

Yvonne Peters

University of Manchester & Fermilab

The Top Quark

 Heaviest known elementary particle: m_t=173.2±0.9GeV

arXiv:1107.5255

- Standard Model:
 - Single or pair production
 - Electric charge +2/3 e
 - Short lifetime 0.5x10⁻²⁴s
 - Bare quark no hadronization
 - ~100% decay into Wb
 - Large coupling to SM Higgs boson

Top: The TevatrOn Particle

Discovered in 1995 by CDF and DØ at Fermilab (with few events)

Top: The TevatrOn Particle

Discovered in 1995 by CDF and DØ at Fermilab (with few events)

Since 2010 LHC operating \rightarrow top quark factory

Reconstructed Mass

 (GeV/c^2)

All we study about the Top

All we study about the Top

J. Aguilar Saavedra; Top2011

Asymmetry definitions Tevatron: Asymmetry @ Tevatron *A*_{FB} !!! Theory: **D**redictions SM Models: et planations new physics models Z', W', g', \ldots Asymmetry @ LHC Other related measurements LHC: Conclusion

J. Aguilar Saavedra; Top2011

Tevatron and LHC

$p\bar{p}$ collider

MANCHESTER

pp collider

21.11.2011

Yvonne Peters - Manchester

How much Data we collected

~11.5fb⁻¹ delivered >10fb⁻¹ on disk per experiment Tevatron ended operation on 30.9.2011 >5fb⁻¹ delivered
~5fb⁻¹ on disk per experiment

MANCHESTER

- Production cross section (@Tevatron): approximate NNLO: $\sigma = 7.46^{+0.48}_{-0.67} pb$ @ m_t=172.5GeV Moch, Uwer, PRD 78, 034003 (2008)
 - 20 times higher @LHC (7TeV): $\sigma = 164.6^{+11.4}_{-15.7} pb$

- Production cross section (@Tevatron): approximate NNLO: $\sigma = 7.46^{+0.48}_{-0.67} pb$ @ m_t=172.5GeV
 - 20 times higher @LHC (7TeV): $\sigma = 164.6^{+11.4}_{-15.7} pb$

Reminder of some Basics: Final States in tt

B(t→W⁺b)=100%

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

pure hadronic: ≥6 jets (2 b-jets)

Reminder of some Basics: Final States in tt

B(t→W⁺b)=100%

Top Pair Branching Fractions

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

pure hadronic: ≥6 jets (2 b-jets)

tt Forward backward asymmetry $A_{FB}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$ Lepton based asymmetry $A_{FB}^{l} = \frac{N(q_{l} y_{l} > 0) - N(q_{l} y_{l} < 0)}{N(q_{l} y_{l} > 0) + N(q_{l} y_{l} < 0)}$ $y = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p}\right)$ $\Delta y = y_{+} - y_{-}$

- Several asymmetry definitions can be studied

the initial quark or antiquark direction?

Do top quarks follow preferentially

Definitions and Introduction

MANCHEST

MANCHESTER 1824

Definitions and Introduction

- LO: No charge asymmetry expected
- NLO QCD: Interference between qq diagrams
- Tree level and box diagrams:
 - Positive asymmetry

- Initial and final state radiation:
 - Negative asymmetry

MANCHESTER B24 Definitions at Tevatron and LHC

- Tevatron: $p\bar{p}$ is CP eigenstate $\rightarrow pp$ (LHC) is not \rightarrow different way to measure the effect at Tevatron and LHC
- LHC: Charge asymmetry (other possibilities: discussed later)

Tevatron

 $N(\Lambda v > 0) - N(\Lambda v < 0)$

LHC $A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$

$$A_{FB}^{tt} = \frac{N(\Delta y < 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \qquad A_{C} = \frac{N(\Delta |y| < 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$
Tevatron \bigwedge top $y = \frac{1}{2} \ln(\frac{E + p_{z}}{E - p_{z}})$

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| < 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| < 0) - N(\Delta |y| < 0)}{N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| < 0) - N(\Delta |y| < 0)}{N(\Delta |y| < 0)}$$

$$A_{C} = \frac{N(\Delta |y| < 0) - N(\Delta |y| < 0)}{N(\Delta |y| < 0)}$$

Measurements at the Tevatron

- Reconstruction
- Measurements in lepton+jets & dilepton
- Dependencies of the asymmetry
- Modeling concerns

The CDF & DØ Detectors

Event Selection I+jets

Enrich signal using its topology: w

Missing p_{T} for neutrino ($\not E_{T}$): >20GeV

≥4 jets with p₇>20GeV; CDF: |η|<2.0; DØ: |η|<2.5

Main background:

h

Event Selection dilepton

2 leptons (e or μ) with p_T>20GeV; $|\eta_e|<1.1$ or 1.2< $|\eta_e|<2.8$; $|\eta_u|<1.1$

 $\not\!\!{E}_{T} > 25 \text{ or } 50 \text{GeV} \text{ (depending on angle between } \not\!\!{E}_{T} \text{ direction and closest lepton or jet)}$

 \geq 2 jets with p₁>15GeV and | η |<2.5

 H_{T} (scalar sum of lepton & jet $p_T \& \not \in_T$)>200GeV

Main background:

and QCD multijets

Z+jets

MANCHESTER

tt Reconstruction

- L+jets: kinematic fit to reconstruct full event, using
 - Fixed top mass

MANCHEST

- Two jets have to have m_{ii}=m_w
- B-jet identification
- Experimental resolutions taken into account

 Dilepton: also kinematic fitter, but more dof (2 neutrinos) → use a priori probability distributions as input, calculate probability

Extracting the raw Asymmetry

- Subtract background from Data
 - DØ: Background fitted with likelihood discriminant
 - CDF: Background from MC prediction

CDF: $A_{FB}^{t\bar{t}} = 7.5 \pm 3.7\%$ (MC@NLO prediction: 2.4±0.5%) DØ: $A_{FB}^{t\bar{t}} = 9.2 \pm 3.7\%$ (MC@NLO prediction: 2.4±0.7%)

- **dilepton** CDF: A_{FB}^{tī}=21±7%
- Different acceptance cuts and detector effects → not comparable!

Unfolding

- Correct for acceptance & resolution effects back to production level
- Different unfolding methods used by CDF and DØ
- CDF: 4 bin matrix inversion in Δy (edges: -3, -1, 0, 1, 3)

$$\vec{n}_{production} = A^{-1} S^{-1} \vec{n}_{reco}$$

- A: (diagonal) acceptance matrix
- S: migration matrix
- DØ: regularized unfolding using TUnfold from ROOT $(50 \rightarrow 26 \text{ bins in } \Delta y)$
 - Better statistical strength than 4 bin matrix inversion

21.11.2011

MANCHESTER

Production Level Asymmetries

- A_{FB}^{tt} after unfolding for DØ (I+jets) & CDF (I+jets and dilepton) \rightarrow Measurements higher than prediction
- Lepton-based asymmetries:

CDF (dilepton):

 $A_{EB}^{\Delta\eta(l)} = 21 \pm 7\%$

Very good resolution \rightarrow unfolding easy

Events

60

40

20

- DØ (I+jets): $A_{FR}^{I} = 14.2 \pm 3.8\%$ (MC@NLO pred: 0.8±0.6%)
- \rightarrow ~3 sigma away from prediction!

N. Kidonakis.

PRD84:011504 (2011)

A_{fb} of the Top Quark

July 2011

Dependencies

Asymmetry depends on several variables (m₊₊, rapidity, etc.)

- BSM could show a different mass dependence than in SM
- CDF & DØ: study $m_{H} \& \Delta y$ dependence

MANCHESTER

Forward-Backward Top Asymmetry, %

Modeling Issues

V 0.3

0.2

0.1⊱

-0.1F

-0.2

-0.3

-0.4

20

30

10

- Sensitivity of asymmetry prediction to modeling studied at DØ
- Noted a dependence on p_τ^{tt̄}
 - e. g. when switching angular coherence between top and initial parton shower on/off
 - Effect included as systematic uncertainty for now (1.6%)
 - Top pair p_{τ} difficult to model in data

→ better understanding needed (dedicated measurement)

MC@NLO 3.4

------ PYTHIA 6.425 D6-Pro

angular coherence off

angular coherence on

tt transverse momentum [GeV]

PYTHIA 6.425 S0A-Pro

80

90

21.11.2011

MANCHESTER

Theory Intermezzo

- SM predictions
- New Physics models
- Constraints on the models

Top quark asymmetry in frame i:

$$\mathcal{A}_{ ext{FB}}^i = rac{N_t(y_t^i > 0) - N_t(y_t^i < 0)}{N_t(y_t^i > 0) + N_t(y_t^i < 0)} \equiv rac{\sigma_A^i}{\sigma_S^i}$$

is the ratio of asymmetric (σ_{a}) and symmetric (σ_{s}) cross section

• QCD calculation:

$$\frac{\sigma_A}{\sigma_S} = \frac{\left[\int\limits_{y_t>0} \frac{d\sigma}{dy_t} - \int\limits_{y_t<0} \frac{d\sigma}{dy_t}\right]}{\left[\int\limits_{y_t>0} \frac{d\sigma}{dy_t} + \int\limits_{y_t<0} \frac{d\sigma}{dy_t}\right]} = \frac{\alpha_s^3 \sigma_A^{(0)} + \alpha_s^4 \sigma_A^{(1)} + \dots}{\alpha_s^2 \sigma_S^{(0)} + \alpha_s^3 \alpha_s \sigma_S^{(1)} + \dots}$$
Peciak, Top20

• Numerator starts at α_s^3

Pecjak, Top2011

NLO calculations for cross section are NOT NLO for asymmetry

SM Predictions: QCD

Asymmetry in QCD:

MANCHESTER

 Interference of C=1 and C=-1 amplitudes are odd under t ↔ t̄ → cause asymmetry

Kuhn, Rodrigo, PRL 81 (1998)

- Higher order QCD contributions
 - Estimated with soft-gluon resummation
 - NLO+NNLO by Ahrens et al.; arXiv:1106.6051
 - Approximative NNLO by Kidonakis

SM Predictions: QED

Additionally: QED contributions enhance the asymmetry

Kuhn, Rodrigo, 2011; Hollik, Pagani 2010l; Bernreuther, Si 2010

	Peciak, Top2011	$A_{\text{FB}}^{t\bar{t}}$ [%]	$A_{\text{FB}}^{p\bar{p}}$ [%]
	NLO	$7.32\substack{+0.69+0.18\\-0.59-0.19}$	4.81 ^{+0.45+0.13} -0.39-0.13
	NLO+NNLL [Ahrens et. al.'11]	7.24 ^{+1.04+0.20}	4.88+0.20+0.17 -0.23-0.18
	NNLO _{approx} [Kidonakis '11]		5.2 ^{+0.0} -0.6
$bar{b} ightarrow tar{t}$ included	EW'/NLO' ($\mu = m_t$) [Bernreuther, Si '10]	0.05	0.04
Extra photonic	EW/NLO ($\mu = m_t$) [Hollik, Pagani '10]	0.22	0.22
corrections			

In SM: no large m₊₊ dependence seen

A ^{tt} _{FB} [%]	$M_{t\bar{t}} < 450 { m ~GeV}$	$M_{t\bar{t}} > 450 \mathrm{GeV}$
NLO	$5.3^{+0.3+0.1}_{-0.4-0.1}$	$10.6^{+1.1+0.3}_{-0.8-0.1}$
NLO+NNLL [Ahrens et al]	$5.2^{+0.7+0.1}_{-0.5-0.0}$	$11.1^{+1.9+0.3}_{-1.0-0.0}$
EW/NLO ($\mu = m_t$) [Hollik et al]	-	0.23

Pecjak, Top2011

SM Predictions: tīj

- Asymmetry considered so far: inclusive
 - But: prediction different for ttoj versus tt1j
 - NLO calculation in tt → LO in ttj!
 - $t\bar{t}X+jet at NLO: A_{FB}^{p\bar{p}}=-1.8^{+0.6}_{-0.3}\%$

Dittmaier, Uwer, & Weinzierl, arXiv:hep-ph/0703120v1 Melnikov, Schulze, 2010

Dom N	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\Delta y>0}$ Raw $N_{\Delta y<0}$	849 732	597	$\frac{132}{135}$
$A_{ m FB}(\%)$	$9.2{\pm}3.7$	$12.2{\pm}4.3$	$-3.0{\pm}7.9$
mc@nlo $A_{\rm FB}$ (%)	$2.4{\pm}0.7$	$3.9{\pm}0.8$	$-2.9{\pm}1.1$

SM Predictions: $t\bar{t}j$ and $p_{\tau}^{t\bar{t}}$

First calculation of $p_{T}^{t\bar{t}}$ at NLO & influence of parton shower on A_{FB} (for $t\bar{t}j) \rightarrow$ significant influence of parton shower can be seen

Tevatron 1.96 TeV	NLO [%]	LHEF [%]	POW+HER [%]	POW+HER+UE [%]
A ^{tī} _{FB} total	-4.40 ± 0.04	-4.34 ± 0.05	-2.80 ± 0.11	-2.54 ± 0.11
$\begin{array}{l} A_{\mathrm{FB}}^{t\bar{t}} , \left \Delta y_{t\bar{t}} \right < 1.0 \\ A_{\mathrm{FB}}^{t\bar{t}} , \left \Delta y_{t\bar{t}} \right \geq 1.0 \end{array}$	-2.70 ± 0.04 -19.48 ± 0.18	-2.62 ± 0.05 -19.54 ± 0.22	-1.71 ± 0.11 -10.52 ± 0.52	-1.91 ± 0.11 -9.75 ± 0.51
A_{FB}^{tt} , $ m_{t\bar{t}} < 450~\mathrm{GeV}$ $A_{\mathrm{FB}}^{t\bar{t}}$, $ m_{t\bar{t}} \ge 450~\mathrm{GeV}$	-3.59 ± 0.06 -5.70 ± 0.06	-3.51 ± 0.06 -5.66 ± 0.08	-2.67 ± 0.14 -3.03 ± 0.19	-2.36 ± 0.13 -2.88 ± 0.18
$\begin{array}{l} A_{\rm FB}^{t\bar{t}},p_{\rm T}^{t\bar{t}} \geq 10 {\rm GeV} \\ A_{\rm FB}^{t\bar{t}},p_{\rm T}^{t\bar{t}} \geq 20 {\rm GeV} \\ A_{\rm FB}^{t\bar{t}},p_{\rm T}^{t\bar{t}} \geq 35 {\rm GeV} \\ A_{\rm FB}^{t\bar{t}},p_{\rm T}^{t\bar{t}} \geq 50 {\rm GeV} \\ A_{\rm FB}^{t\bar{t}},p_{\rm T}^{t\bar{t}} \geq 75 {\rm GeV} \end{array}$	-4.35 ± 0.04 -3.71 ± 0.05 -5.72 ± 0.06 -6.25 ± 0.07 -6.62 ± 0.08	$\begin{array}{r} -4.32\pm0.05\\ -4.29\pm0.05\\ -5.52\pm0.05\\ -6.11\pm0.06\\ -6.45\pm0.08\end{array}$	$\begin{array}{c} -3.98 \pm 0.06 \\ -4.22 \pm 0.05 \\ -5.16 \pm 0.06 \\ -5.70 \pm 0.07 \\ -5.99 \pm 0.09 \end{array}$	$\begin{array}{r} -3.86 \pm 0.06 \\ -4.18 \pm 0.05 \\ -5.17 \pm 0.06 \\ -5.74 \pm 0.07 \\ -5.94 \pm 0.09 \end{array}$

Alioli, Moch, Uwer, arxiv:1110.5251 (2011)

LHEF: NLO fixed order + POWHEG after first emission

MANCHESTER

NP Models

- Within SM: higher orders calculated, show large differences in prediction
- Other possibility for deviation of measurement from prediction: New Physics!
- Several models proposed
 - That do not change total tt cross section significantly
 - New particle in s-, t- or u-channel:

NP Models: s-channel

Color-octet vector (axigluon)

- Several requirements & problems with measurements:
 - Must have small coupling to $u\bar{u}$ and $d\bar{d} \rightarrow$ otherwise dijet production
 - Distinctive feature: bump in m_{tt} spectrum
 - \rightarrow non observation: axigluon must be heavy
 - FCNC would occur at tree level

Westhoff, EPS 2011 Aguilar Saavedra, Top2011

NP Models: t-channel

Color-singlet vectors (Z', W')

- Requirements:
 - Z': requires large coupling to get asymmetry positive
 - Z': Constraint from same sign top production

NP Models: u-channel

Color-triplet & color-sextet scalars:

- Requirements:
 - Large mass for asymmetry to be positive
 - Color-sextet ruled out by constraints on dijet production

Westhoff, EPS 2011 Aguilar Saavedra, Top2011

Constraints on the Models

- Same sign top production:
 - CDF: σ(tt+tt)<0.7pb PRL.102:041801,2009</p>
 - CMS: limits on $\sigma(\bar{t}\bar{t}+tt)$ excludes Z'
- Dijet: only large masses allowed for axigluon
- No bumps in m_{tt} distribution found so far
 - Several models would cause a resonance in m_{tt}

Westhoff, EPS 2011 Aguilar Saavedra, Top2011

Constraints on the Models

- What about LHC asymmetry measurements?
- Many models require positive A_{c} & enhancement with $m_{t\bar{t}}$

Measurements at the LHC

- Tevatron-LHC difference
- Asymmetry measurements at Atlas and CMS

MANCHESTER 1824 Asymmetry: Tevatron versus LHC

- Asymmetry mainly in qq BUT LHC: pp collider
 - Quarks valence quarks, antiquark always from the sea
 → antitop less boosted and more central than top in case of asymmetry
- Define asymmetries accordingly, e. g.
 - Cut-dependent:

$$A_C = \frac{N(|y_t| > |y_{\overline{t}}|) - N(|y_t| < |y_{\overline{t}}|)}{N(|y_t| > |y_{\overline{t}}|) + N(|y_t| < |y_{\overline{t}}|)}$$

- Use the knowledge about the boost to extract q and \bar{q} direction:

$$\mathcal{A}^{t\bar{t}} = \frac{N(0 < \hat{\theta}_t < \pi/2) - N(\pi/2 < \hat{\theta}_t < \pi)}{N(0 < \hat{\theta}_t < \pi/2) + N(\pi/2 < \hat{\theta}_t < \pi)}$$

Pecjak, Top2011

 θ_i : production angle of top in tt

MANCHESTER Asymmetry: Tevatron versus LHC

- Asymmetry mainly in qq BUT LHC: pp collider
 - Quarks valence quarks, antiquark usually from the sea
 → antitop less boosted and more central than top in case of asymmetry
- Define asymmetries accordingly, e. g.
 - Cut-dependent:

$$A_{C} = \frac{N(|y_{t}| > |y_{\bar{t}}|) - N(|y_{t}| < |y_{\bar{t}}|)}{N(|y_{t}| > |y_{\bar{t}}|) + N(|y_{t}| < |y_{\bar{t}}|)}$$

 θ_i : production angle of top in tt

Use the knowledge about the boost to extract q and q direction:

$$\mathcal{A}^{t\bar{t}} = \frac{N(0 < \hat{\theta}_t < \pi/2) - N(\pi/2 < \hat{\theta}_t < \pi)}{N(0 < \hat{\theta}_t < \pi/2) + N(\pi/2 < \hat{\theta}_t < \pi)}$$

Pecjak, Top2011

CMS & Atlas Detectors

Selection & Reconstruction

Selection: tt l+jets selection

Reconstruction of tt system:

- Atlas: likelihood to assign the right combination
- CMS: χ^2 test

1 lepton (e or μ) with p_T>30GeV (Atlas: 25GeV for e, 20GeV for μ); $|\eta|<2.5$

Missing p_{T} for neutrino ($\not E_{T}$): no cut for CMS; Atlas: >35GeV

≥4 jets with p_{τ} >30GeV (Atlas: >25GeV); CMS: $|\eta|$ <2.4; Atlas: $|\eta|$ <2.5

≥1 jet b-tagged

MANCHEST

Results

ຖຸ|-|nຼ|(reconstructed)

44

-2

-1

-3

- Measurements at LHC already becoming systematics limited
 - Mainly modeling of signal
- Unfolding: CMS: regularized unfolding; Atlas: iterative Bayesian
- CMS: using η instead of y

Forward-Backward Top Asymmetry, %

0.25

0.2

0.15

0.1

0.05

) 1 2 3 4 |η|-|η|(generated)

No visible tendency/m_t dependence

MANCHESTER B24 Coming back to the NP Models...

- LHC measurements disfavor several models
 - Z': outside the measurement
 - Other models: tension with CDF's mass dependence

Model Apocalypse

Most popular models ... after 2011 LHC data

MANCHESTER

Yvonne Peters - Manchester

Measurements to be done at Tevatron and LHC

- How to further discriminate the models
 - Cuts
 - Asymmetries
 - Polarization

How to further discriminate the Models

- Several ideas float around on what measurements can be done
- Enhance the qq fraction \rightarrow cut on velocity of CM in lab frame $\beta = \frac{p_t^z + p_{\overline{t}}^z}{E_t + E_{\overline{t}}}$
- For example: cut on $\beta > 0.6$ discriminates models (for A_c)

MANCHESTER

MANCHESTER

How to further discriminate the Models

- Extract A^{I} and $t\bar{t}$ asymmetry Krohn et al, arxiv:1105.3743 \rightarrow many models predict different behavior of both
- Example: different axigluon models & W'

	frame and	$t\bar{t}$	Lepton	stat. sig.
	mass range	asymmetry	asymmetry	(5.3 fb^{-1})
G_A	lab, sel. cuts	1 %	4 %	1.1
	lab, high mass	1 %	9 %	1.9
	CM, sel. cuts	12~%	6 %	1.7
	CM, high mass	19 %	12~%	2.4
G_L	lab, sel. cuts	0 %	-3 %	0.9
	lab, high mass	1 %	-1 %	0.2
	CM, sel. cuts	13 %	-4 %	1.4
	CM, high mass	20%	-3 %	0.6
G_R	lab, sel. cuts	0 %	$12 \ \%$	3.9
	lab, high mass	-1 %	18 %	5.0
	CM, sel. cuts	9 %	16 %	3.5
	CM, high mass	15 %	22 %	4.4
W'	lab, sel. cuts	0 %	$13 \ \%$	3.9
	lab, high mass	1 %	22 %	4.9
	CM, sel. cuts	20 %	16 %	4.4
	CM, high mass	31 %	26 %	5.3

How to further discriminate the Models

- Measure the lepton asymmetry at threshold: measures the relative contribution of $q_L \bar{q}_L$ and $q_R \bar{q}_R$ of $t\bar{t}$ production (at threshold) \rightarrow many models enhance one of these fractions
 - SM: $A_{FB}^{I}(\sqrt{s}=2mt)=+50\%$ for $q_{R}\bar{q}_{R}$ and -50% for $q_{L}\bar{q}_{L} \rightarrow$ net asymmetry $A_{FB}^{I}(\sqrt{s}=2mt)=0$ Falkowski et al, arxiv:1110.3796
- Example: chiral gluon with purely right-handed coupling to light quarks, and left-handed (RL), right-handed (RR) or vector (RV) coupling to the top quark

$$ightarrow$$
 in this model $A^{I}_{_{FB}}(\sqrt{s}=2mt)=50\%$

MANCHESTER

To be done measurements

- Constraints from b quark coupling from precision flavor observables

 → many models for A_{FB} couple only to right-handed top quarks
 → predict large top polarization!
 Krohn et al, arxiv:1105.3743
- Top decay in top rest frame:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{i,n}} = \frac{1}{2} \left(1 + \mathcal{P}_n \kappa_i \cos\theta_{i,n} \right)$$

- P_n : polarization; κ_i : spin analyzing power of decay product i; θ_i : direction of daughter wrt. chosen axis θ_t : CM frame
- Lepton asymmetry: related to top polarization

black: unpolarized top Red: right-handed top Blue: left-handed top

MANCHESTER

Summary and Outlook

- Asymmetry measurements larger than theory prediction at Tevatron
 → hint for new physics?
- Many attempts to understand where the difference comes from
 - Higher order SM calculations
 - Modeling
 - Potential new physics models
- First asymmetry measurements at LHC
 - No deviation from prediction
- Additional measurements needed to distinguish models and ensure proper modeling
 → p_τ^{tt̄}, polarization, Asymmetries in bb̄
- Thanks to A. Harel for support on the talk

"I think you should be more explicit here in step two."

from What's so Funny about Science? by Sidney Harris (1977)

Backup

Reminder of some Basics: Final States in tttt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

 $B(t \rightarrow W^+b) = 100\%$

Top Pair Branching Fractions

pure hadronic: ≥6 jets (2 b-jets)

More on ISR

• Even though ISR off improves description of $t\bar{t} p_{T} \rightarrow N_{jet}$ distribution gets worse

