

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Premiers indices du plasma de quarks et de gluons dans l'expérience CMS

Jet 1, pt: 70.0 GeV

Raphaël Granier de Cassagnac Laboratoire Leprince-Ringuet, ERC #259612 Séminaire au SPP, Saclay, 31 janvier 2011 Jet 0, pt: 205.1 GeV

erc

Au sommaire

- Introduction
- Résultats
 - 1. Les corrélations à longue portée en p+p
 - J. High Energy Phys. 09 (2010) 091 (<u>http://arxiv.org/abs/1009.4122</u>)
 - 2. Le « jet quenching » en Pb+Pb
 - Ed. Wenger, Séminaire FNAL, 28 janvier 2011
 - 3. Le spectre dimuons en Pb+Pb
 - Analyses en cours

Le plasma de quarks et de gluons et CMS

INTRODUCTION

Le plasma de quarks et de gluons

- Déconfinement des hadrons → soupe de quarks et de gluons libres
 - Premières microsecondes après le big-bang
 - QCD sur réseau : T > 180 MeV, ϵ > 1 GeV/fm³
 - → Collisions d'ions lourds
- Premiers indices au SPS (CERN)
 - Suppression des J/ ψ
- Extensivement produit et étudié à RHIC (Brookhaven, New-York, 2000 à nos jours à √s_{NN} = 200 GeV)
 - Jet quenching, flot elliptique, photon thermique, J/ ψ ...
- Au LHC, nouveau régime (Vsx14) et nouvelles sondes
 - Jets, Z, Upsilons... auxquelles ATLAS et CMS sont bien préparées !

Compact Muon Solenoid

Détection des particules (|n|<2,4)

Quelques caractéristiques utiles

- 2. Fort champ magnétique
 - 3,8 Teslas
- 3. Large bande passante
 - Niveau 1 = Toutes Pb-Pb collisions (≈ 5 kHz)
 - Trigger de haut niveau (HLT) → \approx 100 Hz

1. Grande couverture angulaire

\rightarrow Grande acceptance, en particulier à grand p_T

Séminaire CERN de Gunther Roland, le 21 septembre J. High Energy Phys. 09 (2010) 091 (<u>http://arxiv.org/abs/1009.4122</u>) Communiqué de presse (<u>http://cms.web.cern.ch/cms/News/2010/QCD-10-002/index.html</u>)

1. CORRÉLATIONS À LONGUE PORTÉE EN PROTON+PROTON

Le signal

- Idée : regarder la corrélation des particules dans tout l'espace des phases
 - $-\Delta\eta = \eta_1 \eta_2$
 - $\eta = -\ln (\tan \theta/2)$
 - $\Delta \phi = \phi_1 \phi_2$
- Dans chaque événement de multiplicité N
 - Toute paire de particules
 - Normalisé au nombre de paires

 $S_N(\Delta\eta,\Delta\phi) = rac{1}{N(N-1)} rac{d^2 N^{
m signal}}{d\Delta\eta d\Delta\phi}$

Le fond combinatoire

- Événements différents de même multiplicité N
 - Reflet de l'acceptance

 $B_N(\Delta\eta,\Delta\phi) = rac{1}{N^2} rac{d^2 N^{ ext{mixed}}}{d\Delta\eta d\Delta\phi}$

La fonction de corrélation R

- Signal / Bruit 1
 - Resommer et pondérer par la multiplicité
- « Cartographie » des collisions
 - Longue portée = temps courts

PQGCMS - Saclay - raphael@in2p3.fr

Corrélations angulaires (0/4)

Corrélations angulaires (1/4)

Corrélations angulaires (2/4)

Corrélations angulaires (3/4)

Corrélations angulaires (4/4)

Déclenchement dédié

PQGCMS - Saclay - raphael@in2p3.fr

38 janvier 2011

Résultats pour tout p_T

Davantage de jets à haute multiplicité ($\Delta \phi \approx 0$)

Même figures coupées en z

Davantage de jets à haute multiplicité ($\Delta \phi \approx \pi$)

Résultats pour $p_T = 1-3 \text{ GeV/c}$

Que dit PYTHIA* ?

- Qualitativement, tout y est, sauf le « ridge »
- Idem avec d'autres générateurs
 - Herwig++,
 madgraph,
 Pythia6...

* Pythia 8, qui traite mieux la multiplicité

Déjà vu quelque part !

- Dans des collisions d'ions lourds à RHIC
 - $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Par plusieurs expériences
 - Et pas en pp, ni en dAu

Un peu de logique

- http://cms.web.cern.ch/cms/News/2010/QCD-10-002/index.html
- « Bien qu'il n'y ait pas d'explication définitive à la cause de cet effet, la <u>structure nouvelle</u> observée n'est pas sans rappeler des <u>caractéristiques similaires</u> vues dans des expériences au RHIC [...] qui furent interprétées comme dues à la présence de <u>matière</u> <u>dense et chaude</u> formée dans les collisions d'ions lourds relativistes. »
- Tout est vrai, mais attention :
 - Pas forcément la seule interprétation
 - Pas la seule mesure qui permit de conclure à la présence d'une matière chaude et dense

À titre d'exemple...

Extrait d'une revue sur la matière produite à RHIC, donnée en 2009 (par un orateur sans doute biaisé...) Le « ridge » y occupe 1/4 de diapo sur 36 !

31 janvier 2011

En résumé sur ce « ridge »

- Phénomène nouveau en collisions p+p @ 7 TeV
 - Similaire à celui observé en A+A @ 200 GeV
- Au moins trois interprétations concurrentielles:
 - Hydrodynamique, collectivité → Plasma
 Effets collectifs à même multiplicité (N≈100) en Cu+Cu à RHIC
 - 2. État initial, saturation \rightarrow Colour Glass
 - 3. Multi-Jets \rightarrow Physique p+p standard
- Possible superposition des trois...
 - Beaucoup d'arguments jet+milieu pour RHIC
 - Le flot radial focalise les particules
- Autres observables pour discriminer...

À RHIC, principaux indices du QGP

What's the matter at RHIC? - raphael@in2p3.fr 23/04/2009

WHICH SIGNATURES?

- 1. Total multiplicity
- 2. High p_T suppression
- 3. Back to back jets
- 4. Elliptic flow
- 5. Baryon/meson
- 6. Heavy flavour

- ≈ "Color Glass Condensate"
- ≈ "Jet quenching"
- ≈ "Perfect fluid"
- 7. J/ψ suppression
- 8. Thermal radiation

But they are not the only ones!

"There was a general feeling that if the quark-gluon plasma was indeed produced, it would manifest itself in a variety of unknown but dramatic ways, including... H. Satz @ Lattice 2000 hep-ph/0009099

7

Séminaire CERN du 10 décembre, Bolek Wyslouch

Séminaire Fermilab du 28 janvier, Ed Wenger

http://cms.web.cern.ch/cms/News/2010/HIjetQuenching26112010/

2. LE JET QUENCHING EN PB+PB

Premières collisions Pb+Pb au LHC

- Nov-Dec 2010 : 7 μ b ⁻¹ @ 2.76 TeV
- 210 Hz max : MinBias/2 ou 3 + HLT muons, jets...

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-08 10:22:07.828203 GMT(11 22:07 CEST)

Run / Event: 150431 / 541464

F

TECCO

Centralité

Jet (hadron) quenching à RHIC (1/2)

• Suppression de hadrons de « grand » p_T dans les collisions centrales

Jet (hadron) quenching à RHIC (2/2)

Au LHC, jets entièrement reconstruits

• Dès les premières heures...

Méthode

- Reconstruire les jets calorimétriques avec un algorithme de cône itératif (IC5, ΔR=0.5), bruit de fond soustrait événement par événement
 - Également avec un anti-kT sur des objets du particle flow (tracks + calorimetry)
- Compare à
 - Pythia (D6T tune + isospin)
 - Pythia enchâssé dans des vraies données au niveau des dépots bruts d'énergie (PYTHIA+DATA)
 - Pythia enchâssé dans un générateur d'ions lourds de bonne multiplicité (PYTHIA+HYDJET)
- Événements sélectionnés :
 - Un « leading » jet > 120 GeV
 - Trigger totalement efficace
 - Un « subleadning » jet > 50 GeV
 - Au-dessus des fluctuations du fond
 - Dos à dos $\Delta \phi > 2\pi/3$
- Asymétrie énergétique:
 - élimine les incertitudes globales d'échelle d'énergie
 - Limité par la sélection
 - (120 50) / (120 + 50) = 0,41

$$A_{J} = \frac{E_{T}^{j1} - E_{T}^{j2}}{E_{T}^{j1} + E_{T}^{j2}}$$

Fraction de jets non-balancés

- Pas de mono-jet dans la figure précédente...
- Ici, fraction des monojets qui trouvent un jet opposé avec:
 - $A_J < 0,15 (p_{T2} < \frac{3}{4} p_{T1})$
 - (médiane pour Pythia)
 - $\Delta \phi > 2\pi/3$
- Dans les collisions centrales, la moitié des jets se perdent...

Où est passée l'énergie ?

- A_J → De nombreux jets perdent la moitié de leur énergie dans le milieu...
 - Dec'10, séminaire CERN, CMS+ATLAS(+ALICE pour hadron)
 - http://indico.cern.ch/conferenceDisplay.py?confld=114939
 - ATLAS, PRL 105 (2010) 252303
 - http://arxiv.org/abs/arXiv:1011.6182
- Où est-elle passée ?
 - Particules de bas p_T qui n'atteignent plus les calorimètres ?
 - Particules qui s'échappent du cone ?
- Deux autres observables pour étudier la fragmentation
 - 1. Corrélation jet-particules chargées
 - 2. p_T manquant sur l'axe des jets
 - → Séminaire FNAL d'Ed Wenger, le 28 janvier, article à suivre...

1. Corrélations jet-particule

- Répartition des particules chargées dans nos jets calorimétriques
- Soustraction de l'événement sous jacent par réflexion en pseudo-rapidité
 Partner Jet
- Limite la méthode à $-p_T > 1 \text{ GeV/c}$ $-\Delta R < 0.8$ $- \text{ Jet } 0.8 < |\eta| < 1.64$ $p_T > 1 \text{ GeV/c}$

Corrélations jet-particule

- En fonction de ΔR, la composition des jets en particules de
 - $p_{T} > 8 \text{ GeV/c}$
 - $-4 < p_T < 8 \text{ GeV/c}$
 - $-1 < p_T < 4 \text{ GeV/c}$
- Area αp_T
- Pour le leading (gauche) et le subleading (droite) jet

Corrélations jet-particule

- En fonction de A_J
- Même pour Pythia + Hydjet, larges asymétries, mais pour très peu d'événements (tri-jets)

Corrélations jet-particule

Dans les données, plus de particules de bas p_T, grand ΔR

Corrélations jet-particule (log)

Dans les données, plus de particules de bas p_T, grand ΔR

2. p_T manquante

- Projeter le p_T des traces sur l'axe du dijet, et voir ce qu'il manque
- Pas de soustraction du fond

- Toute traces de $p_T > 0.5$ GeV/c et $|\eta| < 2.4$

$$\mathbf{p}_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{Tracks}} -p_{\mathrm{T}}^{\mathrm{Track}} \cos\left(\phi_{\mathrm{Track}} - \phi_{\mathrm{Leading Jet}}\right)$$

p_{T} manquante

p_T manquante

Conclusions di-jets

- Comme prévu, la reconstruction de jets au LHC ouvre de nouvelle perspective
- Les jets sont fortement quenchés
- L'énergie se dissipe en particule de bas p_T , de grand ΔR
- Publication et interprétation à suivre
- Début des études détaillées de fragmentation des jets dans le milieu...

Analyses en cours...

http://cms.web.cern.ch/cms/News/2010/FirstZs-Heavylons/

COUP D'ŒIL AUX DILEPTONS

Le premier Z jamais observé en ions lourds

Et un premier Z \rightarrow ee

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 04:29:43 2010 CEST Run/Event: 151058 / 4096951 Lumi section: 747

Un pic de Z

Des Upsilon

Des J/ ψ

Intérêt des dileptons

- Le Z, non modifié par le milieu, est une chandelle standard
- Les Upsilon (1s, 2s, 3s) pourraient fondre dans le milieu, pas étudiés à RHIC
- Les J/ψ également, mal compris à RHIC
 - Pourraient également être recombinés / augmentés
- Rapide preprint d'ATLAS montre que les J/ψ de grand p_T sont supprimés, mais pas de séparation de la contribution du B → J/ψ

- http://arxiv.org/abs/1012.5419

C'est parti et c'est pas fini !

CONCLUSION...

DIAPOSITIVES DE SECOURS...

31 janvier 2011

PQGCMS - Saclay - raphael@in2p3.fr

Corrélations versus Vs

CMS, données de biais minimum

61

Projection sur l'axe $\Delta \eta$

- _(a) 3.0 2.5 لا 10 ک<mark>≣</mark> 2.0 1.5 (b) 0.8 ²0.6 يا⊴ CMS, extrapolated PHOBOS ISR SPS-UA5 (p+p) 0.4 **PYTHIA**, default PYTHIA, D6T 10² 10^{3} 10⁴ √s (GeV)
- Ajuste une hauteur (K_{eff} force ou taille du cluster) et une largeur δ
 - K_{eff} augmente avec \sqrt{s}
 - Sous-estimée par Pythia (D6T)
 - $-\delta$ constante
- Ici extrapolé à p_T = 0 et |η|<3 pour comparaison →

62

Déclenchement dédié

PQGCMS - Saclay - raphael@in2p3.fr

Projection sur $\Delta \phi$ ($|\Delta \eta| > 2$)

Quantification

- Trouver le minimum de R
- Intégrer l'excès à gauche
- Grandit avec multiplicité

31 janvier 2011

Vu où exactement ?

- Vu dans
 - Collisions p+p @ 7 TeV, de haute multiplicité
 - Collisions Au+Au et
 Cu+Cu @200 GeV
- Absent dans
 - Collisions p+p @ 7 TeV de basse multiplicité
 - Collisions p+p et d+Au @
 200 GeV

d+Au: STAR, PRC80 (2009) 064912 个 Cu+Cu: PHOBOS, PRC81 (2010) 024904

Paramétrisation des clusters

67

En revanche...

What's the matter at RHIC? - raphael@in2p3.fr 23/04/2009

4. IDEAL HYDRODYNAMICS

- Ideal hydrodynamics... ... reproduces fairly well
 - + QGP equation of state,
 - + Early thermalization \times (0.6 fm/c)
 - + High density
 - \times (\approx 30 GeV/fm³)
- Little need for viscosity!
 - + First estimations are
 - approaching the quantum limit $\eta/s = \hbar/4\pi$
 - lower than Helium at T

- - 1. Single hadron p_T spectra
 - × (mass dependence) $\times <\beta_T > \approx 0.6$
 - 2. Elliptic flow
- × Not the foreseen ideal partonic gas!
- \rightarrow "sQGP" (s stands for strong, not super (3)
- → "Perfect fluid"
- \rightarrow The matter is strongly interacting and liquid like

@ LHC, could it approach a quark gluon gas?

26

Par exemple : le flot elliptique

(atomes ultrafroids après ouverture du piège)

• Mesure de $v_2 = \langle \cos 2\phi \rangle$

 $-\phi = \phi_{\text{part}} - \phi_{\text{réaction}}$

1. Un « ridge » dû au flot ?

- Idée : l'explosion

 pousse » des clusters
 dans une direction
 azimutale donnée
- Effets de flot maximum à la bonne échelle :

 $-1 < p_T < 3 \text{ GeV}/c$

• Ok pour A+A, hydro atteinte pour p+p ?

 Un <u>exemple</u> : flux triangulaire dû aux fluctuations géométriques peut contribuer

Alver & Roland, arXiv:1003.0194 To appear in Phys. ReV. C

Shuryak, arXiv:1009.4635

2. au « Glasma » ?

- À haute énergie, saturation de gluon
- « Colour Glass
 Condensate » comme état initiale des collisions
- Flux de couleur
- Expliqueraient le ridge en A+A et p+p ?

Dumitru et al, arXiv:1009.5295

3. aux jets ?

- 5-6 (mini)jets dans les événements p+p de haute multiplicité, c'est nouveau !
- Partons initiaux colorés
- Connectés par des flux de couleur qui produiraient des particules dans leur plan ?
- Événements à trois jets ?
- À suivre...

4. À quoi d'autre ?

• « We briefly comment on the ridge-like structure origin in the nuclear and hadronic reactions emphacizing that this structure [...] can result from the rotation of the transient state of matter »

Troshin and Turyin, arXiv:1009.5229

Autres générateurs

No ridge effect in these models (with the tunes used)

PQGCMS - Saclay - raphael@in2p3.fr

Signes identiques et opposés

• Pas de différence notable

Déclenchements

Empilement

3

Δ0

Test ultime : mesure calorimétrique

- Le ridge apparaît aussi avec des « photons » !
 - Cluster Ecal, majoritairement des π^0
 - Préliminaire (pflow, pas d'efficacité, de correction...)

Event Backgrounds

BSC High Multiplicity Trigger

Agreement with standard results within statistical uncertainty

PQGCMS - Saclay - raphael@in2p3.fr

ϕ Symmetry

No indication of "hot spots" in event-by-event ϕ distribution

PQGCMS - Saclay - raphael@in2p3.fr

Preliminary 900 GeV Analysis

Efficiency Correction

Tracking efficiency correction has small effect on correlation function

PQGCMS - Saclay - raphael@in2p3.fr

Signal and Background

Signal is visible in raw data before dividing by (flat) background

Plasma testable en p+p

Eccentricity fluctuations make flow measurable in high multiplicity p-p collisions

Jorge Casalderrey-Solana¹ and Urs Achim Wiedemann¹

¹ Physics Department, Theory Unit, CERN, CH-1211 Genève 23, Switzerland

Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and could be applied so far to heavy ion collisions only. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity $(dN_{\rm ch}/dy \ge 50)$ p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of elliptic flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.

Wiedemann and Casalderrey-Solana PRL104 (2010) 102301

Nombreuses autres vérifications

- Cf. présentation du CERN pour détails
- (diapositives de secours)

Sources	Syst. on ridge yield
Pileup	15%
HLT efficiency	4-5%
Tracking	1-2%
ZYAM	0.0025

Rejection of "Wide Vertices"

Removing events with "suspicious" vertex distributions does not change result

cm

Select Beamspot "Core"

No dependence on radial distance from center of beam

PQGCMS - Saclay - raphael@in2p3.fr

Acceptance Variation

Detector

Reconstruction Code

(d) N>110, 1.0GeV/c<p₇<3.0GeV/c

Pixel-only tracks 3 hits in pixel detector "HighPurity" tracks Pixel + Silicon Strip tracker

(Largely) independent code Independent detectors Also: Variation of tracking +vertexing parameters 91 janvier 2011 PQGCMS - Saclay - raphael@in2p3.fr

Event Backgrounds

Detector

Ridge region shows no structure in η_1 vs η_2

PQGCMS - Saclay - raphael@in2p3.fr

Trace + Photon

- Le ridge apparaît en corrélant avec un photon
 - Préliminaire (pflow, pas d'efficacité, de correction...)

(slightly old, but pedagogical, data) PHENIX, PRL 91 (2003) 072303 31 janvier 2011 PQGCMS - Saclay - raphael@in2p3.fr

95

(slightly old, but pedagogical, data) PHENIX, PRL 91 (2003) 072303 31 janvier 2011 PQGCMS - Saclay - raphael@in2p3.fr

96

MoRE CeNTRAL collisions...

(slightly old, but pedagogical, data) PHENIX, PRL 91 (2003) 072303 31 janvier 2011 PQGCMS - Saclay - raphael@in2p3.fr

Jet Trigger Efficiency

Leading Jet E_T Distributions

Leading jet E_{T} distribution shape well reproduced by simulations

E scale corrections

Efficacité pour jet

Δφ

Dijet imbalance with Calo- and Particle Flow- Jets

Particle Flow: Extensive use of tracker information, different background subtraction, different jet finder algorithm Jet energy corrections are smaller than for CaloJets Excellent agreement between two very different methods 31 janvier 2011 PQGCMS - Saclay - raphael@in2p3.fr

Variation vs subleading jet

Vs leading jet p_T

