Probing Extragalactic Magnetic and Radiation Fields with Gamma Rays

2022-06-27, Irfu/DPhP

Jonathan Biteau, IJCLab / Université Paris Saclay

What's in voids?

200 Mpc

Physics of extragalactic beacons of astroparticles

Central engine

Compact objects: black holes, neutron stars (accretion-ejection, merging) → dense matter, general relativity (GR), GR magnetohydrodynamics

Acceleration

Relativistic shocks, magnetic reconnection → particle-in-cell simulations from first principles

Radiative processes

Synchrotron, Inverse-Compton, Pion decay, Nuclear cascades → phenomenological model of particle flow + radiative microphysics

Escape

Multiscale magnetic fields and photon fields, target material → phenomenological model of particle/photon flow & of environment

Propagation

On interstellar (kyrs), intergalactic (Myrs) or cosmic (Gyrs) scales → probe of fundamental physics & diffuse electromagnetic fields J Biteau

7

Aparté: Y-ray propagation and fundamental physics

Dark matter: what is that? Theories beyond QFT and GR: is there anything to observe?

Top-down processes (*heavy axion-like particles* /*or WIMPs*/): decay /*or self annihilation*/ into photons
Mixing with light axion-like particles (ALP): CTA will start probing ALP dark-matter parameter space CTA 2021
LIV linearly modified dispersion relation (CPT-odd): Planck scale ~excluded by spectra & Δt! *High-risk / high-gain themes. Notes: ALP constraints dependent upon B-field morphology in jet*

Status of extragalactic **Y**-ray astronomy

Y-ray observation techniques

Upcoming: the Cherenkov Telescope Array

The magnetic content of voids *A gamma-ray view*

2022-06-27, Irfu/DPhP

Jonathan Biteau, IJCLab / Université Paris Saclay

Discovery of extreme TeV blazars in 2006

Hard TeV photon spectrum when corrected for absorption Intrinsic emission expected to be faint in the GeV band

Reprocessed emission?

None in 2010 within point spread function

\Rightarrow minimum *B*-field needed to spread out the signal

Search for extended sources in the GeV band

Extreme-TeV blazars observed by *Fermi*-LAT ~ point source \rightarrow joint likelihood: TeV/GeV spectra + *GeV morphology* Constraints on magnetic fields in voids: **B** > 0.1-1 fG (minimal assumptions)

Alternative cooling

Plasma instabilities faster than inverse Compton?

Yes, on paper... Analytics / simulations limited by several order-of-magnitude extrapolations \Rightarrow unclear if viable Possible heat source for intergalactic medium, observable through temperature history of the universe (Ly α forest)?

Multi-wavelength and multi-messenger constraints

The light content of voids

A gamma-ray view

2022-06-27, Irfu/DPhP

Jonathan Biteau, IJCLab / Université Paris Saclay

The extragalactic background light

Direct measurements

J. Biteau

Galaxy counts

The gamma-ray technique

The models and the gamma-ray technique

Models of the COB + CIB (= extragalactic background light, EBL)

- Empirical models: extrapolate on local data
- •Phenomenological models: SFR + population synthesis
- ·Semi-analytic models: N-body simulations

here Dominguez +11 here Finke+ 10 here Gilmore+ 12

J. Biteau

The models and the gamma-ray technique

Models of the COB + CIB (= extragalactic background light, EBL)

- Empirical models: extrapolate on local data
- •Phenomenological models: SFR + population synthesis
- ·Semi-analytic models: N-body simulations

here Franceschini +17 here Andrews+ 17 here Gilmore+ 12

J. Biteau

Status: gamma-ray inference vs model

Model: $\Phi(E, z) = \Phi_{int}(E \mid \theta_{int}) \exp(-\alpha \tau(E, z))$, **applied to spectra of AGN/GRBs with** E > 100 **GeV... and** z: •Ground-based: ~80% of spectroscopic $z \rightarrow only$ a third / half of current data used so far!

Space-based: ~40% of spectro. z @ E > 30 GeV (see P. Goldoni's z-catalog at this link)

Expectations from CTA

Wavelength-resolved measurements from y-ray spectra

Direct measurements vs galaxy counts... and the y-ray referee?

• y-ray "specific" intensity around 0.6µm: < 15-25 nW m⁻² sr⁻¹ (JB+ 2015, HESS 2017, VERITAS 2019, MAGIC 2019)

-Galaxy counts / Direct measurements @ 0.6µm: 8.1±0.3 nW m⁻² sr⁻¹ (Koushan+ 2021) / 16±4 nW m⁻² sr⁻¹ (Lauer+ 2020)

The "optical controversy"

Recent news: New Horizons / LORRI

Darkest, reliable field: 16.4±<u>1.5</u> nW m⁻² sr⁻¹ (Lauer+ 2022)

If of extragalactic origin: galaxy counts = half of EBL @ 0.6µm

Spacecrafts out of the Solar System at this link

ebruary 1, 2022 take 09:03:11 m

Constraints on decaying axions

Exotic contributions to the night-sky brightness?

• Top-down process: decay of heavy (eV) axion-like particles (unlikely DM explanation though, Nakayama & Yin 2022).

Credits: Arias+ 2012

Constraints on faint galaxies / halo light

A new Inter-Planetary Dust component?

Spherical cloud of cometary dust (Kuiper Belt, Oort Cloud)?

Ca II observations by CIBER rocket and SKYSURF reanalysis of HST data → reassessment of ZL models needed?

Credits: Korngut+ 2022 (CIBER / NBS)

Current status & looking ahead

2022-06-27, Irfu/DPhP

Jonathan Biteau, IJCLab / Université Paris Saclay

Absorption on EBL: precision and validity?

•±20%_{stat} ±20%_{sys} \rightarrow ±5%_{stat} ±12%_{sys} (CTA 2021)

- · Impact of intrinsic emission model?
- ⇒ ongoing: fully Bayesian approach to tackle intrinsic and instrument-induced uncertainties

Evolution of the EBL?

- •CTA: EBL evolution out to $z \sim 2$
- ⇒ Cosmic SFR with better precision than *Fermi*-LAT? (*Fermi*-LAT 2018)
- ⇒ Accuracy on H_0 ? (Dominguez+ 2019)

Where are the secondaries?

- ·Lead hypothesis: magnetic fields in voids
- ⇒ primordial phase transitions? structure formation?
- Challenger: plasma instabilities in pair beam (Broderick+ 2012)
- \Rightarrow numerical challenge with unsettled status (Vafin+ 2018)

Addressing the optical controversy before CTA?

Event-level data from current generation

- Sharing of datasets and instrument response
- \Rightarrow natural way to account e.g. for energy resolution
- Hard (politically) but certainly the best!

Archival spectral data from current & past

- All published extragalactic TeV spectral points
 ⇒ exported to gamma-cat format (to be revived?)
- · More modest effort: Gamma 2022 (Gréaux+, IJCLab)

The three communities around a single table?

- $\boldsymbol{\cdot} \text{New} \ 4\sigma$ evidence from direct observation beyond Pluto
- •New 5%-resolution measurement of galaxy counts
- ·Upcoming TeV measurement with 2-3× previous archival data
- ⇒ EBL workshop (3-5 days) in Paris area in 2023/24?

Gamma-ray cosmology in the upcoming CTA era

SphereX: 0.7-5 µm

Light in voids and faint galaxies

- ·Low-end of the galaxy luminosity function
- •Redshift surveys \cap Broadband intensity mapping
- Low-surface brightness universe
- Gamma-ray absorption

Cosmic magnetism

- ·Gamma-ray halo and spectral bump
- ·UHECR deflections in the cosmic web
- •Synchrotron mapping and Faraday rotation

Backup

2022-06-27, Irfu/DPhP

Jonathan Biteau, IJCLab / Université Paris Saclay

Cosmic star-formation history

How to:

Hubble constant: y-ray inference

Dominguez et al. 2019

Axion-like particles: perspectives

J. Biteau

Missing baryons

The multi-wavelength and multi-messenger night skies

The quest for UHECR origins

Ultra-high energy cosmic rays (UHECR)

Long thought to be of extragalactic origin > 5 EeV (0.8 J!), marking the ankle

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV

→ markers of Peters cycle (acceleration) and UHECR horizon (propagation) based on joint spectral-composition modeling

Spectral and composition observables integrated over the sphere

 \rightarrow help constrain **source distance** distribution & source **escape spectrum**

Anisotropy observables

 \rightarrow break down the flux (and composition) vs arrival direction: pinpoint sources?

Who Is Shooting Superfast Particles at the Earth?

In Which You Learn That Space Is Full of Tiny Bullets

180

Some landmarks in Auger anisotropy studies

! skymaps in next slide !

Mapping of SFR on the sphere

seen, missed most of the time

Biteau+ for Auger & Telescope Array Collab., 2019

The largest UHECR observatory ever built

The Pierre Auger Observatory

West Argentina at 1,400m a.s.l., spread over 3,000 km² (~ Luxembourg or Rhode Island)

1600 water Cherenkov detectors (12t each) to measure secondary particles in air showers \rightarrow 85% of the sky covered with angular resolution < 1° above the ankle

Exposure at the highest energies (loosest cuts): **120,000 km² yr sr in 2004-2020** \rightarrow **40-70x larger than previous generation** experiments (AGASA, HiRES) \rightarrow **9x larger than complementary Northern hemisphere** experiment (Telescope Array)

UHECR observables

E [eV]

The dip model: pure protons Berezinki (2006) Attempt to explain the ankle and suppression with a purely proton composition

 \rightarrow quite successful at reproducing the spectrum down to ~ 10^18 eV

 \rightarrow based on pure protons

But mixed composition

Inference: $p \rightarrow He \rightarrow CNO$ sequence \rightarrow in line with $E_{max} \sim a$ few EeV x (Z or A)

Extreme blazars

See JB+ 2020

J. Biteau

The various flavors of AGN

AGN unification scheme

Antonucci (1993), Urry & Padovani (1995)

- AGN composed of
 - Black hole (billion Msun)
 - Accretion disk + torus
 - Broad-line regions reprocess
 ~10% of disk emission
 - (Jets)
- Jets: high black hole spin?

• Viewing angle \rightarrow observed properties e.g. blazars = radio galaxies with jets along line of sight

- Blazars: ideal probes of jet physics
 - FSRQs (strong emission lines) = high accretion rate
 - BL Lacs (weak emission lines) = low accretion rate

Detections

- 2863 sources at |b| > 10° 4LAC, Fermi-LAT 2019
 - > 79% are AGNs
 - ~98% of these AGNs are blazars
 - 24% FSRQs, 38% BL Lacs, 38% unclear

Blazar sequence?

- Inferred anti-correlation of peak power with peak frequency
- Initially: (biased?) X-ray/radio selection Fossati et al. (1998)
- Confirmed with Fermi-only selection Ghisellini et al. (2017)
- → links maximum energy, jet power and accretion rate (FSRQ / BL Lac lines = reprocessed disk emission)

Extreme blazars

The high-energy frontier of the sequence

 \rightarrow two dozen known to date Biteau et al. (2020)

Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 54/13

Extreme-synchrotron & extreme-TeV blazars

Extreme blazars: synchrotron peak $h_v \ge \text{keV}$ (~2x10¹⁷ Hz) OR gamma-ray peak $h_v \ge \text{TeV}$ (~2x10²⁶ Hz)

Challenge of extreme TeV: hard emission, high gamma-ray peak

Extreme-synchrotron & extreme-TeV blazars

Extreme blazars: synchrotron peak $h_v \ge \text{keV}$ (~2x10¹⁷ Hz) OR gamma-ray peak $h_v \ge \text{TeV}$ (~2x10²⁶ Hz) Challenge of extreme TeV: hard emission, high gamma-ray peak

Observed \neq **Intrinsic**

- X-rays: photoelectric effect → sharp transitions, ~ easy to de-absorb
- gamma-rays: pair production → smooth absorption with energy, with order of magnitude uncertainty on target photon field 10 yrs ago!

Biteau & Williams (2015) Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 56/13

Extreme-TeV blazars as cosmological beacons

Absorption on the line of sight - *observed since 2012*

• $\gamma(\text{TeV}) + \gamma(\text{eV}) \rightarrow e^+ + e^- \rightarrow 0.1-10 \text{ eV}$ target photon field: extragalactic background

light

• Extreme-TeV emission > 10 TeV: unique integral probe of EBL

at ~0.1 eV (mid- to far-infrared), complementarity with JWST!

Cooling of e⁺/e⁻ **pairs** - *not observed, tight constraints*

- Either plasma instabilities
 - \rightarrow intergalactic medium heating
- Or inverse Compton on CMB (secondary γ -rays >1 GeV) \rightarrow probe of intergalactic *B*-fields up to pG level CTA(2021)

Exotic physics - not observed, tight constraints

• Lorentz invariance violation (LIV) or axion-like particles Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 57/13

Recent example of advanced (beautiful!) model

Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 58/13

Acceleration processes

- Hard photon spectrum → hard particle spectrum with p < 2 most of the energy carried by rarer high-energy particles!
 - \rightarrow shocks (p=2) with backreaction (p<2)
 - → magnetic reconnection (p<2 allowed)

Leptonic radiative processes

- High synchrotron peak → weak energy losses
 Low magnetic field responsible for e⁺/e⁻ synchrotron ~ mG
- Gamma-ray peak = Synchrotron Self Compton
 Two peak frequencies correlated, high bulk Γ (~50)
- Limitation: particle energy density / B-field energy density $\sim 10^{\circ}$

At odds with scenario in previous slide (high σ , low Γ)

→ Explaining extreme-TeV blazars is indeed challenging!

Lepto-Hadronic radiative processes

- co-accelerated leptons (synchrotron peak) and protons
- γ -ray peak from proton synchrotron (*ok if slow variability*), with p ~ 1.3-1.7 and $E_{max} \sim 10^{19} \text{ eV} (B/100\text{G})^{-\frac{1}{2}} (\text{ultra-high } E!)^{-11} \rightarrow jet$ close to Eddington accretion limit
- line-of sight cascade from UHECR
 - \rightarrow GeV emission remains to be explained

Escaping astroparticles from extreme-TeV blazars

- Neutrino: flux beyond reach (pγ and pp sub-dominant)
- Ultra-high energy cosmic rays (UHECRs): highest synchrotron peak of extreme blazars \rightarrow low t_{acc} / t_{Larmor} = fastest accelerators among AGN pop.

Extreme-TeV = best UHECR-source candidates among AGN

Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 60/13

Extreme blazars and necessary conditions for being an UHECR source

Confinement (Hillas condition) \checkmark , Number density (anisotropies) \times , Distance (<100 Mpc) \times \rightarrow nearby extreme radio galaxies? Only if they accelerate heavy nuclei (e.g. expresso model, Caprioli (2015))

Tell-tale sign for UHECR acceleration with CTA

20-30 GeV energy threshold + 10× increased sensitivity + improved energy resolution

- Nice potential to distinguish hadronic & leptonic scenarios.
- Nearby extreme radio galaxies discovery?

CTA ('20s,'30s, '40s)

Jonathan Biteau | EAS SS27 | 2021-06-28 | Page 62/13

Arrival of y-rays near Earth

Satellite-based: 100 MeV - 1 TeV

O(100%) duty cycle, ~ 550 km altitude

Tracker with SSDs, CsI(TI) with photodiodes

Lead experiment: Fermi-LAT

em cascade Mollerach & Roulet (2017)

Telescope-based: 100 GeV - 100 TeV

O(10%) duty cycle, ~ 2 km above sea level Cameras with O(1000) PMTs and ns sampling Lead experiments: HESS, MAGIC, VERITAS

