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Theoretical physics



Quantum waves

Smooth geometry
The eigenstates are (uniformly distributed) quasi-plane waves







Localization by the boundary

“Localized eigenfunctions:
here you see them, there you don’t”

Félix et al., J Sound Vib, 2007  

Heilman & Strichartz, Not. Am. Math. Soc., 2010













Anderson localization (1958)

Evers & Mirlin, (2008) Rev Mod Phys,
Anderson transitions
Lagendijk, van Tiggelen, Wiersma (2009), Phys Today,  
Fifty years of Anderson localization

Billy et al., (2008) Nature
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Diffusion in weak 
disorder

Localization in 
“extreme” disorder

Mobility edge
Localization

Diffusion

In a uniform or periodic potential, the quantum states are delocalized.
Breaking the symmetry (continuous or discrete) leads to possible localization.

In 3D, mobility edge: above, delocalized states, below, localized states.

( )cE E nx -µ - ( )scE Es µ -
Localization length conductivity

( )2s dn= -Critical exponents: (d=2, critical dimension)

P.W. Anderson, Phys. Rev. 1958
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Anderson localization (1958)



“Our results deviate significantly from previous theoretical estimates using an approximate, self-
consistent approach of localization.”

Delande & Orso, Phys. Rev. Lett. 2014

§ Scaling theory (renormalization)

§ Random matrix theory (RMT)

§ Self-consistent theory (approximate)

§ Interactions

Abrahams, Anderson, Liciardello & Ramakrishnan,
Phys. Rev. Lett. 1979

Basko, Aleiner & Altshuler, Ann. Phys. 2006

Vollhardt &Wolfle, Phys. Rev. Lett. 1980

Dyson, J. Math. Phys. 1962

However

§ Disorder is described through its statistical properties.
§ Values of the critical exponents have to be determined numerically or with 

approximate theories.
§ The exact value of the mobility edge depends on the disorder type (correlations).
§ No analytical prediction when correlations or interactions come into play.
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The statistical approaches



Particle vs. wave localization
Waves go where particles don’t go Waves don’t go where particles go

Boolean potential (60% of 0, 40% of 1)

Fundamental quantum state (E>0)

We see the classical potential

Waves see “something different”

The quantum well
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The punctured clamped plate

A rectangular plate with or without an inside punctured point
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Kirchhoff-Love theory of thin vibrating plates



Localization in vibrating thin plates

Punctured plate of eccentricity 20

Standard plate of eccentricity 20

MF & S. Mayboroda, PRL 2009



The punctured clamped plate

Region 2Region 1
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e
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Where does this separation line come from?

What happens for any shape and any number of blocked points?



L is a wave (elliptic) operator such as 2, , H V-D D = -D+
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acoustics, electromagnetism

mechanics, thin rigid plates

quantum

Ly ly=

H Ey y=

of positive spectrum

Quantum states

Random potential V(x,y)

localization landscape

A universal approach to wave localization

( )1Hu =

random i.i.d. variables in
20´20 cells, uniformly
distributed between 0
and Vmax (here 8000).



Control of the eigenmode amplitudes
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The eigenmode amplitude is “small” where u is “small”

( )u r!( )V r!



Disorder-induced (Anderson) localization



3D valley network in a random potential



Simulations by Douglas Arnold, Univ. of Minnesota



acts as an effective confining potential
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Transition to delocalized states at higher energy
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Transition to delocalized states at higher energy
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MF and S. Mayboroda, PNAS 2012



Where is Waldo?







































u predicts the fundamental energy and quantum state inside each region

Properties of the localization landscape

Fundamental energy
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( )
0

11 min
4

mE d
u

æ ö æ ö» +ç ÷ ç ÷
è ø è ø

Arnold et al., SIAM J Comput Sci (2019)
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Properties of the localization landscape

A paradigm: the infinite quantum well
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u predicts the fundamental energy and quantum state inside each region

Properties of the localization landscape

Fundamental energy
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Tunneling through the barriers of W=1/u
Arnold et al., PRL 116, 056602 (2016)

1/u accounts for the decay of the quantum state outside its localization region
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Arnold et al., PRL (2016)

2D binary Anderson model
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Counting eigenvalues below E Counting volume in phase space
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Arnold et al., Phys. Rev. Lett., 2016
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1/u provides an accurate estimate of the density of states

Properties of the localization landscape



5. 1/u provides an accurate estimate of the density of states

Properties of the localization landscape

Weyl’s law

Periodic Random Bernoulli Random uniform

N = actual IDOS (computed from the Schrödinger equation)
NV = IDOS classically obtained using the original potential V
NW = IDOS obtained using W=1/u

Arnold et al., PRL 116, 056602 (2016)

Homogeneous medium
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200-pairs superlattice

MF et al., PRB 95, 144204 (2017)
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Electron-phonon coupling

first order: 

The integrand remains significantly large only
along a path that minimizes simultaneously
both and .

The main interaction path can be read on
the 1/u map (through the saddle points of
the effective potential)
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7. Quantum transport in disordered medium (hopping)
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PhD thesis Jean-Marie Lentali



Mechanical vibrations



The landscape in a “complex” membrane or plate

Laplacian

biLaplacian

1uD =

( ) 1uD D =
MF & S. Mayboroda., PNAS 2012



The landscape in a “complex” membrane or plate

Laplacian

biLaplacian

Landscape u(x)

Landscape u(x)



The landscape in the clamped plate
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Mechanical vibrations: thin plates

Thin plate of  Duraluminium

10 cm × 10 cm, 0.5 mm thick

Experiments performed at Institut Langevin

Optical heterodyne holographic interferometer

F. Feppon,
A. Labbé,
C. Gillot,
A. Garelli,
M. Ernoult,
M. Dubois,
G. Lefebvre,
A. Gondel, 

P. Sebbah,
M. Atlan

static deformation



Mechanical vibrations: thin plates

Lefèbvre et al., PRL 2016



Sensitivity of the solution

3730 Hz2950 Hz 5540 Hz

3807 Hz2952 Hz 5595 Hz

Simulations / Experiments

The inverse problem: “localization design”



The Simons collaboration: WAVE (http://wave.umn.edu)

Alain Aspect
(IOGS)

Claude Weisbuch
(UCSB/

Ecole Polytechnique)

Svitlana Mayboroda
(Univ. of Minnesota)

Jim Speck
(UCSB)

Douglas Arnold
(Univ. of Minnesota)

David Jerison
(MIT)

Richard Friend
(Univ. of Cambridge)

Yves Meyer
(ENS Paris Saclay)

Marcel Filoche
(Ecole Polytechnique)

Guy David
(Univ. Paris Sud)

http://wave.umn.edu/


Disordered semiconductors



Disorder at the nanometer scale: semiconductors

Li et al., Phys. Rev. B. 2017

Jim Speck’s team, UCSB

LED structure and landscape computations

Atom Probe Tomography imaging atomic composition
60 million atoms positioned



Computing at the nanometer scale

Quantum states

{ }, ,,i j i jEy

Carrier densitiesElectrostatic potential

Band edges

Schrödinger equation

Poisson equation

Localization
landscapes
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Yes

In Nitride-based semiconductors

Solve Poisson equation
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The new self-consistent scheme

Filoche et al., PRB 2017



Carrier distribution in one quantum well

c-plane, x=0.2 m-plane, x=0.4

m-plane, x=0.2



m-plane and c-plane quantum well structures



Fundamental energies and overlap (1 QW, m-plane)



Fundamental energies and overlap (3 QW, c-plane)



Periodic superlattices



200-pairs SL20-pairs SL

Disordered superlattices



Large-scale numerical simulations

Yuh-Renn Wu

Li et al., Phys. Rev. B 2017

With the landscape, large-scale numerical
simulations accounting for quantum
effects on the entire structure are now
feasible!

C. Weisbuch S. Nakamura



We observe the landscape at the nanometer scale!

Electrical contacts

STM tip

Luminescence spectra show the transitions between localized states

Hahn et al., PRB 98, 045305 (2018)



Localization in GaN-based Multi-Quantum Well Light Emitting Diodes

Indium map Ec map

Characterizing disorder in InGaN layers by absorption

Urbach
tailsGap

Conduction band

Valence band

photon

Absorption process

e-h creation



2D cut plane for 3D landscape in QW

Overlap of regions of 1/uc and 1/uv

0

160 meV
Classical transport model 
cannot compute overlap!

Quantum well absorption in InGaN with random alloy fluctuations
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Experimental
Landscape model

Slope comparison

Piccardo et al., PRB 2017
Li et al., PRB 2017



Enzyme proficiency



Enzyme catalytic sites are hot-spots of localized vibrations 

Chalopin et al., submitted





Conclusions

§ One mathematical object, the localization landscape, contains most of the
information about the localization of stationary states in complex or
disordered systems. It is obtained by solving one single linear problem:

§ It predicts the localization subregions, the localization energies, and the
transition towards more extended states.

§ The landscape also approximates the shape of the fundamental
eigenfunction in each localization region.

§ W=1/u can be understood as an effective confining potential that is
experienced by the eigenstates.

§ This new potential can be used to compute the density of states and assess
the long range decay of the states.

§ Quantum transport (hopping) is currently under study.

1Lu =



Challenges

§ Theory: proving mathematically the 1/u-Weyl’s law, the quality of the approximation.
§ Anderson localization (high energy modes) at lower dimension
§ handling complex operator (magnetic), vector waves (electromagnetic),

interactions (landscape in higher dimension)
§ Quantum transport

§ Cold atoms:
§ Spectral functions, prediction of the mobility edge

§ Nitride-based semiconductors:
§ Green gap, Droop, design

§ Organic semiconductors:
§ Coulomb interaction, model efficiently the dynamics of scales.

§ Proteins:
§ proving the chemical role of phonon localization.

§ Electromagnetic waves:
§ Localization near band gaps, “quantum simulator”



Open Post-doc position now!
marcel.filoche@polytechnique.fr

Aim: Modeling and numerical simulation of quantum transport in
disordered semiconductors (GaN-based) using the landscape theory

Skills: • Wave equations
• Statistical physics – semiconductor physics
• Applied Mathematics. Partial Differential Equations
• Programming (C, C++, Fortran, Matlab)
• Scientific writing

Team: Physique de la Matière Condensée, Ecole Polytechnique

Collaborations: • University of California at Santa Barbara
• National Taiwan University
• Université de Genève
• University of Minnesota

http://polytechnique.fr

