby (because of cooling losses) source(s)
of high-energy electrons and positrons [4–6] which is/are
causing the rise in the positron fraction [7–9].

Given the high degree of isotropy, a perturbative ap-
proach is adopted in CR transport models, expanding
the phase space density f(r,p, t) into an isotropic part
f0(r, p, t) and a small correction, f1(r,p, t). f1(r,p, t)
is then related to the gradients of f0(r, |p|, t), the mo-
mentum gradient leading to the well-known Compton-
Getting e↵ect [10]; here, we focus on the spatial gradi-
ent. In a simple model of isotropic di↵usion, the am-
plitude a of the dipole anisotropy, the relative di↵erence
between the fluxes in the maximum and minimum direc-
tions, �max and �min, computes as [11]

a =
�max � �min

�max + �min
=

3D

v

|rf0|
f0

, (1)

where D is the (local) spatial di↵usion coe�cient and
v ⇡ c is the CR speed. The dipole direction is opposite
to that of the CR gradient. For a given distribution of
sources and extrapolating the di↵usion coe�cients mea-
sured through secondary-to-primary ratios like B/C at
GV to TV rigidities, one can first compute the CR den-
sity f0 and through eq. 1 the dipole amplitude. The

rigidity-dependence of the dipole amplitude results from
both D and |rf0|/f0.

Over the last decades, a large set of measurements of
the dipole anisotropy has been accumulated, at ener-
gies above a few TeV mostly from extensive airshower
arrays [13–23]. The dipole amplitude decreases from
⇠ 10�3 at 10 TeV to ⇠ 10�4 between 100TeV and 1PeV
before it increases again. Here we limit ourselves to en-
ergies below a few PeV where CRs are certainly of galac-
tic origin and where the composition is predominantly
p and He. We show these measurements together with
the prediction from a simple di↵usion model in Fig. 1. It
is evident (as has been known for a while [24, 25]) that
the di↵usion model overpredicts the dipole amplitude by
almost two orders of magnitude around 1 PeV.
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FIG. 1: The dipole anisotropy in the arrival directions of
CRs, as predicted by an isotropic di↵usion model [12] (dotted
line) and measured by a variety of experiments [13–23]. The
black filled circles, connected by solid lines, mark the dipole
anisotropy predicted in five random realisations of the tur-
bulent magnetic field and assuming a misalignment between
background magnetic field and CR gradient close to 90�.
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FIG. 2: Sky map of dipole directions in 50 random realisa-
tions of the local turbulent magnetic field (⌘ = 1) at 1 PV.
The centre and radius of each black circle shows the dipole
direction and amplitude in one random realisation, respec-
tively. The yellow star shows the direction of the assumed
CR gradient, the green diamond the predicted value from an
isotropic di↵usion model and the red square the average of
the 50 magnetic field configurations.
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FIG. 3: The distribution of dipole amplitudes as a function
of the longitude of the CR gradient at 1 PV for ⌘ = 1. Each
vertical slice is the normalised histogram for a gradient di-
rection. We also show the median (orange dashed line), and
amplitude of the (vectorial) mean (red solid line), together
with the prediction for isotropic di↵usion (green dashed line).
The cyan solid line and grey band show the KASCADE upper
limit and EAS-TOP measurement at ⇠ 1 PeV, respectively.
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FIG. 4: Same as Fig. 2, but for a small turbulent field on top
of a regular field (⌘ = 0.1), indicated by the blue cross.
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FIG. 5: Same as Fig. 3, but for a small turbulent field on top
of a regular field (⌘ = 0.1).

anisotropy. A homogeneous distribution of dipoles at �T
leads not only to a dipole but also to power at smaller
multipole moments `, all of which are eventually decaying
exponentially with a time constant ⌧sc/`(`+1) [29]. The
scenario we are most interested in here is an initial gra-
dient in the phase space distribution: After a few ⌧sc, the
distribution of arrival directions converges, irrespective of
the initial angular distribution. We observe anisotropies
extending to the highest multipoles allowed by our an-
gular resolution which are eventually all powered by the
spatial gradient in the initial distribution function.

Every spatial distribution at times �T can be ex-

panded into a spatially homogeneous part, a gradient and
higher derivatives. We assume that the higher derivatives
are subdominant and adopt the (ensemble averaged) gra-
dient from the di↵usion model. We read o↵ this gradi-
ent for the average source distribution from Fig. 2a of
Ref. [12] adopting their parametrisation of the di↵usion
coe�cient measured from B/C.

We start by presenting our results for the case of
isotropic turbulence without a regular field, i.e. ⌘ = 1.
In Fig. 2, we show the dipole directions by the black cir-
cles, obtained for 50 random realisations of the magnetic
field, a CR gradient in (long, lat) = (90�, 0�) and 1 PV

[Mertsch & Funk’14]

• strong regular magnetic fields in the local environment

Ü diffusion tensor reduces to projector: [e.g. Mertsch & Funk’14; Schwadron et al.’14; MA’17]

Kij → κ‖B̂iB̂j

Ü reduced dipole amplitude and alignment with magnetic field: δ ‖ B
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Local Magnetic Field

• IBEX ribbon: enhanced emission of
energetic neutral atoms (ENAs)
observed with Interstellar Boundary
EXplorer [McComas et al.’09]

• interpreted as local magnetic field
(. 0.1 pc) drapping the heliosphere

• circle center defines field orientation
(in Galactic coordinate system):

[Funsten et al.’13]

l ' 210.5◦ & b ' −57.1◦

(∆θ ' 1.5◦)

• consistent with starlight polarization by
interstellar dust (. 40 pc) [Frisch et al.’15]

l ' 216.2◦ & b ' −49.0◦

As an example of the detailed spectral
information provided by IBEX, Fig. 3 shows
the ENA energy spectra along LOSs toward the
two Voyager spacecraft. These spectra are nearly
straight power laws with slopes of ~1.5 (Voyager
1) and ~1.6 (Voyager 2). Globally, the spectra
generally show simple power laws near the equa-
tor with distinct enhancements at several keV at
higher latitudes (12), again consistent with higher-
energy PUIs in the high-latitude, fast solar wind.
IBEX observations are consistent with upper
bounds on ENA flux based on Ly-a absorption
(14). Claims of heliospheric ENA measurements
from ASPERA-3 (15) are inconsistent with
IBEX observations.

The discovery of the ribbon, not ordered by
ecliptic coordinates or the interstellar flow, requires
reconsideration of our fundamental concepts of
the heliosphere-LISM interaction. A possible ex-
planation could be based on the idea that the local
interstellar magnetic field plays a central role in
shaping the outer heliosphere. Figure 4 shows a
concept for the interaction where the external
dynamic and magnetic forces are comparable.
Here we depict the external field (16) wrapping
around and compressing the heliopause in a way
that pushes in the southern hemisphere (17)
enough to explain why Voyager 2 crossed the
TS ~10 AU closer to the Sun (10) than did
Voyager 1 (9), once the effects of the decreasing
solar wind dynamic pressure inside the TS (18)
are included (19). The ribbon closely matches
locations where a model (20) using this external
field orientation indicates that just outside the
heliopause, the field is transverse to IBEX’s radial-
viewing LOSs (21).

Several factors could contribute to the sub-
stantially enhanced emission in the ribbon, in-
cluding higher energetic ion intensities along the
LOS and pitch-angle distributions of ions that
preferentially emit radially inward. The combi-
nation of the external plasma dynamic (i.e., ram)
and magnetic (J × B) forces produces a localized
band of maximum total pressure around the helio-
pause, which is substantially offset from the
nose for a strong external field (21). Because
the suprathermal plasma observed in the inner
heliosheath is subsonic, information about the
enhanced pressure at the heliopause propagates
throughout the inner heliosheath, adjusting the
plasma properties and bulk flow and potentially
affecting the TS. Flows at the Voyager loca-
tions appear to be more directed away from the
ribbon than away from the nose. At Voyager 2
(22), south and offset from the nose meridian
(Fig. 1), in radial-tangential-normal (RTN) co-
ordinates, 〈VT〉 ~ +48 km s–1, whereas 〈VN〉 is
only ~ –14 km s–1. At Voyager 1, northward of
the nose, only VR and VT were measured (23),
but 〈VT〉 ~ –40 km s–1. Thus, the ribbon might
indicate the true region of highest pressure in
the inner heliosheath. If so, the location of the
ribbon divides inner heliosheath flows down
the two sides of the heliotail, analogous to a
continental divide; this may explain why VT is

several times VN at Voyager 2, as well as the large
transverse flow at Voyager 1.

If the pressure maximum is aligned with the
ribbon and the heliosheath flows are away from
it, then this represents the stagnation flow region,
where inside the heliopause the radial outflow
must go to zero. In this region, the plasma density
should maximize, producing copious ENAs that
would naturally map the region of maximum
pressure. This additional pressure might also ex-

trude a region of the heliopause, forming a
spatially limited outward bulge with high density
and little bulk flow. Because of the narrow
angular extent of the ribbon, it might be expected
that the emission region could be radially narrow
also, which would require magnetic or some
other sort of plasma confinement. Furthermore,
the spectral slope of the ribbon is similar to that
of the surrounding regions, which suggests that
this feature is not dominated by dynamical effects

Fig. 1. IBEX all-sky maps of measured ENA fluxes in Mollweide projections in ecliptic coordinates
(J2000), where the heliospheric nose is near the middle and the tail extends along both sides. The pixels
are 6° in spin phase (latitude), with widths (longitude) determined by the spacecraft pointing for different
orbits. Maps are shown in the spacecraft frame for passband central energies from IBEX-Hi of (A) 1.1 keV,
(C) 0.7 keV, (D) 1.7 keV, (E) 2.7 keV, and (F) 4.3 keV, and from IBEX-Lo of (G) 0.2 keV and (H) 0.9 keV.
Also shown in (A) is the galactic plane (red curve), which clearly does not coincide with the ribbon, as well
as directions toward Voyager 1 (V1) (35°, 255°), Voyager 2 (V2) (–32°, 289°), and the nose (5°, 255°).
(B) Magnified section of the ribbon where each 0.5° in spin phase is averaged with nearest neighbors to
reach 100 counts (10 counts standard deviation). Because of contamination of ENAs from Earth’s
magnetosphere, a small region on the right side of each map was not sampled in the first 6 months of
data; these regions have been filled in with average values from the adjacent areas and appear
unpixelated.
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(e.g., different energization processes at the TS or
elsewhere) but simply reflects the accumulation
of particles. Integration of our measured distri-

butions of ENAs over energy suggests that the
pressure in the ribbon is considerably higher than
in the rest of the sky (12); nonetheless, a region

only ~30 to 60 AU thick could still be in rough
pressure balance with the combined external dy-
namic and magnetic forces (21).

Another way to trap hot, inner-heliosheath
plasma in a relatively narrow structure might be
via large-scale, Rayleigh-Taylor–like instabilities
(24), which can be driven by neutrals and de-
stabilize the heliopause. Some models show
large, semicoherent structures with higher ion
densities and sizes greater than tens of AU,
moving tailward at <60 km/s along the helio-
pause (25). Magnetic reconnection across the
heliopause would also allow suprathermal helio-
sheath ions out into the cooler, denser outer
heliosheath, potentially confining them in narrow
structures. For any method that traps hot plasma
farther out beyond the heliopause, expected
higher densities of interstellar neutrals there would
also enhance ENA production.

Another possible ENA source is from outside
the heliopause, where compression of the exter-
nal field would both enhance densities and pro-
vide perpendicular heating to produce more
perpendicular ion pitch-angle distributions (21).
Such ions preferentially emit ENAs where the
LOS is transverse to the interstellar magnetic
field. A possible source of ENAs could be fast
neutrals emitted from the inner heliosheath,
which become ionized just outside the heliopause
and then reneutralize, emitting back inward pref-

Fig. 2. Skymap, in ecliptic coordinates,
of the average power-law spectral
slope (k) from ~0.5 to 6 keV using
IBEX-Hi channels 2 to 6. The mea-
surements were transformed into the
rest frame of the Sun; unlike Fig. 1,
the unsampled region is left black in
this image. Although statistical uncer-
tainty remains in individual 6° pixels,
global variations are clearly evident.

Fig. 3. Energy spectra for 20° × 20°
regions centered on the Voyager
1 (thick lines) and Voyager 2 (thin
lines) directions. Prelaunch cross-
calibration of the IBEX-Lo (red) and -Hi
(blue) sensors simultaneously in a single
chamber produces quantitativematching
between the spectra. Error bars show
counting statistics plus likely system-
atic errors of T20% for IBEX-Hi and
T30% for IBEX-Lo.

Fig. 4. Schematic diagrams of Parker’s limiting cases for the
heliospheric interaction (28). (A) “Hydrodynamic” interaction,
where the external dynamic forces >> magnetic forces. (B)
“Diamagnetic cavity” interaction, where the external magnetic
forces >> dynamic forces. (C) Schematic showing an intermediate
case, where the external magnetic and dynamic forces are
comparable. The measured flux at ~1.1 keV is superposed on the
heliopause; the ribbon appears to correlate with where the field is
most strongly curved around it.
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[McComas et al.’09]
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