

MEG Experiment

Ryu Sawada The University of Tokyo 28/November/2011

<u>Outline</u>

Apparatus

- Run2009+Run2010 result
- Status and future prospect

The standard model

Quarks : CKM mixing Neutrinos : Oscillation Charged : ??

Standard model

New physics

Br ~ 10⁻¹⁴-10⁻¹¹

T.Mori hep-ex/0605116

Br ~ 10⁻⁵⁰

R.Sawada

MEG experiment

4

Lepton Flavor Violation

μ -> eγ decay

- Lepton flavor violating decay
- In the SM with neutrino oscillation, the branching ratio is tiny(~10⁻⁵⁰)
- Previous experimental upper limit (before MEG experiment)

▶ 1.2×10⁻¹¹ (1999, MEGA)

Well motivated new physics (SUSY-GUT, SUSY seesaw,...) predict the branching ratio around 10⁻¹¹ -10⁻¹³ region

MEG experiment

Explore down to 10⁻¹³ level

Signal & background

H Sy

🕨 Signal

- ▶µ+ decay at rest
- > 52.8MeV (half of M_µ) (E_y,E_e)
- Back-to-back ($\theta_{e\gamma}, \phi_{e\gamma}$)
- Timing coincidence (T_{eγ})

Accidental background

Michel decay e^+ + random γ

- Dominant background for us
- Random timing, angle, <52.8MeV

e⁻

MEG experiment

180°

Background spectra

 $N_{\rm acc} \propto R^2 \cdot \delta E_{\rm e} \cdot \delta E_{\gamma}^2 \cdot \delta \theta_{\rm e\gamma}^2 \cdot \delta t_{\rm e\gamma}$

Good resolution to reduce background High rate positron measurement

R.Sawada

MEG experiment

 γ

MEG experiment

Most intense DC muon beam (>1x10⁸ μ ⁺/s) possible

Requirement:

- Need many muon decays
- Detectors(e⁺) should be working in high rate environment
- Good energy, timing, and position resolutions

iquid xenon gamma-ray detector

R.Sawada

MEG detector

2.7 ton of liquid xenonHomogeneous detectorGood time, position, energy resolution

Waveform digitizer for all detectors (pileup ID)

R.Sawada

MEG experiment

9

Coordinate system

MEG experiment

10

Positron spectrometer

Positron spectrometer

R.Sawada

Drift chambers

$Z(\theta)$ direction 506.15 426.65 202.04 $R(\Phi)$ direction Positron tracking Momentum, emission angle (θ, φ) ▶ 16 radial drift chambers Only high momentum e⁺ (>40MeV, 19.3cm<r<27.9cm) Chamber gas $He:C_2H_6 = 50:50$ Low material budget Open frame at the target side Low MS, low γ background

R.Sawada

R.Sawada

MEG experiment

14

Timing counter

15x2(Upstream/Downstream) plastic scintillator bars (4x4x80cm³)

Fine mesh PMTs at both ends, positron timing measurement (σ ~65ps)

Positron φ , z position reconstruction(~5cm)

Scintillating fibers (6x6mm²) + APD

Precise z position measurement, fast θ emission angle information

Positron spectrometer performance

2009 : almost all drift chamber working correctly after fixing 2008 HV discharge problem

2010 : 5 DC chambers are replaced before 2010 run more bad planes and slightly worse noise situation

two turn method

la

Positron spectrometer performance, cont.

Muon decay point, angular resolution : from tracks with two turns inside the drift chambers

2009

R.Sawada

MEG experiment

LXe calorimeter

2.7t Liquid xenon gamma-ray detector

- 900L liquid xenon
- ▶ 846 2" PMTs (Hamamatsu)
 - Submerged in Liquid
- γ energy, position, and timing reconstruction

Merits

- High light output(80% of Nal)
- Fast timing response(45ns)
- Heavy(3g/cm³)

Challenges

- Low temperature(160K)
 - 200W pulse tube cryocooler
- Short scintillation wavelength (178nm)
- Gas/liquid purification

R.Sawada

Reconstruction & Goal of gamma ray detector

Reconstruction

- Energy: weighted sum of all PMTs
- Position: peak fitting of light distribution
- Time: fitting time of PMTs

Pileup detection

- Light distribution
- Time distribution of PMTs

Goal

- Energy resolution: 1.2–1.5%
- Interaction point (Opening angle): 2-4mm
- Time resolution: 65ps

Calibration methods

17.6MeV γ

Published in NIMA641(2011)19-32

R.Sawada

Calibration methods

17.6MeV γ

$Li(p,\gamma)Be$ reaction

R.Sawada

MEG experiment

Calibration methods

π⁻+p->π⁰+n, π⁰->γγ (55,83MeV)

R.Sawada

R.Sawada

MEG experiment

Energy resolution

- Energy resolution is evaluated with 55MeV γ in CEX data
 - π^{-} + p --> π⁰ + n, π⁰ --> γγ

กรบที่ 2 4 12 0

Resolution map on incident position is measured by moving Nal detector

140

R.Sawada

Non-uniformity due to

- Geometry
- Reconstruction algorithm

Correction using

- 18 MeV calibration gamma (High stat)
- Additionally, 55 MeV calibration gamma

Energy dependence correction

After correction : ~0.2 % uniform

18 MeV data, uniformity before correction

R.Sawada

Energy stability

Energy absolute scale calibration CEX 55, 83 MeV γ

Energy scale time-variation calibration

CW 18 MeV γ Ni-n 9 MeV γ AmBe 4.4 MeV γ CR peak

Check Fitting RMD γ

Position resolution

Position resolution
 is evaluated CEX
 data with lead
 collimator

Resolution in 2009
 XY direction: 5mm
 Depth: 6mm
 MC expectation: 4.5mm (due to insufficient Q.E. Estimation?)

Breakdown XEC int

XEC intrinsic(36ps), ToF(20ps), DRS(24ps), and 46ps
 Further improvement only possible by new detectors

higher Q.E. PMT etc.

XEC resolution : ~67ps

MEG experiment

119ps at 55MeV (171ps in 2009, thanks to electronics improvement)

119ps – beam spread(58ps) – resolution of reference counter(81ps)

30

Timing resolution

Positron – photon timing

Alignment between detectors

- Positron spectrometer
 - Optical survey
- Photon detector
 - PMT position scan using **AmBe source**
 - Calibration 18 MeV gamma, with lead collimators

Cosmic rays passing both systems

~1mm agreement

Performance summary

	2009	2010			
Gamma energy (w>2cm) Gamma timing Gamma position Gamma efficiency e^+ momentum $e^+ \phi (\phi=0)$ $e^+ \theta$ $e^+ vertex Z/Y$ e^+ timing e^+ efficiency $T_{e\gamma}$ Trigger efficiency	1.9 % 96 ps 5(xy)/6(depth) mm 58 % 310keV (80% core) 6.7 mrad 9.4 mrad 1.5/1.1 mm (core) 107 ps 40 % 146 ps 91	1.9 % 67 ps 5(xy)/6(depth) mm 59 % 330keV (79% core) 7.2 mrad 11.0 mrad 2.0/1.1 mm (core) 107 ps 34 % 122 ps 92			
Stopping Muon Rate DAQ time/real time	2.9x10 ⁷ / sec 35/43 days	2.9x10 ⁷ / sec 56/67 days			
Expected 90% C.L. Upper Limit	3.3x10 ⁻¹²	2.2x10 ⁻¹²			

2009+2010 Combined Expected 90% C.L. Upper Limit : 1.6x10⁻¹²

R.Sawada

MEG experiment 2008-2010

	Jan-Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2008		Detector	preparatior	ן		CEX	(les	Phy ss DC eff	/sics run lower l	CEX -> Xe LY)
2009		Other ex XEC: DC: HV	periment(La i liquid purif discharge p	amb shift) ication roblem fix	C	→ Detector ins & prepara –	tallation ation DRS4 ir	CEX stallation	Physics	run
2010	DRS4	mod.	Cosmic aligr e	nment + Mott Beam study	∙ Physi	CEX cs run	x Phys	ics run	BTS prot	blem
F	SI accelerat	tor								

Shutdown period

R.Sawada

Analysis Run2009 + Run2010

Analysis method

Signal RMD BG

R.Sawada

MEG experiment

Likelihood and test-statistic

R.Sawada

MEG experiment

Likelihood and test-statistic

Normalization

Normalization

Normalization

Result

R.Sawada

Recent Result from the MEG experiment

of muons stopped on the target

R.Sawada

MEG experiment

<u>Sensitivity</u>

Sensitivity : Median UL of MC with background-only hypothesis

R.Sawada

R.Sawada

contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

MEG experiment

2009, Result

 $\begin{array}{ll} \textbf{1.7} \times 10^{-13} < \mathcal{B}(\mu \rightarrow e\gamma) < \textbf{9.6} \times 10^{-12} & @ 90\% \text{ C.L.} \\ \text{Best fit} : \textbf{3.2} \times 10^{-12} & & \text{p-Value of background-only hypothesis: } \textbf{8\%} \end{array}$

R.Sawada

MEG experiment

2010

contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

MEG experiment

R.Sawada

MEG experiment

Note these curves are not directly used to derive the U.L., which are obtained in a frequentist approach

Data set	$\mathcal{B}_{\mathrm{fit}}$	LL	UL
2009	3.2×10^{-12}	1.7×10^{-13}	9.6×10^{-12}
2010	-9.9×10^{-13}	—	1.7×10^{-12}
2009 + 2010	-1.5×10^{-13}	_	2.4×10^{-12}

Systematic uncertainties (in total 2% in UL)

- relative angle offsets
- correlations in e⁺ observables
- normalization

R.Sawada

- 2009+2010 data
 - Zero-signal is consistent
 - 5 times tighter new limit

 $\mathcal{B}(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$ @ 90% C.L.

R.Sawada

MEG experiment

<u>2011 run</u>

	Jan-Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2008		Detecto	r preparatio	n		CEX	(le:	Phy ss DC eff	ysics run lower l	CEX Xe LY
2009		Other ex XEC DC: HV	xperiment(La : liquid purif discharge p	amb shift) fication problem fix	[→ Detector ins & prepara –	tallation ation DRS4 ir	CEX nstallation	Physics	s run
2010	DRS4	mod.	Cosmic alig e	nment + Mott Beam study	 Physi	CE cs run	X Phys	ics run	BTS pro	blem
2011	BTS 7 DC	repair wo repair w	ork ork	F	^p hysics r	CEX un	X Phy	sics run		
PS										

PSI accelerator Shutdown period

R.Sawada

Data statistics : present and future

<u>Summary</u>

- MEG experiment has started physics run in 2008, and MEG detector has been working since then, and the performance is still being improved.
- > 2009+2010 data : 5 times stringent new limit on Br than the MEGA result (1.2×10^{-11})
 - Sensitivity : 1.6×10^{-12}
 - Consistent with 0 signal
 - Upper limit : 2.4 x 10⁻¹² @ 90%CL
- MEG physics run has restarted since the end of June 2011, and MEG is accumulating more data 2011-2012 to reach O(10⁻¹³) sensitivity.
- Possible major upgrades of experiment (sensitivity $< 10^{-13}$?) are being discussed.

Back up

R.Sawada

Recent Result from the MEG experiment

What can improve our result?

Statistics : still the most important thing

2011 data > 2009 data + 2010 data

▶ 2012 data ≥ 2011 data

Multi-buffer scheme for DAQ

Livetime improved, wider direction match table can be used

Better e⁺ resolution & detection efficiency

One of noise sources (HV distributor) is removed in 2011.

Thinner DC cables, preamplifiers, rearrangement of cable layout etc.

Better gamma resolution & calibration

Stable & better quality data with new detector (BGO) for CEX

New reconstruction algorithm, improve Q.E. estimation etc.

Positron detection efficiency

Positron efficiency ~ 40%

Feasible starting point for improvements

Thinner signal cables (1728ch)

Thinner Preamplifier PCB (576 pcb)

R.Sawada

MEG experime Expected: (50 +x) %

Purification system

Gaseous purification

Liquid purification

Metal heated getter H_2O , O_2 , N_2 ,... Diaphragm pump ~1L/h

R.Sawada

Intrinsic resolution

- PMTs are divided into 2 groups (odd, even)
- See difference of rec. time by the two
 - Electronics contribution canceled out
 - σ((T_{odd} -T_{even})/2)

	55 MeV	83 MeV
2008	44.7	36.0
2009	37.5	30.5
2010	36.4	28.4

16/Feb/2011

Yusuke UCHIYAMA

R.Sawada

TC resolution: intrinsic+DRS

 σ(ΔT)/√2 in double bar Michel events ⇒upper limit on TC intrinsic resolution +DRS

Estimate of resolution on positron impact point at TC: $\sigma(T_{TC})$ ~65 ps

Resolution on average ~5 ps worse in 2010 with respect to 2009

2009+2010

 $MEG \ experiment$

DRS, Electronics timing accuracy : $130 \rightarrow 48$ psec

R.Sawada

MEG experiment

$\mathcal{B} \times 10^{12}$

Data set	Best fit	LL (90% C.L.)	UL (90% C.L.)	UL (95% C.L.)
2009	3.2	0.17(0.17)	9.6(9.4)	11 (11)
2010	-0.99	—	$1.7 \ (1.7)$	2.3(2.2)
Combined	-0.15	_	2.4(2.3)	2.9(2.8)

R.Sawada

MEG experiment

e/

Alignment inside/among detectors

Optical surveys

DC – target

double-checked by target holes

vertex [cm

Alignment by CR

DC – XEC

LXe

DC

AmBe

3445217

045 x 2.23 045 y 1.056 ntagral 3.047e+06

z vertex [cm]

0.4859

Entries

lean y

WHE x

NNS v

Background rejection Cosmic ray rejection

Inner/Outer charge Ratio

Pileup elimination

1. Find pileup 2.Reconstruct energy w/o pileup region, calculate expected charge 3.Replace these charge

R.Sawada

R.Sawada

MEG experiment

R.Sawada

MEG experiment

R.Sawada

R.Sawada

MEG experiment

Correlations

Many of correlations can be measured using data Agreement with MC ${<}10\%$

Large uncertainty 25% is assigned to un-measurable correlations

Correlations and physics analysis

All the known correlations are implemented in signal PDF including event-by-event feature Both the **fitting** and the **toy-MC generation**

When correlation is included, σ_{inner} is used, instead of σ_i

<u>Alignment of drift chambers</u>

CMS-NOTE-2006-011

1.5 um and **10⁻² mrad** level reproducibility, from different initial alignment.

Fitting error : 130 um and 0.2 mrad.

R.Sawada

MisaigamentofieldSensors

Calculated field : Accurate, but possible systematic differences
 Measured field : Realistic, but possible measurement errors

Possible misalignment of hall sensors

 \blacksquare causes false B_{ϕ} and B_r from B_z Secondary effect

MisaigamentofialSensors

- 1. Calculated field : Accurate, but possible systematic differences
- 2. Measured field : Realistic, but possible measurement errors
- 3. Reconstructed field : Realistic, and measurement errors are reduced

Possible misalignment of hall sensors

 \Longrightarrow causes false B_{Φ} and B_r from B_z Secondary effect

$$\begin{array}{c}
1.27T @ center, 0.49T @ ends \\
\begin{pmatrix}
B_{z} \\
B_{r} \\
B_{r} \\
B_{\phi} \\
\end{pmatrix} = \begin{pmatrix}
1 & \theta_{zr} & \theta_{z\phi} \\
\theta_{rz} & 1 & \theta_{r\phi} \\
\theta_{\phi z} & \theta_{\phi r} & 1
\end{pmatrix} \begin{pmatrix}
B_{z} \\
B_{r} \\
B_{r} \\
B_{\phi} \\
\end{bmatrix}$$

$$\begin{array}{c}
\text{Small} \\
(< 0.2 \times Bz) \\
\text{Ideally zero} \\
\end{array}$$

$$\begin{array}{c}
\text{Total set found and corrected} \\
\text{using Maxwell equations}
\end{array}$$

R.Sawada

MEG experiment

Systematics

- Systematic effects are taken into account in the calculation of confidence interval by profiling on (N_{RD}, N_{BG}) and by fluctuating PDFs according to the uncertainty values
 - all the results shown so far already contain systematic effect.
- Size of effect of systematic uncertainty is in total 2% on the UL.
 - $2.3 \times 10^{-12} \rightarrow 2.4 \times 10^{-12}$ for combined result

Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$	0.18
Positron correlations	0.16
Normalization	0.13
E_{γ} scale	0.07
$E_{\rm e}$ bias, core and tail	0.06
$t_{e\gamma}$ center	0.06
E_{γ} BG shape	0.04
E_{γ} signal shape	0.03
Positron angle resolutions ($\theta_{\rm e}, \phi_{\rm e}, z_{\rm e}, y_{\rm e}$)	0.02
γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$	0.02
$E_{\rm e}$ BG shape	0.02
$E_{\rm e}$ signal shape	0.01

Relative contributions on UL

Contribution of each item was studied with toy-experiment by comparing the result with nominal PDF and that with fluctuated one.

Crimean Conf, 4/Sep/2011

Yusuke UCHIYAMA, the University of Tokyo

Multi buffer DAQ

Dead time in 2009-2010

> 25ms/event ~ 83% livetime @ 6Hz

Multi buffer DAQ

- Installed at the end of 2010
- >99% livetime @ 10Hz
- Direction match table between positron and photon can be widen (92% -> 96%).

R.Sawada

Current Status of MEG

Physics data taking started in 2008

> 2008 data

Br(μ->eγ)<2.8x10⁻¹¹ at 90%C.L., published in Nucl.Phys.B834:1-12,2010

Sensitivity: 1.3x10⁻¹¹

▶ 2009 data

Br(μ ->e γ)<1.5x10⁻¹¹ at 90%C.L. (preliminary)

Sensitivity: 6.1x10⁻¹² (preliminary)

> 2010 data

1.9x statistics of 2009

2009+2010 combined analysis result was presented this year

MEG Collaboration

~55 Collaborators from Japan, Italy, Switzerland, Russia, and USA

R.Sawada

What's new in 2010

H Sy

2010 data = 2 x 2009 data

- There was a problem of beam transport solenoid, and 2010 beam time finished prematurely.
- Timing improvement by waveform digitizer
- Positron tracking performance and efficiency slightly worse
 - b due to noise problem and more unstable DC layers
- Better calibrations of data
 - Alignments inside/among detectors

Waveform digitizer upgrade

H Sy

- DRS chip developed at PSI
- Fine tuning of DRS4 digitization board (introduced in 2009)
 - Noise reduction on digital board & time jitter minimization
 - Contribution of timing resolution from electronics
 - > 130ps in 2009 -> 50ps in 2010

DC performance in 2011

- Found that one of noises (14MHz) coming from DC HV distribution system
 - I primary HV power supply(ISEG EHQ 103M) and 16 HV distribution modules with 2 ch. each (PSI)
- 2011 physics run (in a month after starting)
 - > 32 different primary HV power supplies(ISEG EHS)
 - dz, dr improved before/after exchange in 2011
 - DC calibration is on-going. θ, φ resolution will be checked after that.

Background spectrum

Position dependent γ background spectra --> PDF for likelihood analysis These can be extracted directly by time sideband data Detector response (energy resolution, energy scale) can be double checked by this, And the result is consistent with CEX data

R.Sawada