Next generation long baseline neutrinos experiments: what are the options for Europe ?

André Rubbia (ETH-Zürich)

DAPNIA/SPP seminar June 18th, 2007

Neutrino oscillations

- Neutrino flavour oscillation is well established both at the solar and atmospheric scale.
- The effects can be mostly naturally explained when neutrino mass and flavor eigenstates are different, expressed with a matrix equation:

$$\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_{1}\\\nu_{2}\\\nu_{3}\end{array}\right)$$

Neutrino oscillations

- Neutrino flavour oscillation is well established both at the solar and atmospheric scale.
- The effects can be mostly naturally explained when neutrino mass and flavor eigenstates are different, expressed with a matrix equation:

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\tau\end{array}\right) = \left(\begin{array}{ccc}\mathrm{U}_{\mathrm{e1}} & \mathrm{U}_{\mathrm{e2}} & \mathrm{U}_{\mathrm{e3}}\\\mathrm{U}_{\mu 1} & \mathrm{U}_{\mu 2} & \mathrm{U}_{\mu 3}\\\mathrm{U}_{\tau 1} & \mathrm{U}_{\tau 2} & \mathrm{U}_{\tau 3}\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

• The matrix can be written in terms of 3 mixing angles and 1 complex phase as:

	1	0	0)	1	$^{\prime}$ c_{13}	0	$s_{13}e^{-i\delta}$)	\setminus	(c_{12}	s_{12}	0 \
U =	0	c_{23}	s_{23}		0	1	0			$-s_{12}$	c_{12}	0
	0 /	$-s_{23}$	c_{23} /		$\langle -s_{13}e^{i\delta}$	0	c_{13} ,)		0	0	1 /

where c_{ij} stands for $cos(\theta_{ij})$ and s_{ij} stands for $sin(\theta_{ij})$.

The probability of oscillation from a flavour to a different one
can be expressed as a function of the 3 mixing angles (θ₁₂, θ₁₃, θ₂₃), the complex phase (δ) and 2 neutrino mass differences (Δm²₂₁, Δm²₃₂)
depends on the ratio L/E where L is the distance between the source and the detector (baseline) and E the energy of the neutrino.

"Atmospheric" $\Delta m^2 data$

Disappearance: Δm_{32}^2 $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2$

Superkamiokande

$$\Delta m_{32}^2 \approx 2.5 \times 10^{-3} eV^2,$$

$$\theta_{23} \approx 45^o,$$

$$\theta_{13} \ll 11^o$$

 Δm_{32}^2

Superkamiokande

Appearance:

$$P(v_{\mu} \xrightarrow{?} v_{\tau}) = \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} \left(\Delta m_{32}^{2} \frac{L}{4E} \right) \text{ OPERA}$$
$$P(v_{\mu} \xrightarrow{?} v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\Delta m_{32}^{2} \frac{L}{4E} \right) \xrightarrow{\text{T2K,}} \text{NOVA, ...?}$$

Neutrino masses: viewpoint from fundamental theory

Neutrino masses: viewpoint from fundamental theory

- ★ Non-vanishing neutrino masses are a clear indication of new physics beyond the Standard Model (so far the only one)
 - <u>Dirac mass</u>: Even if Higgs boson is discovered at LHC, Higgs mechanism cannot explain neutrino masses unless we postulate the existence of right-handed neutrinos
 - <u>Majorana mass</u>: completely beyond the SM, since implies lepton number violating terms in the basic theory.
 - <u>Mixed</u>: See-saw mechanism, explains why neutrinos are so light, but implies existence of super heavy neutrinos: new physics beyond SM

Discovery of CP-violation in the leptonic sector would be relevant to leptogenesis and could help understand the matter-antimatter asymmetry in the Universe.

Relevant questions

5

Relevant questions

- The goal of long baseline neutrino oscillation experiments is to precisely measure the mixing matrix and mass differences (squared) and answer to important questions such as:
 - ✓ Is θ_{23} mixing maximal? (present limit: sin²(2 θ_{23})>0.92 at 90% C.L.)
 - ✓ Is θ_{13} different from zero? (present limit: sin²(2 θ_{13})<0.1 at 90% C.L)
 - ✓ Is there CP violation in the leptonic sector? (i.e. is $\delta \neq 0$?)
 - ✓ Is there normal or inverted hierarchy? (i.e. which is the sign of Δm_{32}^2 ?).
- The first question could be answered with a precise measurement of v_{μ} disappearance, that would provide a better knowledge on the parameters θ_{23} and Δm_{32}^2 ($\approx \Delta m_{31}^2$):

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\Delta m_{32}^2 \frac{L}{4E} \right)$$

• The other questions could be answered studying $v_e \leftrightarrow v_{\mu}$ transitions (e.g.

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillation) with the frequency of the atmopheric neutrinos. This has not been observed so far.

5

Three flavors phenomenology

• The 3-flavour neutrino $v_{\mu} \rightarrow v_{e}$ oscillation probability including matter effects can be expressed as:

$$P(\nu_{\mu} \rightarrow \nu_{c}) = \Sigma_{i=1,4}P_{i}$$

$$P_{1} = \sin^{2}\theta_{23}\sin^{2}(2\theta_{13})\left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2}\sin^{2}\frac{B_{\pm}L}{2}$$

$$P_{2} = \cos^{2}\theta_{23}\sin^{2}(2\theta_{12})\left(\frac{\Delta_{12}}{A}\right)^{2}\sin^{2}\frac{AL}{2}$$

$$P_{3} = J\cos\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\cos\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J\sin\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\sin\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J\sin\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\sin\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$$

$$P_{4} = \pi J\sin\delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{\pm}}\right)\sin\frac{\Delta_{13}L}{2}\sin\frac{AL}{2}\sin\frac{B_{\pm}L}{2}$$

$$P_{5} = 0$$

$$P_{5} =$$

Three flavors phenomenology

• The 3-flavour neutrino $v_{\mu} \rightarrow v_{e}$ oscillation probability including matter effects can be expressed as:

- θ_{13} must be proved to be non-zero. Otherwise $P_1 = P_2 = P_3 = P_4 = 0$
- $P_3 \& P_4$ depend strongly on the value of δ .
- The sign of Δm_{31}^2 also affects the oscillation probability through the Earth:
 - • $\Delta m_{31}^2 > 0$: (anti)neutrino oscillation (suppressed) enhanced
 - • $\Delta m_{31}^2 < 0$: (anti)neutrino oscillation (enhanced) suppressed

 Δm_{ij}^2

The first concrete idea

A.K. Mann, H. Primakoff, "Neutrino oscillations and the number of neutrino types", Phys.Rev. D 15 (1977) 655

L= 1000 km, α=78 mrad, Δ=19 km

The first concrete idea

A.K. Mann, H. Primakoff, "Neutrino oscillations and the number of neutrino types", Phys.Rev. D 15 (1977) 655

"None of our speculations on the lower limit of the oscillation length at pv≤20 GeV appears to be significantly larger than the distance between the accelerator and the distant detector (1000 km)" "It is perhaps worth mentioning again that any actual neutrino-oscillation phenomenon might conceivably provide another means of observing CP violation"

Super-K Results

50 kton water Cherenkov detector, located 1000 m underground 2 analyses on atmospheric neutrinos

Super-K Results

50 kton water Cherenkov detector, located 1000 m underground 2 analyses on atmospheric neutrinos

K2K Experiment

(Phys. Rev. D74 (2006) 072003)

- v_{μ} beam from KEK with L=250 km
- 'Near' detector + 'Far' Super-K detector
- Accumulated 0.9×10^{20} 12 GeV protons over ~5 years

K2K Experiment

(Phys. Rev. D74 (2006) 072003)

- v_{μ} beam from KEK with L=250 km
- 'Near' detector + 'Far' Super-K detector
- Accumulated 0.9×10^{20} 12 GeV protons over ~5 years

I 12 FC events observed 158±9 FC expected (no osc) Best fit parameters: Maximum mixing $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$

sin²(20)

NUMI: v's at FNAL/MI

First proposals in 1989!

NUMI: v's at FNAL/MI

• A neutrino beam from Fermilab to northern Minnesota

- over 735 km to Soudan mine (MINOS far detector)
- a large near hall at ~ 1 km from the target (MINOS near detector, MINERvA, PEANUT (exposure of OPERA bricks))
- A high power neutrino beam
 - 120 GeV protons from Main Injector
 - facility designed for up to 0.4 MW (4×10^{13} ppp every 1.9 s)

MINOS best-fit spectrum

(Phys. Rev. Lett. 97 (2006) 191801)

MINOS best-fit spectrum

(Phys. Rev. Lett. 97 (2006) 191801)

$$\begin{aligned} \left| \Delta m_{32}^2 \right| &= 2.74^{+0.44}_{-0.26} (stat + syst) \times 10^{-3} eV^2 \\ sin^2(2\theta_{23}) &= 1.00_{-0.13} (stat + syst) \end{aligned}$$

MINOS Allowed Region

MINOS Allowed Region

For 1.27×10²⁰ protons Presently accumulated 3x10²⁰ protons <10⁻³ MINOS Sensitivity as a function of Integrated POT 4.0 **MINOS Best Fit** 0.004 (e²) MINOS 90% C.L. ours. statistical errors o MINOS 68% C.L. 3.5 $|\Delta m_{32}^2| (eV^2/c^4)$ 3.0 0.003 2.5 0.0025 K2K 90% C.L. SK 90% C.L. 1.27x10²⁰ POT 0.002 2.5x10²⁰ POT SK (L/E) 90% C.L. 2.0 7.4x10²⁰ POT 16x10²⁰ POT 0.0015 Test point: $\Delta m^2 = 2.74 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 1$ 1.5 ······ Super-K (zenith angle) 0.8 0.2 0.4 0.6 1.0 0.001 0.75 0.8 0.85 $\sin^2(2\theta_{23})$ 0.65 0.7 0.9 0.95 $sin^2 2\theta$

CNGS, CERN to Gran Sasso beam

L = 732 Km

• 17 GeV average v_{μ} energy, optimized for $v_{\mu} \rightarrow v_{\tau}$ appearance experiment

CNGS, CERN to Gran Sasso beam

L = 732 Km

• 17 GeV average v_{μ} energy, optimized for $v_{\mu} \rightarrow v_{\tau}$ appearance experiment

400 GeV protons from SPS, 4.8x10¹³ protons per 6 s cycle
200 days x 60% SPS sharing x 55% efficiency
⇒ 4.5×10¹⁹ pot/year, 500 kW peak power, 1.8x10²² GeV/year on target

• compare with NuMI, 3x10²⁰ pot/year design value, achieved 1.5x10²⁰ POT/ year equivalent to 1.8x10²² GeV/year on target

OPERA detector

Integrated POT (a)Aug '06 RUN

Timing : Event vs Extraction Aug '06 RUN

Time to first extraction (ns)

Closest time to extraction (ns)

CNGS events

CERN direction observed by muons

CNGS water leak

Today we have removed one shielding block of the side shielding of the CNGS reflector. The radiation was low enough to stay beside the reflector for some minutes and to have a direct look to the possible leak locations. The leak in the closed water cooling circuit of the reflector was located immediately: The insulating ceramic part of the most downstream tube connecting the outer conductor with the water drain pipe is broken (see attached picture). The reason for this rupture has to be understood. Most likely is due to additional clamps that provide vapor tightness (a condition that could be negotiated), which might overconstrain the system. These clamps could be removed quite easily, an operation that we would then like to do at all the other connecting tubes of the reflector and also the horn.

We are investigating the possibility for repair of the connecting tube in-situ, i.e. without moving the reflector, but just the side shielding. In the next days we will prepare a detailled plan of the interventions during this shut-down, such that CNGS is ready for the 2007 re-start.

The ICARUS T600 detector

20

The ICARUS T600 detector

Built between years 1997 and 2001
Completely assembled on surface
Full scale demonstration test run on surface conditions of one half-module in summer 2001
Full unit assembly terminated in 2002
Results published
Transportation to LNGS in 12/2004
Planned T600 commissioning in 2007 ?
INFN contemplates construction of bigger modules in new nearby LNGS site (off-axis CNGS) See arXiv:0704.1422 (April 2007)

Tokai to Kamioka (T2K)

Tokai to Kamioka (T2K)

⇒ 2009 Phase I : θ_{13} , θ_{23} , Δm^2_{23}

- J-PARC : 0.75 MW @ 30 GeV
- SK-III : 22.5 kT FV, full PMT coverage
- ⇒ 2015 Phase II : θ_{13} , δ_{CP} ?
 - J-PARC : 4MW @ 50 GeV (?)
 - HyperK : 1 MT scale

T2K measurements

T2K measurements

ND280 Near Detectors

- To be measured before oscillation: Beam flux, Beam ve contamination, non-QE background
- ➡ Near detector tasks :
 - SuperK ve background < 10%
 - $\nu\mu$ event normalisation < 5%
 - Energy scale <2%
 - Beam linear distortion < 20%
 - Width < 10%
 - non-QE/CCQE at 5-10%

ND280 Pit

UA1/NOMAD magnet B=0.2 T

3 TPC modules MicroMegas pads

Position resolution < 0.8 mm Mom resolution to 1GeV <7-8%

2 Fine Grained 2x1.3t target detectors (FGD)

FGD1(C): X-Y plastic FGD2(H20): X-Y plastic +passive water target 8k channels

Tracker Calorimeter

X-Y fine grained Pb/Plastic Eres ~7.5%/√E 20K channels Side muon ranging

detector (SMRD)

T2K Far detector: SK-III

Possible extension of T2K experiment

3 σ Sensitivity to θ_{13} # 0

•As part of the NOvA project, the NuMI neutrino line will be upgraded to 6x10²⁰ POT/year, with a beam power of 700 kW

Assumed total protons = 60x10²⁰ pots (2006: 1.5x10²⁰ pot/year)
NoVA is a "single measurement" experiment.

28

Comparison to T2K and a Reactor Experiment

29

FLARE / LArTPC (FNAL)

L. Bartoszek et al. FERMILAB-PROPOSAL-0942, Aug 2004.

Starting point: ICARUS-design
R&D on argon purity, long wires, cold electronics, ...

•Detector on surface (challenging!)

Aimed at (S)NUMI longbaseline program

AN UPGRADED CNGS?

JHEP 0611:032,2006

More superbeams ?

Conventional neutrino beams are nowadays relatively straight-forward
Main issues are related to power on target, radiation damage and radiation protection in the target/decay region
If the far neutrino detector (FD) is on axis (θ_ν = 0) & far away:
★Neutrino energy ≈ 0.43 × pion energy
★Lorentz-boost gives a factor E_ν² on solid angle

Off-axis neutrino beam configuration

$$E_{\nu} = \frac{m_M^2 - m_{\mu}^2}{2(E_M - p_M \cos \theta_{\nu})} \approx E_{\nu}^{max} \frac{1}{2\left(\frac{1}{1+\beta} + \frac{1}{2}\beta\gamma^2\theta_{\nu}^2\right)}$$
$$\approx E_{\nu}^{max} \frac{1}{(1+\gamma^2\theta_{\nu}^2)}$$

Idea pioneered by E889 Collaboration, "Long Baseline Neutrino Oscillation Experiment", Physics Design Report, BNL no 52455 (1995).

 $E_{\nu}^{max} = 0.427 \gamma m_{\pi}$ for pions and $E_{\nu}^{max} = 0.954 \gamma m_K$ for kaons.

For a given $\theta_v \neq 0$, a large range of pion (kaon) energies contributes to a small range of neutrino energies

"On" vs "Off"-axis configurations

Full simulation focusing optics for various typical configurations

★CNGS-like 10 GeV/c ★NOvA L.E. optics

★On-Axis
★Off-axis OA0.25 deg
★Off-axis OA0.75 deg

★Normalized to 4.5e19 pots, 100 kton, L=2300km

Superbeam: scaling of pion production

Scaling: in order to compare spectra at different proton energies, we divide by the proton energy E_p

All normalized spectra have similar shapes, with maximum yield around $p_{\pi} \approx 500 \ MeV/c$ Departure from "scaling" consist in difference at low energy, and harder spectra at high E_p

These means that the relevant figure is the number of protons x energy of protons on target

Estimated positive pion yields for different

A. Rubbia

CERN neutrino complex (CN)

- The main focus of the CERN accelerator complex will soon shift to LHC. However, it is known that the integrated luminosity in the LHC experiments will directly depend upon the performance and reliability of the injectors, namely Linac2, PSB, PS and SPS.
- The CERN working group on Proton Accelerators for the Future (PAF) has reviewed the situation and elaborated a baseline scenario for the upgrades of the CERN accelerators.
- In the first stage, a new Linac4 would be built to simplify the operation of the PS complex for LHC and help investigate the SPS capability to handle very high brightness beams. In a second stage, the PS would be replaced by a new PS (PS+) with a beam power of approximately 200 kW available at 50 GeV/c.
- If the proton beam from the new PS could be efficiently post-accelerated to 400 GeV/c and extracted to the CNGS target area, a MW-class neutrino beam would be possible.

Beam parameters

JHEP 0611:032,2006

	JP	ARC	FNAL		CERN		
	design	upgrade	w/o PD	w PD	CNGS	CNGS'	CNGS+
					dedicated		
Proton energy E_p	40 ($\mathrm{GeV/c}$	120 Ge	eV/c	4	00 GeV/c	
$ppp(\times 10^{13})$	33	> 33	9.5	15	4.8	7	14
T_c (s)	3.64	< 3.64	1.6	1.467	6	6	6
Efficiency	1.0	1.0	1.0	1.0	0.55	0.55	0.83
Running (d/y)	130	130	230	230	200	200	200
N_{pot} / yr (×10 ¹⁹)	100	$\simeq 700$	120	200	7.6	11	33
Beam power (MW)	0.6	4	1.1	2.0	0.3	0.4	1.2
$E_p \times N_{pot}$	4	28	14.4	24	3	4.4	13.2
$(\times 10^{22} \text{ GeV} \times \text{pot/yr})$							

CNGS "shared" 4.5x10¹⁹ pot/yr

CERN: compensate less protons/year (Npot) by higher proton energy (Ep) competitive Ep x Npot !!

CNGS beam profile

- The beam is aimed on-axis towards the Gran Sasso Laboratory.
- The energy is tuned in order to observe τ-neutrino appearance (about 35 GeV mesons).
- The location of a new detector would have a baseline between 500 km and 1050 km. The limits on the maximal off-axis angle are related to the baseline considered.

38

CNGS beam optimisation

- In order to use the CNGS beam to perform
 v_e appearance measurements, we need to
 increase the spectrum at low energy.
- Optics was re-designed to have on-axis low energy neutrino beam (CNGS L.E.) (July 2002, JHEP 0209:004,2002)
- With the original (τ) optics and using the offaxis technique similar results are achieved (30% less below 2 GeV compared to CNGS L.E. but less high energy tail).
- A factor of 2 can be gained with a new optics to focus pions of 10 GeV.

CNGS beam optics

JHEP 0209:004,2002

JHEP 0611:032,2006

	CNGS $ au$	CNGS L.E.	CNGS 10 GeV	
Target				
Material	Carbon	Carbon	Carbon	
Total target length	$2 \mathrm{m}$	1 m	2 m	
Number of rods	13	1	8	
Rod spacing	first 8 with 9 cm dist.	none	9 cm	
Diameter of rods	first 2.5 mm , then 4 mm	$4\mathrm{mm}$	$2 \mathrm{mm}$	
Horn				
Distance beginning of target-horn entrance	$320~\mathrm{cm}$	$25~\mathrm{cm}$	100 cm	
Length	$6.65 \mathrm{~m}$	4 m	$6.65 \mathrm{~m}$	
Outer conductor radius	$35.8~\mathrm{cm}$	$80 \mathrm{cm}$	$37.2~\mathrm{cm}$	
Inner conductor max. radius	$6.71 \mathrm{~cm}$	11.06 cm	11.4 cm	
Inner conductor min. radius	$1.2 \mathrm{cm}$	$0.2~{ m cm}$	$0.15~\mathrm{cm}$	
Current	$150 \mathrm{kA}$	300kA	140kA	
Reflector				
Distance beginning of target-reflector entrance	43.4 m	$6.25 \mathrm{~m}$	11 m	
Length	$6.65 \mathrm{~m}$	4 m	$6.45 \mathrm{~m}$	
Outer conductor radius	$55.8~\mathrm{cm}$	$90~{\rm cm}$	$56.6~\mathrm{cm}$	
Inner conductor max. radius	$28 \mathrm{cm}$	$23.6 \mathrm{~cm}$	$24 \mathrm{cm}$	
Inner conductor min. radius	$7\mathrm{cm}$	$5~{ m cm}$	$6 \mathrm{~cm}$	
Current	$180 \mathrm{kA}$	$150 \mathrm{kA}$	180kA	
Decay tunnel				
Distance beginning of target-tunnel entrance	100 m	$50 \mathrm{m}$	100 m	
Length	992 m	$350 \mathrm{m}$	1100 m^*	
Radius	122 cm	$350~\mathrm{cm}$	122 cm	

CNGS 10 GeV "optimized"

- Meson production parameterized with M. Bonesini, Eur. Phys. J. C20, 13 (2001)
- Individual particle tracking from target through optics system and decay tunnel
- Secondary interactions taken into account

41

Optimal off-axis kinematics

A) Well-known kinematics formula

$$E_{\nu} = \frac{m_M^2 - m_{\mu}^2}{2(E_M - p_M \cos \theta_{\nu})} \approx E_{\nu}^{max} \frac{1}{2\left(\frac{1}{1+\beta} + \frac{1}{2}\beta\gamma^2\theta_{\nu}^2\right)}$$
$$\approx E_{\nu}^{max} \frac{1}{(1+\gamma^2\theta_{\nu}^2)}$$

B) Condition for energy to observe 1st maximum and minimum:

$$1.27 \frac{L(km)}{E_{max}(GeV)} \Delta m^2 (eV^2) \simeq \frac{\pi}{2}$$
$$1.27 \frac{L(km)}{E_{min}(GeV)} \Delta m^2 (eV^2) \simeq \pi$$

C) Combining expressions A)&B), one finds optimal off-axis angle for observing 1st maximum or minimum. For example for pion decays:

$$\theta_{\nu}^{opt,max} \approx \sqrt{\left(\frac{\pi}{2.54} \frac{E_{\nu}^{max}(GeV)}{L(km)\Delta m^{2}(eV^{2})} - 1\right) \frac{1}{\gamma^{2}}} \approx \sqrt{\left(\frac{\pi}{2.54} \frac{0.427E_{\pi}(GeV)}{L(km)\Delta m^{2}(eV^{2})} - 1\right) \left(\frac{m_{\pi}}{E_{\pi}}\right)^{2}}$$

$$\theta_{\nu}^{opt,min} \approx \sqrt{\left(\frac{\pi}{1.27} \frac{0.427E_{\pi}(GeV)}{L(km)\Delta m^{2}(eV^{2})} - 1\right) \left(\frac{m_{\pi}}{E_{\pi}}\right)^{2}}$$

$$(1)$$

Optimal off-axis angle for first maximum (minimum) at several baselines

Optimal off-axis angle for first maximum (minimum) at several baselines

≈0.75°

CNGS beam: location selection

- We selected two locations on the CNGS beam.
- The first option is 0.75 degrees off-axis at 850 km, to optimize the rate at the first maximum of oscillation (good for θ_{13} sensitivity).
- The second option is 1.5 degrees off-axis at 1050 km, to optimize the rate at the first minimum and second maximum of oscillation (good for CP-Violation and mass hierarchy sensitivity).
- A combination of the 2 was also considered where the total 100 kton mass was split into 30 kton at 850 km and 70 kton at 1050 km.

Detector technology

- When searching for v_e appearance there will be both an irreducible intrinsic v_e background and a background due to event misidentification.
- In a next generation experiment one should aim at reducing the backgrounds from event misidentification as much as possible in order to profit at most from the increased statistics. Eventually, the limiting factor will be the knowledge of the intrinsic V_e background so other sources of backgrounds should be suppressed below this contamination, which is generally at the level of the percent in the region of the oscillation maximum.
- This is not the case in T2K and NoVA where a ratio v_e :NC $\pi^0 \approx 1:1$ is achieved at the cost of efficiency ($\epsilon \approx 40\%$ for T2K, $\approx 20\%$ for NoVA).
- We note that thanks to the progress in predicting neutrino fluxes and cross-sections given the extended campaigns of hadro-production measurements and the running of, or plans for, dedicated neutrino cross-section-measurement experiments, we can expect that the systematic error on the prediction of the intrinsic V_e background (≈ the number of background events) will be below 5%.

• Our analysis assumes the concept of a liquid Argon TPC with mass order of 100 kton, as proposed in hep-ph/0402110.

We note that the physics potentials of the upgraded CNGS could also be considered with other detector technologies. In particular, a NoVA-type or a large Water Cerenkov detectors could offer complementary options, however, in those cases a detailed analysis of the π⁰ backgrounds should be performed to estimate their sensitivity. On the other hand, the liquid Argon TPC should reduce this source below the intrinsic V_e background.

Liquid Argon TPC (I)

- Detector features and performance:
 - Liquid detector
 - Scalable
 - Fully and continuously sensitive
 - Higher detection efficiency for multiGeV events
 - Better and "Gaussian" neutrino energy resolution
 - Clean event selection and background suppression
 - Better electron identification and NC suppression also in MultiGeV region
 - Magnetic field possible, useful for neutrino/antineutrino separation

Liquid Argon TPC (II)

- Physics performance:
 - Rich and multipurpose accelerator & non-accelerator physics program
 - Possibly at shallow depths (not at surface!)
 - Complementary to Water Cerenkov detectors
 - Compensate "smaller" mass by higher efficiency and higher crosssection for MultiGeV events
 - Well matched to "Wide Band neutrino Beam" to cover 1st max, min, 2nd max,... with unbiased selection and good energy resolution, important for future θ_{13} - δ , sgn(Δ m₂) studies
 - Technology ready for future next generation facilities (e.g. NF if magnetized) up to high energies (10-20 GeV)

A tracking calorimeter

 High granularity: readout pitch ≈3 mm, local energy deposition measurement, particle type identification

- Fully homogenous, full sampling calorimeter
 - Low energy electrons:
 - Electromagnetic shower:
 - ✦ Hadronic shower:

$$\frac{\sigma(E_e)}{E_e} = \frac{11\%}{\sqrt{E_e(MeV)}} \oplus 2.5\%$$
$$\frac{\sigma(E_{em})}{E_{em}} = \frac{3\%}{\sqrt{E_{em}(GeV)}} \oplus 1.5\%$$
$$\frac{\sigma(E_{had})}{E_{had}} \simeq \frac{30\%}{\sqrt{E_{had}(GeV)}} \oplus 10\%$$

Full imaging

- Fully active, homogeneous, highresolution device: high statistics neutrino interaction studies with bubble chamber accuracy.
- Reconstruction of low momentum hadrons (below Cerenkov threshold), especially recoiling protons: a proton of 1070 MeV/c (Cerenkov threshold in Water) travels 1 metre in LAr.
- Exclusive measurement of vNC events with clean π^0 identification and a very good e/ π^0 discrimination.

High granularity: Sampling = 0.02 X_0 "bubble" size $\approx 3 \times 3 \times 0.4 \text{ mm}^3$

bubble diameter ≈3mm

49

A. Rubbia

The concepts for a scalable design

- LNG tank, as developed for many years by petrochemical industry
 - <u>Certified</u> LNG tank with standard aspect ratio
 - Smaller than largest existing tanks for methane, but <u>underground</u>
 - Vertical electron drift for <u>full active volume</u>
- A new method of readout (Double-phase with LEM)
 - to allow for a <u>very long drift paths</u> and cheaper electronics
 - to allow for <u>low detection threshold</u> (≈50 keV)
 - to <u>avoid use of readout wires</u>, which can be hardly mechanically and electrically scaled up and with disfavored use in conjunction with magnetic fields
 - A path towards pixelized readout for 3D images.
- Voltage multiplier to extend drift distance
 - High drift field of 1 kV/cm by additional of stages, w/o VHV feedthrough
- Very long drift path
 - Minimize channels by increasing active volume with longer drift path
- Light readout on surface of tank
- Possibly immersed superconducting solenoid for B-field

Scaling parameters

IUU Kton:

Dewar	$\phi \approx$ 70 m, height \approx 20 m, perlite insulated, heat input \approx 5 W/m ²
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)
Argon total volume	73000 m³, ratio area/volume ≈ 15%
Argon total mass	102000 tons
Hydrostatic pressure at bottom	3 atmospheres
Inner detector dimensions	Disc ϕ ≈70 m located in gas phase above liquid phase
Charge readout electronics	100000 channels, 100 racks on top of the dewar
Scintillation light readout	Yes (also for triggering), 1000 immersed 8" PMTs with WLS
Visible light readout	Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single γ counting capability

10 kton:

Dewar	• \approx 30 m, height \approx 10 m, perlite insulated, heat input \approx 5 W/m ²
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)
Argon total volume	7000 m³, ratio area/volume ≈ 33%
Argon total mass	9900 tons
Hydrostatic pressure at bottom	1.5 atmospheres
Inner detector dimensions	Disc φ ≈30 m located in gas phase above liquid phase
Charge readout electronics	30000 channels, 30 racks on top of the dewar
Scintillation light readout	Yes (also for triggering), 300 immersed 8" PMTs with WLS

kton: 1% prototype: engineering detector, $\phi \approx 10m$, $h \approx 10m$, shallow depth?

Scaling: three options to reach 40 kton

	1 unit of	2 units of	4 units of
Liquid Argon mass (per unit)	39.2 kton	19.6 kton	9.8 kton
Fiducial volume m ³ (per unit)	28000	14000	7000
Total liquid Argon mass	39.2 kton	39.2 kton	39.2 kton

 Φ =30 m, h=10 m Φ =30 m, h=20 m Φ =40 m, h=20 m

Layout for a magnetized detector

 Ideas for future liquid Argon detectors, A. Ereditato and A.Rubbia, Proc. Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region, NUINT04, March 2004, Gran Sasso, Italy, Nucl.Phys.Proc.Suppl.139:301-310,2005, hep-ex/0409034
 Liquid Argon TPC: mid & long term strategy and on-going R&D, A.Rubbia, Proc. Int. Conf. on NF and Superbeam, NUFACT04, Osaka, Japan, July 2004
 Liquid Argon TPC: a powerful detector for future neutrino experiments, A.Ereditato and A. Rubbia, HIF05, La Biodola, Italy, May 2005, hep-ph/0509022

First operation of a LAr TPC embedded in a B-field

First real events in B-field (B=0.55T):

New J. Phys. 7 (2005) 63 NIM A 555 (2005) 294

Correlation between calorimetry and magnetic measurement for contained tracks:

Small test solenoid built wit HTS wire

Consists of 4 pancakes, total HTS wire length: 80m

Results with the small HTS solenoid

Coil resistance as a function of the applied current

Total HTS wire length: 80 m

Temperature	LN ₂ (77K)	LAr (87K)
Max. applied current	145 A	80 A
On-axis B-field	0.2 T	0.11 T
Coil resistance at 4A	6 μΩ	6 μΩ

Charge readout: Thick Large Electron Multiplier (LEM)

Thick-LEM: Vetronite with holes, coated with copper

- macroscopic GEM
- ➡ easier to operate at cryogenic temperatures
- hole dimensions: 500 μm diameter,
 800 μm distance

Two consecutive stages

- Single LEM Thickness: 1.5 mm
- Amplification hole diameter = 500 μ m
- Distance between centers of neighboring holes = 800 μ m
- Distance between stages: 3 mm
- Avalanche spreads into several holes at second stage
- Higher gain reached as with one stage, with good stability

Charge readout: Thick Large Electron Multiplier (LEM)

Shapes from Fe⁵⁵ radioactive source (5.8 keV, event rate about 1kHz) of the signals from doublestage LEM system have a very clean S/N ratio.

MIP signal in ICARUS T300

This technique solves the non-scalability of the traditional wire readout used in ICARUS E.g. MIP signal @ ≈2 MeV/cm has poor S/N !

Full imaging TPC with LEM to be tested in ArDM experiment

Fe⁵⁵ spectrum, GAr

Double phase operation with two stages LEM

Segmented double stage LEM

9 independent strips

 Development F/E preamplifers + MHz digitizers + DAQ
 Industrial version with CAEN (new module) Custom-made front-end charge preamplifiers

LATTPC with LEM readout for V's Bern - ETHZ - IPN Lyon

- Dedicated test of LAr TPC for application to neutrino physics
- ✤ ≈5 It chamber
- LEM or conventional wire readout
- Electronics development in Collab. with IPN Lyon (Autiero, Marteau, Déclais)
 - ASIC version of preamplifiers
 - Possibly cold operation
- ADC output on Gigabit-Ethernet
 First ASIC test Fall 2007

ArDM assembly @ CERN

First tests foreseen in 2007

(backup dewar)

detector

dewar

ARGONTUBE

Bern, ETHZ, Granada

Φ = 35 cm, L=585 cm

ARGONTUBE

Bern, ETHZ, Granada

- Full scale measurement of long drift (5 m), signal attenuation and multiplication, effect of charge diffusion
- Simulate 'very long' drift (10-20 m) by reduced E field
 & LAr purity
- High voltage test (up to 500 kV)
- Measurement Rayleigh scatt. length and attenuation length vs purity
- Status of design & assembly:

Adetailed design under preparation

First tests foreseen in 2008

$\Phi = 35 \text{ cm}, L=585 \text{ cm}$

ARGONTUBE inner detector

Installation at the University of Bern

Idea: Electron/π⁰ separation (EPiLAr)

 In order to experimentally verify the result of MC studies which show that an efficiency above 90% for signal can be achieved while suppressing NC background to the permil level. This MC result was shown to be true over a wide range of neutrino energy, typ. between 0 and 5 GeV.

AN UPGRADED CNGS LARGE LIQUID ARGON TPC

JHEP 0611:032,2006

Results: θ_{13} sensitivity

100 kton 5 yrs v + 5 yrs \overline{v} 3.3 x 10²⁰ pots/yr

• The fits are performed using the GLoBES software, leaving oscillation parameters free within their priors, and taking into account degeneracies and parameters correlations.

74

Results: δ_{CP} sensitivity

Parameter degeneracy !

75

Neutrinos and antineutrinos

Results: δ_{CP} sensitivity w 2 detectors

A better coverage of the1st maximum, 1st minimum and 2nd maximum of the neutrino oscillation to help solve parameter degeneracy

30 kton @ 850 km + 70 kton @ 1050 km

Results: mass hierarchy sensitivity

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN — AB DEPARTMENT

CERN-AB-2007-013 PAF April 2007

Analysis of the maximum potential proton flux to CNGS

M. Meddahi, E. Shaposhnikova

for the PAF working group

CERN - Geneva - Switzerland

Abstract

In this note we investigate the limitations to the proton flux which can be sent to the CNGS facility and estimate the maximum that can be attained.

In the first part, the injector chain remains unchanged and the limitations are reviewed for operation up to the so called "ultimate CNGS intensity", $7x10^{13}$ protons per CNGS cycle.

In the second part, the limitations of the SPS accelerator and CNGS facility are described in the scenario of operating with the new injectors - LINAC4, SPL and PS2, as proposed by the PAF working group [PAF].

Upgraded CNGS: CERN-AB report

- With the present injection chain:
 - up to I.I x 10²⁰ pots/year
 - target & horn equipment OK, but difficult to access for potential modifications
 - Possible issues with radioprotection and area classification. New approval required.
- With new injectors (>2016):
 - up to 2.4 x 10²⁰ pots/year
 - CNGS facility will require rebuild as many beam line components, including target, horn, shielding, decay tube, hadron stop, etc., might require update.
 - New authorizations and area classification ("MW-class", true for any new V-facility)

Proton economics

CERN-AB-2007-013 PAF

	SPS cycle length	6 s		4.8 s	
	Injection momentum	14 GeV/c		26 GeV/c	
	Beam sharing	0.45	0.85	0.45	0.85
	Max				
	intensity (a 400GeV [x10 ¹³]		×10 ¹⁹		
Present injectors + machines' improvement	4.8 – "Nominal CNGS"	5	9.4		
	5.7- "Max. SPS"	5.9	11.1		
Future injectors + SPS RF upgrade	7 – "Ultimate CNGS"			9	17.1
Future injectors + new SPS RF system + CNGS new equipment design	10 – "Max. PS2"			12.9	24.5

In the future, there might be enough protons... We had assumed 3.3 x 10²⁰ pot/yr is rescale by factor 1.3 number of years (5 yrs is 6.7 yrs)

LAGUNA

DESIGN OF A PAN-EUROPEAN INFRASTRUCTURE FOR LARGE APPARATUS STUDYING GRAND UNIFICATION AND NEUTRINO ASTROPHYSICS

A new infrastructure in Europe ?

A new infrastructure in Europe ?

- Advances in low energy neutrino astronomy and direct investigation of Grand Unification require the construction of very large underground observatories with total active volumes from O(10⁵) m³ up to O(10⁶) m³
- There is currently no such infrastructure in the world able to host underground instruments of this size, although in Europe many national underground laboratories with high technical expertise are currently operated with leading-edge smaller-scale underground experiments.
- A pan-European infrastructure able to host underground instruments of the required size volumes will provide new and unique scientific opportunities in low energy neutrino astronomy and Grand Unification physics.
- This field of research is at the forefront of particle and astro-particle physics and is the subject of intense investigation also in North America and Asia. Such an infrastructure in Europe would interest scientists from all over the world and ensure that Europe will continue to play a leading and innovative role in the field.

ApPEC Roadmap, January 2007

	Field/ Experiments	Cost scale (M€)	Desirable start of construction	Remarks
Proton	Dark Matter Search: Low background experiments with 1-ton mass	60-100 M€	2011-2013	2 experiments (different nuclei, different techniques), e.g. 1 bolometric, 1 noble liquid; more than 2 worldwide.
low energy	Proton decay and low energy neutrino astronomy: Large infrastructure for p- decay and v astronomy on the 100kt-1Mton scale	400-800 M€	2011-2013	 multi-purpose 3 different techniques; large synergy between them. needs huge new excavation expenditures likely also after 2015 worldwide sharing possibly also
eutrino				accelerator neutrinos in long baseline experiments
CS	The high energy universe: <u>Gamma rays:</u> Cherenkov Telescope Array CTA	100 M€ (South) 50 M€ (North)	first site in 2010	Physics potential well defined by rich physics from present gamma experiments
	<u>Charged Cosmic Rays:</u> Auger North	85 M€	2009	Confirmation of physics potential from Auger South results expected in 2007
	<u>Neutrinos:</u> KM3NeT	300 M€	2011	FP6 design study. Confirmation of physics potential from IceCube and gamma ray telescopes expected in 2008-2010
	Gravitational Waves: Third generation interferometer	250-300 M€	Civil engineering 2012	Conceived as underground laboratory

Six national underground science laboratories

None of these laboratories can host next generation very large volume observatories. Extension are needed.

•What depth?

•What other synergies? (beamline distance from artificial sources at accelerators)

A. Rubbia •What is the distance from reactors?

Six national underground science laboratories

Institute of Underground Science in Boulby mine, UK

de Modane, France

IUS

A pan-European Infrastructure for very large volume underground observatories?

SUNLAB Polkowice-Sieroszowice, Poland

Laboratorio Subterraneo de Canfranc, Spain

LSC

LNGS

Laboratori Nazionali del **Gran Sasso, Italy**

None of these laboratories can host next generation very large volume observatories. Extension are needed.

•What depth?

•What other synergies? (beamline distance from artificial sources at accelerators)

•What is the distance from reactors? A. Rubbia

Bedrock conditions in Europe

The age of the bedrock in Finland varies between 2 – 3,5 million years billion

A. Rubbia

87

Instrumenting underground cavities

Instrumenting underground cavities

Infrastructure	LNGS	LSM	LSC	IUS	BNO	CUPP
▶	Gran Sasso	Fréjus	Canfranc	Boulby	Baksan	Pyhäsalmi
Year of completion	1987	1982	1986, 2005	1989	1977, 1987	1993 (2001)
Area (m ²)	13000	500	150+600	500+1000	550, 600	500-1000
Volume (m ³)	180000	3500	8000	3000	6400, 6500	100-10000
Access	Horizontal	Horizontal	Horizontal	Vertical	Horizontal	Slanted truck road
Depth (m.w.e.)	3700	4800	2450	2800	850, 4800	1050, 1444 up to 4060
Surface profile	Mountain	Mountain	Mountain	Flat	Mountain	Flat
Muon flux (m ⁻² day ⁻¹)	24	4	406	34	4320, 2.6	8.6 @ 4060m
Neutron flux (>1 MeV) (10 ⁻⁶ cm ⁻² s ⁻¹)	O (1)	O (1)	O (1)	O (1)	-, O (1)	?
Radon content (Bq/m ³)	O (100)	O (10)	O (100)	O (10)	O (100)	O (100)
Main past and present scientific activities	- DM - ββ - solar v - SN v - atmos. v - monopole - nuclear astrophysics - CRs (μ) - LBL v's	Eighties: - Proton decay - atmos.v Now: - DM (Edelweiss) - ββ (NEMO, TGV)	- DM (IGEX- DM, ROSEBUD, ANAIS) - ββ (IGEX)	- DM (Zeplin I,II, III, DRIFT)	BUST: - solar v - SN v - atmos. v - CRs (μ) - monopo- les SAGE: - solar v	- CRs (test set-up)
Number of visiting scientists	700	100	50	30	55	15

Volume does not necessarily correspond to "instrumentable" volume: e.g. LNGS Hall B ≈ O(20000) m³

Deep Underground Science and Engineering Laboratory (DUSEL) several candidate sites in USA >2010 ?

Pacific Ocean Africa

Europe

Hyper-Kamiokande Toshibora mine, Japan >2013 ?

Indian Ocean

Asia

Australia

T2KK ?

A. Rubbia

Deep Underground Science and Engineering Laboratory (DUSEL) several candidate sites in USA >2010 ?

Pacific Ocean Africa

Europe

Indian Ocean

Astr

Hyper-Kamiokande Toshibora mine, Japan >2013 ?

T2KK ?

Australia

Europe enjoys today the most experience in underground science and sites, but lacks a coordinated plan for a possible future infrastructure of very large size

Worldwide roadmaps...

Worldwide roadmaps...

A neutrino detector optimized for neutrino energies of the order of \sim 1 GeV is also well matched to search for proton decay

- ★ Japan: Super –K (50 kton) → Hyper-K (1 Mton) (T2K phase II)
- ★ <u>US</u>: Report of the US long baseline neutrino experiment study "A well instrumented very large detector, in addition to its accelerator based neutrino program, could be sensitive to proton decay which is one of the top priorities in fundamental science... Indeed, there is such a natural marriage between the requirements to discover leptonic CP violation and see proton decay that it could be hard to imagine undertaking either effort without being able to do the other"
- ★ <u>EU</u>: ApPEC recommendation "We recommend that a new large European infrastructure is put forward as a future international multipurpose facility on the 100 – 1000 ktons scale for improved studies of proton decay and of low-energy neutrinos from astrophysical origin. The detection techniques ... should be evaluated in the context of a common design study, which should also address the underground infrastructure and the possibility of an eventual detection of future accelerator neutrino beams"

 Direct evidence for Grand Unification (Proton decay)

> Low energy neutrino astronomy

Long baseline neutrino beam

Direct evidence for Grand Unification (Proton decay)

> Low energy neutrino astronomy

Long baseline neutrino beam

Direct evidence for Grand Unification (Proton decay)

> Low energy neutrino astronomy

Long baseline neutrino beam

A. Rubbia

But also...

Large observatories for detection of dark matter (e.g. directional detection) • Geophysics, rock science, ... Biology • Extreme conditions underground civil engineering etc.

A very rich field !

A very rich field !

- Historically a very rich field (SN1987A, solar & atmospheric neutrinos). The physics programme addressed by LAGUNA will span the next 30 years.
 - Testing proton lifetime up to 10³⁵ years will provide a very stringent, perhaps ultimate, test of the Grand Unification hypothesis
 - After the optical observation of supernovae by mankind during the last centuries and the SN1987A neutrino detection, the next observable event with neutrinos will occur with high probability in the next decade and with certainty in the next 30 years. Neutrinos will shed more light on the SN explosion mechanisms than optical light!
 - Meanwhile the background flux of neutrinos from relic supernovae can be observed
 - The study of neutrinos properties have shown the first indication of physics beyond the Standard Model of Elementary Particles. New discoveries, like CPviolation in the leptonic sector, are expected in this field.
- High-energy accelerators like the LHC or the planned ILC cannot directly answer these fundamental questions about Nature. This was also recognized in the CERN European roadmap for particle physics: "A range of very important non-accelerator experiments take place at the overlap between particle and astroparticle physics exploring otherwise inaccessible phenomena; Council will seek to work with ApPEC to develop a coordinated strategy in these areas of mutual interest."

Sensitivity to proton decay: comparison with theory

Higher dimension models (eg. 6D SO(10)) not included

Definitively not exhaustive.

Supernova type-II neutrinos

⇒Access supernova and neutrino physics simultaneously

⇒Decouple supernova & neutrino properties via different detection channels

1. Supernova physics:

- Gravitational collapse mechanism
- Supernova evolution in time
- Burst detection
- Cooling of the proto-neutron star
- Shock wave propagation
- Black hole formation?

2. Neutrino properties

- Neutrino mass (time of flight delay)
- Oscillation parameters (flavor transformation in SN core and/or in Earth): Type of mass hierarchy and θ_{13} mixing angle

3. Early alert for astronomers

• Pointing to the supernova

LAGUNA: a proposal for a "Design of a pan-european infrastructure for large apparatus studying Grand Unification and Neutrino Astrophysics"

3 detection techniques under considerations

GLACIER-like

Water Cherenkov (≈0.5 → 1 Mton)

From LAGUNAWG to DS

- During 2006-2007, an effort has been made to consolidate LAGUNA ideas into a format compatible with a potential "design study".
- A series of working meeting were held
 - Munich, April 24th, 2006
 - Munich, June 2nd, 2006
 - **V** Paris, July 21st ,2006
 - Zurich, October 12th, 2006
 - 🗹 Paris, December 18th, 2006
 - Chambery, March 2nd, 2007
 - Paris, March 29th, 2007
- Design study ("Collaborative Project FP7-Infrastructures-2007-1") has been submitted on May 2nd 2007.
- ©≈ 60 members
- 24 participants: ETH Zürich, Bern, Jyväskylä, Oulu, Rockplan, CEA/DSM/ DAPNIA, IN2P3, MPG, TUM, Hamburg, IFJ PAN, IPJ, US, UWr, KGHM CUPRUM, IGSMiE PAN, LSC, Granada, Durham, Sheffield, Technodyne, ETL, Aarhus, AGT
- 9 countries

Safety and environmental issues WP5

The main "deliverable"

The main "deliverable"

- The DS will lead to a "conceptual design report" for a new infrastructure, to allow policy makers and their advisors to prepare the relevant strategic decisions for the development of a new research infrastructure in Europe.
- The deliverables contain the elaboration of "decision factors" like

 technical feasibility (cavern, access, safety, liquid procurement, ...)
 cost optimization of infrastructure (digging, safety, ...)
 physics performance (e.g. depth, baseline, ...)
 ...

AN UPGRADED CN-"EU" ?

LAGUNA

An upgraded CN-"EU" ?

The pros for CNGS

• it is there! (for OPERA) : high energy (T) optimization

• The cons

- While the new CERN injection chain will provide sufficient protons at the SPS (up to 2.4 x 10²⁰ pots/yr), the current CNGS facility will not be able to sustain these intensities
- The optimization for low energy will require new beam optics
- There is no near detector

• The LAGUNA DS will study the feasibility of different sites in Europe

- Part of the physics work will include the optimization of a baseline of possible future beams from CERN
- A very long baseline L = 2300 km in EU?
 - to study matter effects and solve mass hierarchy degeneracy ?
 - ➡ improve sensitivity to CP-violation !
- Work in progress

CN-EU: Finland, L \approx 2300 km

"On" vs "Off"-axis configurations

Full simulation focusing optics for various typical configurations

★CNGS-like 10 GeV/c ★NOvA L.E. optics

★On-Axis
★Off-axis OA0.25 deg
★Off-axis OA0.75 deg

★Normalized to 4.5e19 pots, 100 kton, L=2300km

Lifting degeneracies

Outlook (I)

- Precise measurements/verifications of neutrino oscillations at the atmospheric Δm² presently carried out by the 1st round of long baseline experiments
- Experiments in the next decade (T2K, NOvA) will have a reasonable chance to observe vµ→ve oscillations at the atmospheric scale, opening the way to investigations of CP violation in the leptonic sector
- Coordinated R&D and design studies are required before undertaking the next step:
 - determination of the best detector technology in conjunction with the requirements on the site
 - → optimization of the baseline taking into account the available sites
 - \Rightarrow optimization of the neutrino beam \Leftrightarrow detector technology

Outlook (II)

- The direct evidence for Grand Unification would be one of the most fundamental discoveries in particle physics. This requires new generation very massive detectors.
- An extensive neutrino physics and astronomy programme will be accessible with these new rare event detection instruments, detecting supernova, atmospheric, possibly solar and geo-neutrinos.
- The synergy between precise detectors for long neutrino baseline experiments and proton decay (and astrophysical neutrinos) apparatus is essential for a realistic proposal for a 100-1000 kton fine grain detector
- The LAGUNA design study could provide the means to perform site feasibility studies and to develop mature conceptual design for large volume underground instruments including their infrastructures, with a credible cost estimate. The DS will provide the means to elaborate the scientific and objective information needed to make an optimized choice for site(s) for the pan-European Underground Infrastructure.
- It will hopefully mature around 2010.

BACKUP SLIDES

Rough cost estimates

ltem	100 kton	10 kton	l kton
LNG tank (see notes 1-2)	50÷100	20÷30	8
Inner detector mechanics	10	3	1
Charge readout detectors	15	5	1
Light readout	60 (with Č)	2 (w/o Č)	1
F/E & DAQ electronics	10	5	1
Miscellanea	10	5	1
Detector total	155 ÷ 205	40 ÷ 50	13
Refilling plant	25	10	2
Purification system	10	2	
Civil engineering + excavation	30	5	2
Forced air ventilation	10	5	1
Safety	10	5	1
Merchant cost of LAr (see note 3)	100	10	1
Grand total	340 ÷ 390	77 ÷ 87	21
Super-conducting magnet	?	60	-

Notes:

- (1) Range in cost of tank comes from site-dependence and current uncertainty in underground construction
- (2) Cost of tank already includes necessary features for LAr TPC (surface electropolishing, hard roof for instrumentation, feed-throughs,...)
- (3) LAr Merchant cost ≠ production cost. Fraction will be furnished from external companies and other fraction will be produced locally (by the refilling plant)