

Double Chooz: 100 jours de données

Th. Lasserre, D. Lhuillier, F. Ardellier pour Ch. Veyssière, pour le groupe Double Chooz du CEA / Irfu

Double Chooz collaboration

Similar Detector Designs

New 4-region large detector concept from Double Chooz Coll. (2003)

http://bama.ua.edu/~busenitz/rnu2003_talks/lasserre1.doc http://bama.ua.edu/~busenitz/rnu2003_talks/suekane1.pdf

Outer Veto: plastic scintillator strips (400 mm)

v-Target: 10,3 m³ scintillator doped with 1g/l of Gd compound in an acryclic vessel (8 mm)

γ-Catcher: 22,3 m³ scintillator in an acrylic vessel (12 mm)

 Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs

Inner Veto: 90m³ of scintillator in a steel vessel equipped with 78 PMTs

Veto Vessel (10mm) & Steel Shielding (150 mm)

Far Detector Construction 2008-10

Challenging "4-layer vessel" detector concept, invented by Double Chooz in 2002 has proved to be possible

Physics Principles

Reactor Neutrino Overview

- Electron antineutrinos emitted through Decays of Fission Products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 - Nuclear reactors $\therefore 1 \text{ GW}_{\text{th}} \Leftrightarrow 2 \ 10^{20} \ \bar{\nu}/\text{s}$
 - Neutrino Luminosity : $N_{ar{
 u}} = \gamma(1+k) P_{\mathrm{th}}$
 - γ : reactor constant
 - k : fuel evolution correction up to 10%
 - Common Detection
 - Inverse Beta-Decay reaction (xsec: σ_{V-A})

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

- Threshold 1.8 MeV. E_v extend to 10 MeV
- Measure anti-v_e of interaction rate

$$n_{\nu} = \frac{1}{4\pi R^2} \frac{P_{\rm th}}{\langle E_f \rangle} N_p \varepsilon \sigma_f \longrightarrow \sigma_f^{\rm meas.} = \frac{4\pi R^2 n_{\nu}^{\rm meas.}}{N_p \varepsilon} \frac{\langle E_f \rangle}{P_{\rm th}}$$
• Comparison of $\sigma_{\rm f}$ to prediction
$$\sigma_f^{\rm pred.} = \int_0^\infty \phi_f^{\rm pred.}(E_{\nu}) \sigma_{\rm V-A}(E_{\nu}) dE_{\nu}$$

Reactor Neutrino Oscillation Physics (\theta_{13})

Reactor core

Target free H

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2}(2\theta_{13}) \left[\sin\left(1.27 \frac{\Delta m_{atm}^{2} (eV^{2})L(m)}{E(MeV)}\right) + O(\frac{\Delta m_{sol}^{2}}{\Delta m_{atm}^{2}}) \right]$$

- Straightforward oscillation formula : weak dependence on Δm_{sol}^2
- MeV electron antineutrinos : only disappearance experiments
- $sin^2(2\theta_{13})$ measurement independent of δ -CP
- sin²(2θ₁₃) measurement independent of sign(Δm²₁₃)

'clean'
 information
 on θ₁₃

Site & Detector

Double Chooz Sites (France)

T<u>1</u>0

Near Laboratory Excavation

œ

- Started Apr. 2011
- Lab delivery Apr. 2012
- Early 2012
- Baseline ~ 400 m
- Overburden ~120 mwe

<u>11</u>

Backgrounds

Background

 $\gamma \Delta \gamma$

- Target volume protected by several concentric layers.
- Radiopurity
- Efficient muon tagging by inner and outer veto.

Background

Cosmic μ

energie atomique - energies atternati

• Correlated:

- ⁹Li and ⁸He can be produced by μ-induced spallation processes
- β-n emitters, perfectly mimic the v signal.
- Life time ~250 ms, can't veto it completely because of excessive dead time.
- Proposal : 1.4 +/- 0.5 / day

Background

Cosmic μ

gle atomique - energies alternatives

- μ-induced fast neutron
- Prompt = recoil proton
- Delayed = neutron capture on Gd.
- Proposal : 0.2 +/- 0.2 /day

(A)

Background

Cosmic μ

Accidentals:

- μ-induced fast neutron
- Prompt = recoil proton
- Delayed = neutron capture on Gd.
- Proposal: 2.0 +/- 0.9 / day

 $\gamma \Delta \gamma$

Outer Veto / Inner Veto

 \rightarrow selecting vertical μ going through all inner veto height.

Data Taking

Data Taking Efficiency

Integrated Data Taking

- Integrated data taking time for physics : 159.6 days

- Data taking efficiency in total : 86.2 %
- Data taking efficiency for physics : 77.5 %

Oscillation Analysis

E, (MeV)

Reactor Neutrino Signal

Reactor Neutrinos

ILL v spectra

Reference spectra over the last 25 years

New Reference v Spectra

Comparison with ILL reference

Reactor Antineutrino Anomaly

energie atomique • energies alternatives

- Use accurate experimental mean value at short distances as an absolute normalization.
- Includes all interpretations of the anomaly.

Predicted Neutrino Rate

$$N_{v}^{\exp}(E,t) = \frac{N_{p}}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$

Mean energy per fission:

$$\langle E_k \rangle = \sum_k \alpha_k(t) \langle E_k \rangle$$

k = ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu α_k : fractional fission rate

Mean cross-section per fission:

ean cross-section per fission:
$$\langle \sigma_f \rangle_k = \int_0^\infty dE \, S_k(E) \, \sigma_{IBD}(E)$$

 $\langle \sigma_f \rangle = \langle \sigma_f \rangle^{Bugey} + \sum_k \left(\alpha_k^{DC}(t) - \alpha_k^{Bugey}(t) \right) \left\langle \sigma_f \rangle_k \right]$

Bugey4 anchor point

Monitoring of Thermal Power

- Precise weekly anchor points by enthalpic balance at steam generators.
- Monitoring every minute, based on temperature in primary loop.
- Full error treatment in EDF note (HP1C-2011-2007-FR, Y. Caffari, J.M. Favennec)

Reactor Evolution Code

Development of full core simulation with MURE Code (Subatech).

- A lot of EDF inputs (initial fuel loading, geometry, power history,...)
- Validation with independent calculation (Dragon code, EDF calculations, Takahama benchmark).
- Complete error budget based on uncertainty on reactor parameters, code comparison, nuclear database inputs.

Fission Rates

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Fission Rates

Fractional Fission Rates

Perfect agreement of burnup curves

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

 $\gamma \Delta \gamma$

Fission Rate Error Breakdown

Stacked 1D histograms

Mean relative errors:

235	:	3	.3	%
²³⁹ Pu	:	4.	0	%
238		6	.5	%
²⁴¹ Pu	;	1	1%	0

Predicted Neutrino Rate

2594 runs, ~ 1h long

Predicted Neutrino Rate

 ~2.5% reduction of neutrino rate during data taking due to accumulation of ²³⁹Pu in the core

Error on Reactor Predictions

œ

- Anchor point of Bugey4 measurement suppresses sensitivity to reference spectra (oper fission)
- Accurate reactor simulation with MURE keep contribution of the uncertainty on fission rates low.

1.7% total error

(2.7% if no Bugey4 anchor)

Predicted Number of Neutrinos

Total	5334.7 ± 93 (1.74%)
Reactor B2	= 2751.2
	+
Reactor B1	2583.5

Detector Calibration

Calibration Systems

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Charge Correction

energie atomique • energies attematives

Calibrate the non-linearity due to single photoelectron efficiency and electronics and Q-reconstruction effects.

Z-correction

Calibration of the z-bias. Residuals in the correction will be included in the detector covariance matrix.

Energy Calibration

⁶⁸Ge Detector Center X=0mm, Y=0mm, Z=0mm

⁶⁸Ge at the Center of the Target

- **Positron source**
- The spectrum is well modeled
- Verification of the energy threshold

⁶⁸Ge in the Guide Tube

 Correction work also in the Gamma Catcher

r = r = r = r

Spallation Neutrons

- Evaluation of the (Q,Z) correction in all volumes
- Study of spallation neutrons in $\rho^2 = x^2 + y^2$ in slices of z
- Capture on Gd peak
- Except for the extremes of the GC all is within +/-2.5%.

Neutrino Search

Muons

- Far Detector is located 150 m under a hill
- rgio atomique energies attematives Inner Veto Muon Rate: **46 Hz**
 - Inner Detector Muon Rate: 13 Hz
 - v-search: Software Muon Veto of 1 ms after Each Muon

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Neutrino Selection Criteria

Prompt Event:

- No Inner Veto Energy Deposition
- Q_{max}/Q_{tot} < 0.09 & rms(T_{start})<40 ns</p>
- E in [0.7; 12] MeV

Delayed Event:

- No Inner Veto Energy Deposition
- Q_{max}/Q_{tot} < 0.06 & rms(T_{start})<40 ns</p>
- E in [6 ; 12] MeV

Coincidence:

- No Space Coincidence Cut
- Time Coincidence: 2 μs < Δt < 100μs

Multiplicity:

- No valid triggers allowed in the 100 µs preceding the prompt
- The time window from 2 µs to 100 µs following the prompt can contain only one valid trigger: the delayed candidate
- No valid triggers allowed in the time window 100 µs through 400 µs after the prompt

E_{prompt} & Trigger Efficiency

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Fraction of Gd Capture

²⁵²Cf Data Delayed Signal

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Delayed energy Spectrum

- Selection of Neutron Capture on Gd only
- Allow to define the fiducial volume by the mass of Gd-loaded LS

Delayed Energy Cut Efficiency : 0.86 +/- 0.6%

Delayed Event Energy Containment

- Part of the Gd-capture gamma's escape the Target + G-Catcher
- Deployment of ²⁵²Cf along the Target z-axis
- Eff. (CHOOZ) = # capture [6,12] MeV / # capture [4,12] MeV

Averaged (Data-MC)/Data relative difference: ≤ 0.6%

²⁵²Cf Neutron Multiplicity

- Using the first 8 neutron per fission only:
- Average neutron multiplicity data: 3.659 +/- 0.008 (stat)
- Average neutron multiplicity MC : 3.677 +/- 0.013 (stat)

Prompt – Delayed Δt

- KeV neutrons thermalize within a few µs
- Then neutrons get captured on Gd with $\tau = 27\mu s$
- Good agreement with the MC expectation

(A)

Prompt – Delayed ΔR

Low level of accidental background

- No Need for ΔR Cut as designed in the proposal

Prompt - Delayed Reconstructed Distance

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Prompt & Delayed Vertex Reconstruction

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Neutrino Candidate Rate

Backgrounds NOT subtracted from candidates sample

Low Background Detector !

4121 Neutrinos Candidates

Backgrounds

Singles : Rate & Spectrum

- [0.7,12] MeV: radioactivity
- Proposal: 10 Hz
- DC (E>700 keV): 7.625±0.001/s

- [6,12] MeV : thermal neutrons
- Proposal : 100 n/h
- DC: 20 n/h

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Accidentals Background

Accidental Background Prompt Event Visible Energy

Correlated Bkg: Fast Neutrons

- Neutrino Analysis with prompt energy extended to 30 MeV
- Two populations:
 - Fast-n
 - Stopping-muon
- Rate:
 - Extrapolation from high Energies to lower ones
 - 0.7 -0.5 +0.5 per Day
- Spectrum:
 - Flat
 - + Stopped Mu Shape Unc.

Correlated Bkg: ⁹Li

- ⁹Li events selection:
 - Statistical
 - Search for a triple delayed coincidence between showering muon and neutrino-like coincidence

Showering muon : E>600 MeV

- Δt between showering muon and prompt event is given by the ⁹Lilike life time (257ms).
- Rate: 2.3 -1.2 +1.2 per Day
- Spectrum: nuclear database

Neutrino Rate vs Day

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Reactor Off-Off

Reactor 1 stopped for 2 months (refueling) Reactor 2 stopped for 1 day for servicing

In Situ Background Measurements (Unique Capability of Double Chooz) 3 events within [0,7 – 30] MeV 1 event in [0,7-8 MeV]

1 Day Reactor Off-Off

JIBLE

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

1 Day Reactor Off-Off: Event I

⁹Li Event Candidate

- Prompt event
 - Inner Detector energy: 9.8 MeV
- Delayed event
 - Inner Detector energy 8.0 MeV
- Coincidence characteristics
 - Distance 16.4 cm
 - Δt: 4 ms
- Muon_(> 600 MeV)
 - Inner Detector energy 739 MeV
 - Distance to prompt: 15.4 cm
 - Δt to prompt: 201 ms

1 Day Reactor Off-Off: Event II

⁹Li Event Candidate

- Prompt event
 - Inner Detector energy: 4.8 MeV
- Delayed event
 - Inner Detector energy 8.6 MeV
- Coincidence characteristics
 - Distance 27.9 cm
 - Δt: 26 ms
- Muon_(> 600 MeV)
 - Inner Detector energy 627 MeV
 - Distance to prompt: 30.8 cm
 - Δt to prompt: 241 ms

1 Day Reactor Off-Off: Event III

- Prompt event
 - Inner Detector energy: 26.5 MeV
- Delayed event
 - Inner Detector energy 7.6 MeV
- Coincidence characteristics
 - Distance 79 cm
 - Δt: 2.2 ms
- Muon_(> 600 MeV)
 - Closest one 17 s prior to prompt
 - shown track is m with highest energy deposition (523 MeV) within 5 s, with 206 ms, 103 cm distance to prompt

Oscillation Search

Efficiency, Live Time Correction, Systematics

energie atcmique + energies alternatives	Source Target Free H Trigger Efficiency	Uncertainty +/- 0.3 % +/- 0.5 %			
	Source Prompt Event Delayed Event Δt Cut ΔE Cut	Efficiency 99.9 % 86.0 % 96.5 % 94.5 %	Unce +/- 0 +/- 0.0 +/- 0.0	rtainty 6 % 5 % 6 %	78 %
	Source Muon Deadtime Multiplicity Gd Fraction Spill in/out	MC Live Time Cor 0.955 0.995 0.98 0.993	rection	Uncertainty +/- 0 +/- 0 +/- 0.6 % +/- 0.4 %	92.4%

F. Ardellier, Ch. Veyssière, Th. Lasserre, D. Lhuillier, CEA-Saclay, Nov. 09th 2011

Back Of The Envelop Estimation

œ

- Data (Neutrino Candidates) : 4121 (+ bkg = 328)
- MC (Expected Signal) : 5339
- Neutrinos_{obs} = (4121 328) = 3793
- Neutrinos_{pred} = 5339 . 0.757 = 4041

$$\sin^2(2\theta_{13}) = \frac{\left(1 - \frac{N_{obs}}{N_{pred}}\right)}{1 - 0.54} \approx 0.13$$

atomique • energies altern

Oscillation Fit Strategy

MC Events & Data flow handled in parallel

Correction for MC/Data differences

$$\begin{split} \chi^{2} &= \left(N_{i} - \left(\sum_{R}^{\text{Reactors}} N_{i}^{\nu,R} + \sum_{b} N_{i}^{b}(P_{b}) \right) \right) \times \left(M_{ij}^{\text{signal}} + M_{ij}^{\text{detector}} + M_{ij}^{\text{stat}} + \sum_{b}^{\text{bkgnds.}} M_{ij}^{b} \right)^{-1} \\ &\times \left(N_{j} - \left(\sum_{R}^{\text{Reactors}} N_{j}^{\nu,R} + \sum_{b} N_{j}^{b}(P_{b}) \right) \right)^{\text{T}} \\ &+ \sum_{R}^{\text{Reactors}} \frac{(P_{R})^{2}}{\sigma_{R}^{2}} \qquad \qquad M_{ij}^{\text{signal}}: \text{ Signal covariance matrix.} \\ &+ \sum_{b}^{\text{bkgnds.}} \frac{(P_{b})^{2}}{\sigma_{b}^{2}} \qquad \qquad M_{ij}^{\text{stat}}: \text{ Statistical covariance matrix.} \end{split}$$

 $M_{ij}^{\rm b}$: Covariance matrix for background

Rate & Shape Oscillation Analysis

Summary of the Results

œ

Rate Only : - $sin^2(2\theta_{13}) = 0.096 + - 0.029(stat) + - 0.073(syst)$

Shape Only : - $sin^2(2\theta_{13}) = 0.044 +/- 0.157$

Rate & Shape : - $sin^2(2\theta_{13}) = 0.086 +/- 0.029(stat) +/- 0.042(syst)$ - No-Oscillation Excluded at 92.9 %

Double Chooz / T2K Combination

Conclusions

Double Chooz is running as designed

- Report of Analysis of 5 months of data. Hint for positive value of θ_{13}
 - $\sin^2(2\theta_{13}) = 0.086 + 0.029(\text{stat}) + 0.042(\text{syst})$
 - No-Oscillation excluded at 92.1% CL
 - The near detector will be operational by early 2013
 - Great prospect towards the most precise measurement θ_{13} with 2 nuclear cores
 - Simple site configuration. Reactor Off-Off periods for in-situ bkg measurement
 - Comprehensive set of Calibration Systems

A la mémoire d'Alain & de Dario