Vibrating clamped plate

(b) (©)

Question:

Find a way to predict the regions of almost independent vibrations and

the frequencies of the related vibrations with only static measurements?
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Quantum waves

Smooth geometry

The eigenstates are (uniformly distributed) quasi-plane waves

Mode 1

Inodes - T,

1 antinode

Mode 2

3 nodes
2 antinodes

Mode 3

4 nodes
3 antinodes
4
5 nodes
4 antinodes
Mode 5

6 nodes
5 antinodes

isvr










Localization by the boundary
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Heilman & Strichartz, Not. Am. Math. Soc., 2010

“Localized eigenfunctions:
here you see them, there you don’t”

Félix et al., J Sound Vib, 2007
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Anderson localization (1958)

PHYSICAL REVIEW VOLUME 109, NUMBER § MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Evers & Mirlin, (2008) Rev Mod Phys,
Anderson transitions

Lagendijk, van Tiggelen, Wiersma (2009), Phys Today, Billy et al., (2008) Nature
Fifty years of Anderson localization




Anderson localization (1958)
P.W. Anderson, Phys. Rev. 1958

In a uniform or periodic potential, the quantum states are delocalized.
Breaking the symmetry (continuous or discrete) leads to possible localization.
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7 . 1 Diffusion
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v& g j‘ . -. o« °, o ,’ E‘C | L. Mobility edge
. I WUU/W JIU Localization
Diffusion in weak Localization in >
disorder “extreme” disorder

In 3D, mobility edge: above, delocalized states, below, localized states.

§oc(EC—E)_V GOC(E—EC)S

Localization length conductivity

Critical exponents: 5= V(d — 2) (d=2, critical dimension)
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The statistical approaches

u Scaling theory (renormalization) Abrahams, Anderson, Liciardello & Ramakrishnan,
_ Phys. Rev. Lett. 1979
= Random matrix theory (RMT) Dyson, J. Math. Phys. 1962

= Self-consistent theory (approximate) Vollhardt & Wolfle, Phys. Rev. Lett. 1980

» [nteractions Basko, Aleiner & Altshuler, Ann. Phys. 2006

However

= Disorder 1s described through its statistical properties.

= Values of the critical exponents have to be determined numerically or with
approximate theories.

» The exact value of the mobility edge depends on the disorder type (correlations).

= No analytical prediction when correlations or interactions come into play.

“Our results deviate significantly from previous theoretical estimates using an approximate, self-

consistent approach of localization.”
Delande & Orso, Phys. Rev. Lett. 2014

44/91



Particle vs. wave localization

Waves go where particles don’t go

The quantum well
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The punctured clamped plate

A rectangular plate with or without an inside punctured point

Je

Kirchhoff-Love theory of thin vibrating plates

Nu=A(Mu)=(02 +...+0. ) (02 +...+0. Ju=A'u



Localization in vibrating thin plates

Standard plate of eccentricity 20

Mode 1 Mode 40 Mode 44
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The punctured clamped plate

Je

1
e Je
VN

Region 2

Region 1

Where does this separation line come from?

What happens for any shape and any number of blocked points?



A universal approach to wave localization

L is a wave (elliptic) operator such as —A, AZ, H = —A+V of positive spectrum

2

Ap = iz 8_(2p acoustics, electromagnetism
c” Ot
2

Al = — 2ph O"w mechanics, thin rigid plates LW — ﬂ, W

D of

2

Hy = —h—A+V ly:iha—w quantum

2m Ot

Hy =Ey

Random potential V'(x,y)

random i.i.d. variables in
20x20 cells, uniformly

distributed between 0
and V. (here 8000). Quantum states

localization landscape (Hu — 1)




Control of the eigenmode amplitudes
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Disorder-induced (Anderson) localization

Mode 3

Mode 1

Mode 4

Mode 2
-

Mode 5




3D valley network in a random potential




Simulations by Douglas Arnold, Univ. of Minnesota



W= l/u acts as an effective confining potential

Hy :[—A+V(x)] v =Ly

Transformation: YW =UXQ

—iz diV(MZV(D) »@goz X0,

U

1

W = —| acts as an effective potential for the “reduced” wavefunction
U

General identity

| H W)= (T4 [V o)+ (7 ) = <w(ﬂj

u

()i

reduced kinetic effective potential
energy energy




The effective confining potential




Transition to delocalized states at higher energy

Energy = 2000

v (x)

<Aul(x
sup|y/| (x)

Meaningful only if “&0
u(x)< A" =E" %;“‘

-




Transition to delocalized states at higher energy

v () () Mode 1
sup‘l//‘

1
Meaningful only if .“.’.‘ 0.5

u(x) <A =E" 2‘&“ o

MF and S. Mayboroda, PNAS 2012



Where is Waldo?



Where’s Waldo? Eigenfunction prediction in 1D

start from the potential

4_
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Where’s Waldo? Eigenfunction prediction in 1D

solve landscape equation and take reciprocal to get effective potential

4-
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Where’s Waldo? Eigenfunction prediction in 1D

find deepest local minima x;

0 128 256



Where’s Waldo? Eigenfunction prediction in 1D

to minima associate connected component of sublevel set W(x) < 2Wpyip
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Where’s Waldo? Eigenfunction prediction in 1D

eigenmode predictions

1 - o]l ©2 ad @3

0 128 256



Where’s Waldo? Eigenfunction prediction in 1D

true eigenmodes versus predictions
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Increasing the amplitude of the potential

Increase V by a factor of 64 and do it again.
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Increasing the amplitude of the potential

the effective potential 1S very different

256 A
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Increasing the amplitude of the potential

find deepest local minima x;

256 -

128




Increasing the amplitude of the potential

to minima associate connected component of sublevel set W(x) < 2Wpn
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Increasing the amplitude of the potential

eigenmode predictions

1- 22 91 94 3

0 128 256



Increasing the amplitude of the potential

And they capture the true eigenfunctions perfectly again!
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Eigenfunction prediction in 2D

80 x 80 Bernoulli potential




Eigenfunction prediction in 2D

effective potential




Eigenfunction prediction in 2D

local minima and sublevel sets




Eigenfunction prediction in 2D

eigenfunction predictions

&/




Eigenfunction prediction in 2D

true eigenfunctions




Eigenfunction prediction in 2D

predicted versus true eigenfunctions




Properties of the localization landscape

u predicts the fundamental energy and quantum state inside each region

Fundamental state in each region
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Properties of the localization landscape

2
A paradigm: the infinite quantum well H = _a_
0x°
2 . | mx
Fundamental mode l/fo(x): —Sin| —
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Properties of the localization landscape

u predicts the fundamental energy and quantum state inside each region

504 © lsteigenvalue S )
Fundamental state in each region Fundamental energy o g;gg:é;ggg;g:ﬁg e
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SIAM J Comput Sci (2019)
1/u accounts for the decay of the quantum state outside its localization region
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Tunneling through the barriers of W=1/u
Arnold et al., PRL 116, 056602 (2016)




2D binary Anderson model

Arnold et al., PRL (2016)



Properties of the localization landscape

1/u provides an accurate estimate of the density of states

. H(xk)=E
vmmfwl<)
1/ 7

Counting eigenvalues below £ 4@ Counting volume in phase space

Uncertainty principle: Ax Ak = 2rx

#MSE%WM@_ ! ([ dvak

Weyl’s law ]DOS(E) . ~ (27T)d — (277)" i
H(x,k)<E

Modified law: IDOS(E)z( 1)d | ddkddr—(wd)d(iszf[E— ({)Tddr
27) w1 27 Q u\r

Arnold et al., Phys. Rev. Lett., 2016
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Properties of the localization landscape

5. 1/u provides an accurate estimate of the density of states

Weyl’s law Homogeneous medium
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0.5

—Ec
—1u

_05 -. { n | s | " | " { L | s | s |

100 150 200 250 300 350 400 450
z (nm)
200 | [ Bulk DOS (conduction band)
——Bulk DOS (1/u)
t |—— 2D DOS (Schradinger)
150 |

100 -

50

03 02 -041 0.0 0.1 0.2 03 04
Energy (eV)

MF et al., PRB 95, 144204 (2017)



7. Quantum transport in disordered medium (hopping)

Electron-phonon coupling
=Y af aib(—incy (¥;le "7 |4;))
q

first order:

v)=fffe e ve
— ([[ee Api(Fyealr) g3,

The integrand remains significantly large only

(e
1

along a path that minimizes simultaneously

both pl(F) and pZ(F).

The main interaction path can be read on

i o
the 1/u map (through the saddle points of Lﬁjz
the effective potential)

d T
7.5 10 12 15 175 20 5 7.5 10 12,5 15 17.5 20
nm nm

PhD thesis Jean-Marie Lentali



Mechanical vibrations



The landscape in a “complex” membrane or plate
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The landscape in a “complex” membrane or plate

Mode 1 Mode 2 T

Laplacian

Landscape u(x)

biLaplacian

Landscape u(x)




The landscape in the clamped plate
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Mechanical vibrations: thin plates

Thin plate of Duraluminium Experiments performed at Institut Langevin

P. Sebbah,

M. Atlan

F. Feppon,
A. Labbé,

C. Gillot,

A. Garelli,
M. Ernoult,
M. Dubois,
G. Lefebvre,
A. Gondel,

Optical heterodyne holographic interferometer

b) " (©
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........

10 cm x 10 cm, 0.5 mm thick —==/ W
static deformation



Mechanical vibrations: thin plates

& (um) Mode 1 f=1790Hz Mode 2 f = 2160 Hz

Mode 3 f=2430Hz = 2580 Hz

Mode 5 f=2820Hz = 3040 Hz
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The inverse problem: “localization design”

Sensitivity of the solution

d')

Simulations / Experiments

»

2950 Hz 3730 Hz 5540 Hz



The Simons collaboration: WAVE (http://wave.umn.edu)

Douglas Arnold Alain Aspect Guy David David Jerison Marcel Filoche
(Univ. of Minnesota) (10GS) (Univ. Paris Sud) (MIT) (Ecole Polytechnique)

Richard Friend  Svitlana Mayboroda Yves Meyer Jim Speck Claude Weisbuch
(Univ. of Cambridge) (Univ. of Minnesota) (ENS Paris Saclay) (UCSB) (UCsSB/
Ecole Polytechnique)


http://wave.umn.edu/

Disordered semiconductors



Disorder at the nanometer scale: semiconductors

Atom Probe Tomography imaging atomic composition
60 million atoms positioned

Jim Speck’s team, UCSB

LED structure and landscape computations

35nm

100nm

20nm

Snm

6-pairs - "N
7nm/3nm » 't L

200nm

Al ’

0% 11% _ 22% 1x
- -

Indium composition

35nm (C)

(a)

Liet al., Phys. Rev. B. 2017



Computing at the nanometer scale

Schrodinger equation
EC v (7) h2

" Ay, +E, (7 )l//i,j =LY,
Band edges e

A+E, (F)|u, =1

Localization
landscapes

Poisson equation
Electrostatic potential

—

(p(l") div(er(f?)?go):gio(n—erNz_Nz;)

Quantum states

{w,,.E,,}

n(?) - Z‘V/i‘z 1,

Carrier densities

(7). p(7)




The new self-consistent scheme

In Nitride-based semiconductors
calculate 2 poi
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Filoche et al., PRB 2017



Carrier distribution in one quantum well
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m-plane and c-plane quantum well structures

n-type doping=1.0x10'7 cm"3

c-plane

n-type doping=1.0x10'" cm-3

Al Ga, N
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Fundamental energies and overlap (1 QW, m-plane)
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Fundamental energies and overlap (3 QW, c-plane)
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Periodic superlattices
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n-type doping=5.0x10'8 cm-3

n-Al, ,Ga, ¢N

n'AIO.4Ga0.6N

1.0x10Y cm?3 1.0x10” cm?3
€ > € >
80 nm Y 80 nm
20-pairs Al, ,Ga, ;N/GaN SL
05 35
Ec L [——IDOS (Ec)
04} 14 30 F |——IDOS (Wc)
L |——IDOS (Schrsdinger
03 - ] _ a5 |
02} i
i __20f
01} i)
L Z 15}
0.0 ! uvu“ﬂ WMMJHLWU “W TFuwﬂu i
L ' 10k
0.1} _
02} Sr
_03 1 ] | 1 L 1 s 1 O A 1 N 1 1 M 1 N 1 o 1 o
70 80 90 100 110 120 130 03 -02 -01 00 01 02 03 04

z (nm)

Energy (eV)



Disordered superlattices
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Large-scale numerical simulations

100nm

20nm

6-pairs

7nm/3nm

200nm

35nm

(a)

AL A ¥
11% 22% 7. x
-

(C) Indium composition

Li et al., Phys. Rev. B 2017

Node number
(matrix size)

Computation time (s)

Poisson 428 655 25
Drift diffusion 428655 50
Localization landscape 428 655 50
Schrodinger 428 655 63 650
Refs. [14,62] 1500000 60 000
Ref. [20] 328000 7500
Ref. [21] 100 000 24000
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With the landscape, large-scale numerical

simulations accounting for quantum
effects on the entire structure are now

feasible!



We observe the landscape at the nanometer scale!
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Luminescence spectra show the transitions between localized states
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Localization in GaN-based Multi-Quantum Well Light Emitting Diodes
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Characterizing disorder in InGaN layers by absorption
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Quantum well absorption in InGaN with random alloy fluctuations

2D cut plane for 3D landscape in QW
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Classical transport model
’ cannot compute overlap!

Slope comparison
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Enzyme proficiency



Enzyme catalytic sites are hot-spots of localized vibrations
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Localization landscape for Dirac fermions
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In the theory of Anderson localization, a landscape function predicts where wave functions local-
ize in a disordered medium, without requiring the solution of an eigenvalue problem. It is known
how to construct the localization landscape for the scalar wave equation in a random potential, or
equivalently for the Schrédinger equation of spinless electrons. Here we generalize the concept to the
Dirac equation, which includes the effects of spin-orbit coupling and allows to study quantum local-
ization in graphene or in topological insulators and superconductors. The landscape function u(r) is
defined on a lattice as a solution of the differential equation ﬁu(r) =1, where H is the Ostrowsky
comparison matrix of the Dirac Hamiltonian. Random Hamiltonians with the same (positive def-
inite) comparison matrix have localized states at the same positions, defining an equivalence class
for Anderson localization. This provides for a mapping between the Hermitian and non-Hermitian

Anderson model.

Introduction — The localization landscape is a new
tool in the study of Anderson localization, pioneered in
2012 by Filoche and Mayboroda [I], which has since stim-
ulated much computational and conceptual progress [2-
[I0]. The “landscape” of a Hamiltonian H is a function
u(r) that provides an upper bound for eigenstates ¢ at
energy E > 0:

[%()|/ 1] max < Ew(r), [$lmax = maxp[o(r)[. (1)

This inequality implies that a localized state is confined
to spatial regions where u 2 1/E. Extensive numerical
simulations [8] confirm the expectation that higher and
higher peaks in u identify the location of states at smaller
and smaller E.

Such a predictive power would be unremarkable for
particles confined to potential wells (deeper and deeper
wells trap particles at lower and lower energies). But
Anderson localization happens because of wave interfer-
ence in a random “white noise” potential, and inspection
of the potential landscape V() gives no information on
the localization landscape u(r).

Filoche and Mayboroda considered the localization of
scalar waves, or equivalently of spinless electrons, gov-
erned by the Schrédinger Hamiltonian H = —V? + V.
They used the maximum principle for elliptic partial dif-
ferential equations to derive [I]| that the inequality
holds if V' > 0 and wu is the solution of

[—V2 +V(r)u(r) =1. (2)

Our objective here is to generalize this to spinful elec-
trons, to include the effects of spin-orbit coupling and
study localization of Dirac fermions.

Construction of the landscape function — Our key in-
novation is to use Ostrowski’s comparison matrix [ITHI4]
as a general framework for the construction of a localiza-
tion landscape on a lattice. By definition, the comparison

In our context the index n = 1,2,... labels both the
discrete space coordinates as well as any internal (spinor)
degrees of freedom. The comparison theorem [LI] states
that if the comparison matrix is positive-definite, then

115}
B <H, (4)

where both the absolute value and the inequality is taken
elementwise.
We apply Eq. @) to an eigenstate ¥ of H at energy E,

B = [(H ' 0)n| < 3, (H 1) 0] 1€
< |‘I’|maxzm ('I_{‘_l)nm7 (5)

with |¥|max = maxy, |¥,|. We thus arrive at the desired
inequality

1o/ ¥ max < B[S (H 1Y), = |E|u,.  (6)

The elements u, of the landscape function are deter-
mined by a set of linear equations with coefficients given
by the comparison matrix:

Hu=1&Y, Hypum=1, n=1,2,...N. (7)

As a sanity check, we make contact with the original
landscape function [I] for the Schrédinger Hamiltonian
Hs = p?/2m + V, with V > 0. The Laplacian is dis-
cretized in terms of nearest-neighbor hoppings on a lat-
tice. For each dimension

p* = (h/a)*(2 — 2coska) =
(HS)nm = t0(26nm
with lattice constant a and hopping matrix element ¢ty =

h%/2ma®. The comparison matrix Hs is equal to Hg and

is positive-definite, so that Eq. @ is a discretized version
Af tha aricinal landerana ammation Hoa — 1 11 TAI

®)
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Conclusions

= One mathematical object, the localization landscape, contains most of the
information about the localization of stationary states in complex or
disordered systems. It is obtained by solving one single linear problem:

Lu=1

= |t predicts the localization subregions, the localization energies, and the
transition towards more extended states.

= The landscape also approximates the shape of the fundamental
eigenfunction in each localization region.

= W=1/u can be understood as an effective confining potential that is
experienced by the eigenstates.

= This new potential can be used to compute the density of states and assess
the long range decay of the states.

"= Quantum transport (hopping) is currently under study.



Challenges

Theory: proving mathematically the 1/u-Weyl’s law, the quality of the approximation.
= Anderson localization (high energy modes) at lower dimension
= handling complex operator (magnetic), vector waves (electromagnetic),
interactions (landscape in higher dimension)
=  Quantum transport

= Cold atoms:
= Spectral functions, prediction of the mobility edge

= Nitride-based semiconductors:
= Green gap, Droop, design

=  Organic semiconductors:
= Coulomb interaction, model efficiently the dynamics of scales.

=  Proteins:
= proving the chemical role of phonon localization.

= Electromagnetic waves:
= Localization near band gaps, “guantum simulator”
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