# From CUORICINO to CUORE: investigating neutrino properties with double beta decay



Monica Sisti



Università and INFN – Milano Bicocca

DAPNIA/SPP CEA — Saclay - June 16th, 2008



- > The importance of neutrinoless double beta decay
- > Experimental search with cryogenic detectors
- Recent results from CUORICINO experiment
- From CUORICINO to CUORE
- Background model and predictions for CUORE
- Present status of CUORE

### **Double beta decay**



only one criticized evidence to date

#### **Present knowledge about neutrino properties**

#### neutrinos have mass and mix!

• from neutrino oscillation experiments:  $\Delta m_{ik}^2 = |m_i^2 - m_k^2|$  and  $\sin^2 2\vartheta_{ik} = f(|U_{ik}|^2)$  neutrino mixing matrix

neutrino mass eigenstate

$$(|v_l\rangle) = \sum_{k} U_{lk} |v_k\rangle$$

neutrino flavor weak eigenstate

still missing
mass scale (i.e. mass of the lightest v)
hierarchy

m<sub>1</sub> < m<sub>2</sub> ≪ m<sub>3</sub> or m<sub>3</sub> ≪ m<sub>1</sub> ≈ m<sub>2</sub>?

Dirac or Majorana particle?
CP violation in the lepton sector



#### **Measurement of mass scale**



### $\beta\beta$ -0 $\nu$ : a unique tool to investigate neutrinos



The decay occurs only if neutrinos are Majorana particles
 The decay rate depends on the "effective Majorana mass":

$$m_{ee} = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{i\alpha_{21}} + m_3|U_{e3}|^2 e^{i\alpha_{31}}$$

 $\alpha_{ii}$  are Majorana CP-phases (= ±1 for CP conservation)

Next generation experiments will give informations on:

- ✓ neutrino mass scale
- ✓ neutrino mass hierarchy

# **ββ-0ν future sensitivity**

• next generation experiments aim at  $|m_{ee}| \approx 10 \text{ meV}$ 



- discovery with |*m<sub>ee</sub>*| ≥ 10 meV
  - the neutrino is a Majorana particle
  - ►  $|m_{ee}| \ge \approx 50 \text{ meV} \Rightarrow$  degeneration and absolute v mass scale fixed
- upper limit with |m<sub>ee</sub>| < 10 meV</p>
  - ▶ if neutrinos are Majorana particles ⇒ normal hierarchy

# **ßß-0v and neutrino properties**



- a virtual neutrino is exchanged
  - ► neutrino must have mass to allow helicity non conservation ⇒ △H=2
  - ► neutrino must be a Majorana particle to allow lepton number non conservation ⇒ △L=2

$$\beta\beta - 0\nu \Leftrightarrow \frac{m_{\nu} \neq 0}{\nu \equiv \overline{\nu}}$$

▲ these conditions hold even if other mechanisms are possible and may dominate

light Majorana v mediated *ββ-0v* decay rate

8

$$\frac{1}{\tau_{1/2}^{0\nu}} = \frac{\left|m_{ee}\right|^2}{m_e^2} \cdot F_{\mu}$$

#### nuclear structure factor

$$F_{N} \equiv G^{0\gamma}(Q_{\beta\beta}, Z) |M^{0\gamma}|^{2}$$
  
ohase space matrix element

• phase space  $G^{0\nu}(Q_{\beta\beta},Z) \propto Q_{\beta\beta}^{5}$  can be precisely evaluated

- matrix element  $|M^{0\nu}|$  contains details of nuclear physics source of uncertainties
  - ►  $|m_{ee}|$  is affected by large uncertainties (a factor  $\approx$ 3)

Monica Sisti — CEA- Saclay, June 16th, 2008

#### **Experimental sensitivity for \beta\beta-0\nu**





### Experimental approaches to $\beta\beta$ -0 $\nu$



#### Source ≠ detector

- source in foils
- electrons analyzed by TPCs, scintillators, drift chambers,...
  - background rejection by event topology
  - angular correlation gives signature of mass mechanism
  - any isotopes with solid form possible

 $\beta_{2}$ 

- small amount of material
- poor efficiency

 $\beta_1$ 

poor energy resolution

#### Source ⊆ detector (calorimetry)

- detector measures sum energy  $E = E_{\beta_1} + E_{\beta_2}$ 
  - ▶ ββ-0ν signature: a peak at  $Q_{_{\beta\beta}}$

#### scintillators, bolometers, semiconductor diodes, gas chambers

- ▲ large masses
- high efficiency
- many isotopes possible
- depending on technique
  - high energy resolution (bolometers, semiconductors)
  - moderate topology recognition (Xe TPC, semiconductors)



# **Calorimetric approach with cryogenic detectors**



#### Properties of <sup>130</sup>Te as $\beta\beta$ -0 $\nu$ candidate

\* high natural isotopic abundance: I.A. = 33.8 %
\* transition energy: Q = 2530 keV
\* encouraging nuclear matrix element calculations
\* ββ-2ν already observed by a precursor experiment
(MIBETA) and by NEMO3 at the level τ<sub>1/2</sub> = (5-7)×10<sup>20</sup> y







Monica Sisti — CEA- Saclay, June 16th, 2008

### **TeO<sub>2</sub> cryogenic detectors**

internal energy **U** 

 $13^{\langle \Delta U^2 \rangle} = k_B T^2 C$ 



### CUORICINO <sup>130</sup>Te *ββ*-0v search



### **CUORICINO experimental set-up**



15

heat bath

external lead shield (20 cm)

neutron shield (10 cm)

Roman lead shield (10 cm top, 1.2 cm around)

#### Run I

Cooldown: February 2003 29 big + 15 small detectors <sup>130</sup>Te active mass: 7.95 kg

Upgrade: October 2003

- Wiring
- DAQ
- Temperature feedback
- Cryogenics (20 years old cryostat)

**Run II** Cooldown: May 2004 40 big + 15 small detectors <sup>130</sup>Te active mass: 10.37 kg

#### Run II live time ~ 55%

#### **CUORICINO performance**

Run II - sum calibration spectrum with <sup>232</sup>Th source of 5x5x5 cm<sup>3</sup> detectors



### **CUORICINO results**



\*Depending on nuclear matrix element values Rodin et al., Nucl. Phys. A766 (2006) 107 + erratum arXiv:nucl-th/0706.4304v1

### Heidelberg-Moscow <sup>76</sup>Ge *ββ*-0v claim

■ calorimetric experiment with 5 HP-Ge semiconductor detectors enriched to 87% in <sup>76</sup>Ge → total active mass of 10.96 kg  $\Rightarrow$  125.5 moles of <sup>76</sup>Ge

best exploitation of the Ge detector technique proposed by E. Fiorini in 1960

- longest running experiment (13 years) with largest exposure (71.7 kg $\times$ y)
- Status-of-the-art for low background techniques and for enriched Ge detectors
- reference for all last generation  $\beta\beta$ -0 $\nu$  experiments



1990 –2003 data, all 5 detectors exposure = 71.7 kg×y  $\tau_{\gamma_2}^{0\nu} = 1.2 \times 10^{25}$  years  $m_{ee} = 0.44$  eV

H.V.Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198

... still controversial result ...

# CUORICINO and the HM claim of evidence

#### Comparison is complicated by nuclear matrix elements uncertainties

For the nuclear models, consider three active schools of thoughts:

- QRPA Tübingen: Rodin et al., erratum arXiv:nucl-th/0706.4304v1
- QRPA Jyväskylä: Civitarese et al, Nucl. Phys. A761 (2005) 313
- Shell Model: Caurier et al., arXiv:nucl-th/0801.3760v1

$$\left|\boldsymbol{m}_{ee}\right| = \frac{\boldsymbol{m}_{e}}{\left(\boldsymbol{F}_{N}\boldsymbol{\tau}_{1/2}^{0\nu}\right)^{1/2}}$$

HM <sup>76</sup>Ge

$$\tau_{\frac{1}{12}}^{0\nu}$$
 = (0.69 –4.18) ×10<sup>25</sup> years

 $m_{ee}^{Rod} = 0.22 \div 0.58 meV$ 

$$m_{ee}^{Civ} = 0.38 \div 0.94 \text{ meV}$$

 $m_{ee}^{Cau} = 0.30 \div 0.73 \text{ meV}$ 

CUORICINO <sup>130</sup>Te  $\tau_{y_2}^{0\nu} > 3.1 \times 10^{24}$  years  $m_{ee}^{Rod} < 0.45 \text{ meV}$  $m_{ee}^{Civ} < 0.57 \text{ meV}$ 

 $m_{ee}^{Cau} < 0.41 \text{ meV}$ 

Arnaboldi et al., arXiv:hep-ex/0802.3439v1

19

#### How to improve the sensitivity?



# **CUORE: the challenge!**

**C**ryogenic **U**nderground **O**bservatory for **R**are **E**vents



#### **History of TeO<sub>2</sub> detectors: Moore's law**



#### **CUORE: the collaboration**



**Present Collaboration** 63 European collaborators 35 US collaborators

#### CUORE @ Laboratori Nazionali del Gran Sasso



# **CUORE sensitivity**

# CUORE $\beta\beta$ -0 $\nu$ sensitivity will depend strongly on the background level.

#### In five years:

| Background   | $\Delta E$ | a | $	au_{1/2}^{0\nu}$   | a | m <sub>ee</sub> |
|--------------|------------|---|----------------------|---|-----------------|
| [c/keV/kg/y] | [keV]      |   | [y]                  |   | [meV]           |
| 0.01         | 5          |   | 2.1×10 <sup>26</sup> |   | 24 ÷ 83         |
| 0.001        | 5          |   | 6.5×10 <sup>26</sup> |   | $14 \div 47$    |

- conservative

— optimistic

#### A.Strumia and F.Vissani.: hep-ph/0503246



Spread in  $\langle m_{,,} \rangle$  from nuclear matrix element uncertainty

#### The crucial point: background

#### CUORICINO measured background



# **Understanding CUORICINO background**

Each TeO<sub>2</sub> crystal is an independent device: event selection according to their multiplicity (number of contemporary hits) allows to plot: anticoincidence spectra (single hit) coincidence spectra (multiple hits)

background reduction & infos on background origin!

The probability for a double beta decay event to be fully contained within the crystal is 86%: anticoincidence cut reduces background by ~20%

> The high granularity of CUORE will improve the anticoincidence efficiency



# **Understanding CUORICINO background**



Background informations from peak shape and coincidence study

#### Background sources @ 2530 keV

#### **Gamma background (**<sup>232</sup>**Th) from external sources**



no other gamma peak identified above <sup>208</sup>TI

### **Background @2.5 MeV relative contributions**

2 clearly identified sources + 1 unknown source (copper is the most probable candidate)



| Source                                                       | $^{208}$ Tl    | $\beta\beta(0\nu)$ | $3-4 { m MeV}$ |
|--------------------------------------------------------------|----------------|--------------------|----------------|
| $TeO_2$ <sup>238</sup> U and <sup>232</sup> Th surf. contam. | -              | $10\pm5\%$         | $20\pm10\%$    |
| Cu $^{238}$ U and $^{232}$ Th surf. contam.                  | $\sim 15\%$    | $50\pm20\%$        | $80\pm10\%$    |
| <sup>232</sup> Th contam. of cryostat Cu shields             | $\sim\!\!85\%$ | $30{\pm}\;10\%$    | -              |

### **CUORE R&D: the RAD detector**

#### A dedicated array for background study in the Hall C facility (LNGS)



#### **RAD: Radioactivity Array Detector**





# **RAD detector results**

After cleaning crystals and copper surfaces: reduction of crystal surface contamination of a factor ~5
reduction of continuum background in 3-4 MeV region of a factor ~2



Comparison between CUORICINO (black) and RAD (red) spectra

# **CUORE background prediction**

Measured contaminations projected (Montecarlo) on CUORE

| SOURCE                           | BACKGROUND @ 2.5 MeV               |  |  |
|----------------------------------|------------------------------------|--|--|
|                                  | (10 <sup>-3</sup> counts/keV/kg/y) |  |  |
| TeO <sub>2</sub> crystal bulk    | < ~1.3                             |  |  |
| TeO <sub>2</sub> crystal surface | < ~7                               |  |  |
| Detector mounting bulk           | < ~1                               |  |  |
| Detector mounting surface        | < ~25                              |  |  |
| Experimental set-up gamma        | ~ 2                                |  |  |
| Environmental gamma              | ~ 0.002                            |  |  |
| Environmental neutrons           | < ~0.1                             |  |  |
| Environmental muons (no veto)    | ~ 0.4                              |  |  |

#### ... STILL WORKING TO IMPROVE THESE NUMBERS!

→ special efforts devoted to crystal production and copper surface cleaning

### **TeO<sub>2</sub> crystal production**



#### CUORE dedicated crystal growth facility @ SICCAS (China)

1) Kushan Jincheng Chemical Reagent Co. Ltd

high purity grade TeO2 powder production unit





high purity water and reagents production units





# **TeO<sub>2</sub> crystal production**



#### Kunshan chemical plant



### **TeO<sub>2</sub> crystal production**



#### Crystals will be delivered to Gran Sasso by ship to reduce cosmic ray exposure (~ 45 days trip)



First crystals will arrive this summer!

#### **Detector mounting production**

#### CUORE detector will be compact and granular \$\visits\$ self shielding detector







New holder design to reduce Cu among crystals Frames will be produced by EDM machining

### **Copper surface cleaning**

#### Dedicated cleaning facility @ INFN-Laboratori Nazionali di Legnaro (PD)

All copper surfaces in the detector area will undergo the following cleaning procedure:

Tumbling Electrochemical Chemical Magnetron sputtering + UltraSonic cleaning between each step

First measurements with Silicon Barrier detectors on small copper samples show a reduction of <sup>210</sup>Po surface contamination!

Bolometric test this fall!



### **Copper surface cleaning**



#### Tumbler



#### Legnaro UHV Plasma etching



Monica Sisti — CEA- Saclay, June 16th, 2008

### Radon



Experimental set-up to measure the sticking factor of Radon on critical surfaces (copper, teflon, TeO<sub>2</sub>, ...)



Detailed analysis on the way

Preliminary results on copper and TeO<sub>2</sub> samples show that the Radon sticking factor is small:  $\sim 10^{-10}$ 

111

!!!



# **CUORE-0**

CUORE-0 will be the first CUORE tower It will be operated in Hall A dilution refrigerator (CUORICINO experimental set-up)



52 TeO<sub>2</sub> crystals 750 g each 5×10<sup>25</sup> nuclei di <sup>130</sup>Te

#### **MOTIVATIONS**:

Test of the assembly procedure

Test of background achievements

CUORE-0 will be a powerful experiment that will soon overtake CUORICINO sensitivity

CUORICINO will be stopped at the end of June

Monica Sisti — CEA- Saclay, June 16th, 2008

### **CUORE-0 vs CUORICINO**

