Time Reversed Waves and Super-Resolution: From Acoustics to Electromagnetism

Mathias Fink

Institut Langevin Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (*ESPCI*), *Paris, FRANCE*

Time-reversed acoustics in a non dissipative medium

 $p(\vec{r},t)$ acoustic pressure field (scalar)

 $\rho(\vec{r})$ is the density and $c(\vec{r})$ is the sound velocity in an heterogeneous medium

The wave equation in a domain without source

The wave equation in a non dissipative domain with a ponctual

TR on the boundary : the TR Cavity

- record on the boundary $G(\vec{r}', \vec{r_0}; t); \partial_n G(\vec{r}', \vec{r_0}; t)$
- transmit from the boundary $G(\vec{r}', \vec{r_0}; T-t); \partial_n G(\vec{r}', \vec{r_0}; T-t)$

Origin of Diffraction Limits in Wave Physics

Pulsed mode – the homogeneous medium

The time-reversed step for monochromatic waves : origin of the diffraction limits

Broadband Focusing

Instantaneous focal spot at the focal time (collapse time)

Theoretical description of an ideal time TR

For a Dirac excitation

$$\varphi_{tr}\left(\vec{r},t\right) = G_{ret}\left(\vec{r},\vec{r}_{0};-t\right) - G_{ret}\left(\vec{r},\vec{r}_{0};t\right)$$

For a monochromatic signal

$$\widehat{\Phi}_{tr}\left(\vec{r};\omega\right) = -2j \operatorname{Im} \widehat{G}\left(\vec{r},\vec{r}_{0};\omega\right)$$

For a limited bandwidth signal

$$\varphi_{tr}(\vec{r},t=0) = -2j \int_{\Delta\omega} \operatorname{Im} \hat{G}(\vec{r},\vec{r}_{0};\omega) d\omega$$

D. Cassereau, M. Fink, Sept 1992, IEEE UFFC

Field at the focal time. At $\vec{r} = \vec{r}_0$ related to LDOS

The TR formula in Electromagnetism

Dipole source For a monochromatic signal $\mathbf{E}(\vec{r},\omega) = \mu_0 \omega^2 \mathbf{\ddot{G}}(\vec{r},\vec{r}_0,\omega) \mathbf{p}$ with $\nabla'_{r} \times \nabla'_{r} \times \vec{\mathbf{G}}_{\kappa}(\vec{r},\vec{r_{0}},\omega) - \frac{\omega^{2}}{c^{2}} \varepsilon(\vec{r},\omega) = -\delta(\vec{r}-\vec{r_{0}})\vec{\mathbf{I}}$ **Dyadic Green's Function** $\mathbf{E}_{tr}(\vec{r},\omega) = -2i\,\mu_0\,\omega^2\,\mathrm{Im}\left[\mathbf{\ddot{G}}(\vec{r},\vec{r}_0,\omega)\right]\mathbf{p}^*$

$$\mathbf{E}_{tr}\left(\vec{r}=\vec{r}_{0},\omega\right)=-2i\,\mu_{0}\,\omega^{2}\,\mathrm{Im}\left[\mathbf{\ddot{G}}\left(\vec{r}_{0},\vec{r}_{0},\omega\right)\right]\mathbf{p}^{*}\prec LDOS$$

R. Carminati, M. Fink, R. Pierrat, J de Rosny

The effect of boundaries on Time-reversal Mirror

Time Reversal in an ultrasonic waveguide

A /8 m Long Time Reversal Mirror

Underwater acoustics, B. Kuperman Group, Scripps, San Diego

The effect of boundaries on Time-reversal Mirror

A /8 m Long Time Reversal Mirror

Underwater acoustics, B. Kuperman Group, Scripps, San Diego

Elba Island Experiment

P. Roux, B Kuperman

Elba Island Experiments

Underwater communications

Time-Reversal in a chaotic billiard with a one channel TRM

SINGLE TRANSDUCER can time-reverse a wave in an enclosed "cavity." A source transducer emits a pulse at location A on a small silicon wafer (top). A transducer at location B records chaotic reverberations of the pulse reflected off the wafer edges hundreds of times. The transducer at B plays back a short segment of that signal in reverse (*bottom*). After many reflections, these recombine to re-create the short pulse focused again at location A, as was revealed by imaging the waves on the wafer near A (*bottom left*).

A 2ms window corresponds to the Heisenberg time of the cavity : $\tau_{Heis} = \frac{1}{\delta\omega}$ with $\delta\omega$ being the mean distance between modes

One channel TRM as a Spatial Correlator

The time-reversed field is an estimate of the derivative of the spatial correlation of the field radiated by $p\vec{dint}$

An important formula

The field at any \vec{r}

$$G\left(\vec{r}_{i},\vec{r}_{0};-t\right)\otimes G\left(\vec{r}_{i},\vec{r};t\right)=G\left(\vec{r}_{0},\vec{r};-t\right)\otimes G\left(\vec{r}_{i},\vec{r}_{i};t\right)$$

C Draeger and M Fink

The focal spot

$$\varphi_{tr}(\vec{r},t) \propto \frac{\partial}{\partial t} \left\{ \widehat{q}(\vec{r}_i,\vec{r}_0,-t) \overset{t}{\otimes} \widehat{G}(\vec{r}_i,\vec{r},t) \right\}$$
$$\varphi_{tr}(\vec{r},t=0) \propto \frac{\partial}{\partial t} \sum_{n} \frac{1}{\omega_n^2} u_n(\vec{r}_0) u_n(\vec{r}) u_n^2(\vec{r}_i) \longrightarrow$$

Frequency Average

$$\left\langle u_n(\vec{r}_0)u_n(\vec{r})u_n^2(\vec{r}_i)\right\rangle = \left\langle u_n(\vec{r}_0)u_n(\vec{r})\right\rangle \left\langle u_n^2(\vec{r}_i)\right\rangle$$

$$\int J_0(2\pi |\vec{r}-\vec{r}_0|/\lambda_n)$$

$$\varphi_{tr}(\vec{r},t=0) \approx -2j \int_{\Delta\omega} \operatorname{Im} \widehat{G}(\vec{r},\vec{r}_{0};\omega) d\omega$$

If chaotic rays support irregular modes, Berry Conjecture

t = +0.0 µs

Time Reversal is Self -averaging

many uncorellated eigenmodes =400

A nice application: Tactile objects

How to transform a solid object in a tactile screen ?

Focal spot

Products

Time Reversal with Electromagnetic Waves (2.4 GHz)

G.Lerosey, J de Rosny, A Tourin, A Derode, G Montaldo M Fink,

Electromagnetic TRM

• 2 arrays of 8 antennas separated of approx 6.15 cm, i.e. half a wavelength (12.3cm @ 2.44 GHz)

G Lerosey, J. de Rosny, A Tourin, M Fink

Focalisation spatio-temporel pour la communication à très haut débit

Focalisation spatiale $\lambda/2$

Super Resolution

2- Media with sophisticated Green's functions

Sophisticated Green's functions

How to create a fast oscillating Im{G} around the source ?

G Lerosey, J de Rosny, A Tourin, M Fink

An Electromagnetic Example

Sub-wavelength resolution with far field time reversal

Telecommunications

(a)

3 bitstreams (RGB) with a data rate of 50 Mbits/s each. The intended global data rate is thus 150 Mbits/s.

The TRM is made of 3 antenna 2.45 GHz central frequency 180 MHz bandwidth

New prototype in PCB

SA Time Reversal

(b)

A numerical simulation of a random distribution of resonating dipc

 \vec{r}_{0} can be at a zero LDOS point f \boldsymbol{w}_{0}

-1.4

-1.6

1.8

-2.2

C. Vandenbem, R. Carminati,

Broadband time-reversed field at the focal time

Sub-wavelength control of nano-optical fields

Figure 3. (a) Geometry of nanosystem, initial excitation dipole and its oscillation waveform. The nanosystem as a thin nanostructured silver film is depicted in blue. A position of the oscillating dipole that initially excites the system is indicated by a double red arrow, and its oscillation in time is shown by a bold red waveform. (b) Field in the far-field zone that is generated by the system following the excitation by the local oscillating dipole: vector $\{E_x(t), E_z(t)\}$ is shown as a function of the observation time t. The color corresponds to the instantaneous ellipticity as explained in the text in connection with (c), the same as in (b) but for a time-reversed pulse in the far zone that is used as an excitation pulse to drive the optical energy nanolocalization at the position of the initial dipole.

The nanosystem as a thin nanostructured silver film is depicted in blue. A position of the oscillating dipole that initially excites the system is indicated by a double red arrow, Surface Plasmon modes

A time-reversal Hyperlens!!!

TR Lens

Microstructured medium

High power time-reversal mirror for ultrasound therapy

With high intensity focused ultrasound (HIFU) in sinusoidal re (70 bars), a beam transmitted during several seconds induce: temperature increase sufficient to necrose tissue (proteins coagulation temperature)

Mickael Tanter, Jean-François Aubry Mathieu Pernot, Mathias Fink Coupling and cooling system

oorrootion)

Experiment on sheep, Institut Montsouris

Mickael Tanter, Jean-François Aubry Matheidua Per Botç Mathiá Sālpætrière Fondation de l'Avenir

Experiment on monkeys, Institut Montsouris

One use a 3D image of the skull obtained with X ray CT to deduce a 3D model of ultrasonic propagation. A numerical simulation of the time reversal from virtual sources is made.

Stereotaxic frame

Monkey located in a CT scan

CT scan image from skull

Thermal necrosis obtained in vivo on monkey

New TRM, MR compatible, Supersonic Imagine

Location at CIERM (Kremlin Bicètre) in April 2009

TRM, 512 éléments

UPERSONIC

New TRM, MR compatible, Supersonic Imagine

Radar et Sonar à retournement temporel : 1 cible

C. Prada, M. Fink, 1988

Retournement temporel iteratif : multi-cible

Application of TRM to Lithotripsy

J.L. Thomas, F. Wu, M. Fink

Time Reversal Mirror in non-destructive testing

Applications to defect detection in titanium alloy (SNECMA)

F. Wu, D. Cassereau, N. Chakroun, V. Miette, M. Fink

Sonars à Retournement Temporel

Protection des ports (DGA, Atlantide)

> Détection de défauts dans les alliages (TECHNOMED) de Titane (SNECMA, SAFRAN)

Tracking et destruction de calculs rénaux

TR en Sismologie

Jean-Paul Montagner, Carene Larmat, IPG, Arnaud Tourin, Mathias Fink

TIME REVERSAL IN SEISMOLOGY

- Application to real seismograms with broadband FDSN stations (165)
- Spatio-temporal Imaging of seismic source
- Detection of unknown seismic sources ("quiet" earthquakes, Seismic "Hum" of the Earth)
- Applications to seismic Tomography- Detection of mantle plumes

Jean-Paul Montagner, Carene Larmat, Arnaud Tourin, Mathias Fink

Time reversal of Sumatra traces

Spatial Correlation of Noise from a Point Source

The noise correlation recorded by two observers gives, within a time derivative, the same result than a time-reversal experiment conducted with a one channel TRM

Spatially Distributed Source of Noise

with spatial correlation
$$\langle n(\vec{r},t)n(-\vec{r},-t)\rangle = \delta(\vec{r},t)$$

 $Corr(\vec{r}_0, \vec{r}, t) \prec \iint \{G(\vec{r}_0, \vec{r}_i; t) \otimes n(\vec{r}_i, t)\} \otimes \{G(\vec{r}, \vec{r}_i; -t) \otimes n(-\vec{r}_i, -t)\} d^2\vec{r}_i$

$$\frac{\partial}{\partial t} Corr(\vec{r}_0, \vec{r}, t) \prec p_{tr}(\vec{r}, t) = G(\vec{r}, \vec{r}_0; T-t) - G(\vec{r}, \vec{r}_0; t-T)$$

"By cross-correlating noise traces recorded at two locations, we can construct the wavefield that would be recorded at one locations if there was a source at the other"

Claerbout 's conjecture

- <u>Helioseismology</u>: (Solar impulse response) (<0.01Hz).
 J.Claerbout & J. Rickett, Leading Edge,1999.
- <u>Geophysics</u>: using coda arrivals or ambient seismic noise (0.1 – 0.3 Hz). *Campillo & Paul, Science, 2003; Shapiro & Campillo, Geophys. Res. Lett. 2004.*
- <u>Underwater Acoustics</u> (70-130 Hz) *P. Roux and W. Kuperman,* ASA 2003.
- <u>Ultrasonics</u>: with diffuse and thermal noise in cavities (0.1 0.9 MHz) *R. Weaver & O. Lobkiss JASA 2001 & 2003.*
- <u>Ultrasonics</u>: in scattering medium with several sources (1MHz). *A. Derode, E. Larose, M. Campillo, M. Fink JASA 2003*,

