

Jérôme PETY IRAM & Obs. de Paris Directeur de l'Action Spécifique ALMA Radioastronomie (sub)-millimétrique du futur : IRAM/NOEMA et ALMA

CEA, 16 janvier 2012

Why doing (sub-)radio-astronomy?

Whirlpool Galaxy • M51 Hubble Heritage NASA and The Hubble Heritage Team (STScl/AURA) Hubble Space Telescope WFPC2 • STScl-PRC01-07

Towards Higher Resolution: I. Problem

Telescope resolution:

- ~ λ/D ;
- IRAM-30m: \sim 11 $^{\prime\prime}$ @ 1 mm.

Needs to:

- increase *D*;
- increase precision of telescope positionning;
- keep high surface accuracy.
- \Rightarrow Technically difficult (perhaps impossible?).

Towards Higher Resolution: II. Solution

Aperture Synthesis: Replacing a single large telescope by a collection of small telescope "filling" the large one.

 \Rightarrow Technically difficult but feasible.

Vocabulary and notations:

Baseline Line segment between two antenna.

 b_{ij} Baseline length between antenna i and j.

Configuration Antenna layout (*e.g.* compact configuration).

D configuration size (e.g. 150 m).
Primary beam resolution of one antenna (e.g. 27" @ 1 mm).
Synthesized beam resolution of the array (e.g. 2" @ 1 mm).

On the need of deconvolution: I. Current interferometers

Source Model

Dirty Beam

- Difficult to do science on dirty image.
- Deconvolution ⇒ a clean image compatible with the sky intensity distribution.

On the need of deconvolution: II. Future interferometers

Optic vs Radio Interferometer: I. Measurement Method

Detector $\begin{cases} \text{Kind} & \text{Quadratic} \\ \text{Observable} & I = |EE^*| \end{cases}$ Measure {Method Quantity Interferometer kind

Optic Quadratic

Optical fringes $|C| = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

Additive

Radio Linear (Heterodyne) $|E| \exp(i\psi)$

Electronic correlation $|V| \exp(i\phi_V) = \langle E_1 . E_2 \rangle$

Multiplicative

Multiplicative Interferometer

Avantage: all offsets are irrelevant \Rightarrow Much easier; **Inconvenient:** Radio interferometer = bandpass instrument; \Rightarrow Low spatial frequencies are filtered out. SD ------ Multiplicative Interferometer 22.5m 30m $\sqrt{u^2 + v^2}$ 7.5m 15m 0m

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Optic vs Radio Interferometer: II. Atmospheric Influence

Atmosphere emits and absorbs:

Signal = Transmission * Source + Atmosphere.

- Optic: $\begin{cases} Source \gg Atmosphere \\ Transmission \sim 1 \end{cases} \Rightarrow transparent; \\ \bullet Radio: \begin{cases} Source \ll Atmosphere \\ Transmission can be small \end{cases} \Rightarrow fog.$

Good news: Atmospheric noise uncorrelated

 \Rightarrow Correlation suppresses it!

Bad news: Transmission depends on weather and frequency.

 \Rightarrow Astronomical sources needed to calibrate the flux scale!

Atmosphere is turbulent: \Rightarrow Phase noise.

Timescale of atmospheric phase random changes:

- Optic: 10-100 milli secondes;
- Radio: 10 minutes.
- \Rightarrow Radio permits phase calibration on a nearby point source (e.g. quasar).

Instantaneous Field of View

One pixel detector:

- Single Dish: one image pixel/telescope pointing;
- Interferometer: numerous image pixels/telescope pointing
 - Field of view = Primary beam size;
 - Image resolution = Synthesized beam size.

Wide-field imaging: \Rightarrow mosaicing & on-the-fly

(Pety & Rodriguez-Fernandez, A&A, 2010).

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

It works! Molecular gas of M51 mapped in ^{12}CO (J=1-0) at the IRAM-30m and the PdBI

Pety et al., in prep as part of the PAWS project (PI E.Schinnerer).

Science with PdBI: I. Molecular gas in massive galaxies at z = 1.5 - 2.5

Science with PdBI: II. Molecular gas at $z \sim 2.5$ Kneib et al., 2005, A&A

- CO (3-2) emission line.
- SMMJ16359+6612 at $z \sim 2.5$ lensed by Abell 2218 cluster.
- Magnification factor: 45.
- Intrinsically faint galaxy: 0.8 mJy at 0.850 mm.
- Likely a compact merger of 2 typical star-forming galaxies separated at most by 3 kpc.

⇒ Probe of an object contributing to the far-infrared cosmic background.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Science with PdBI: III. Nucleosynthesis at z=0.89 Muller et al., 2006 & 2007, A&A

			8 B.	
			10 C - 1	Z
	NE		Sec.	S
>			100	L
814		-015		
E N		167	\$ SW	I
FPC			S	Τ
M	150	1.1	21 C.	N
LSH	int	dian.	1''	N

	$^{12}C / ^{13}C$	¹⁴ N / ¹⁵ N	¹⁶ O / ¹⁸ O	¹⁸ O / ¹⁷ O	$^{32}S / ^{34}S$
z = 0.89 galaxy	27 ± 2	130^{+20}_{-15}	52 ± 4 [†]	12^{+3}_{-2}	10 ± 1
Solar System (a)	89	270	490	5.5	22
Local ISM (b)	59 ± 2	$237 \frac{+27}{-21}$	672 ± 110	3.65 ± 0.15	19 ± 8
Galactic Center (c)	25 ± 5	$900 \pm \bar{200}$	250 ± 30	3.5 ± 0.2	18 ± 5
IRC+10216 (d)	45 ± 3	> 4400	$1260 {}^{+315}_{-240}$	0.7 ± 0.2	21.8 ± 2.6
LMC (e)	62 ± 5	114 ± 14	> 2000	1.8 ± 0.4	18 ± 6
NGC 253 (f)	40 ± 10	_	200 ± 50	6.5 ± 1	8 ± 2
NGC 4945 (g)	50 ± 10	105 ± 25	195 ± 45	6.4 ± 0.3	13.5 ± 2.5

HCN. H¹³CN and HC¹⁵N absorption spectra towards PKS1830 1.5 (1.5)(1.5)

Science with PdBI: IV. Cooling flows in Perseus Salome et al., 2008, A&A

ðDec ('')

 $4608F \pm 0.7$

CO(2-1) PdBI over H α

20 -20-20 δR.A. (") 20 0 -40 CO(2-1) PdBI over 0.5 KeV X-ray (Fabian et al. 2006)

(Conselice et al. 2001) PdBI line much narrower than 30m lines. Consistent with virialized GMCs falling back towards NGC1275.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Science with IRAM: V. Characterizing GMCs in M33 Gratier et al., 2010, A&A

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Science with PdBI: VI Dectection of amino-acetonitrile in Sgr B2(N) Belloche et al., 2008, A&A

- Amino-acetonitrile: NH₂CH₂CN.
- Precursor of glycine (NH₂CH₂COOH), the simplest amino-acid.
- 51 weak 3mm features detected with the 30m and modelled with a unique rotation temperature of 100 K.
- 3 lines confirmed at PdBI from a 2" region.

 \Rightarrow Glycine likely below the 3mm confusion limit in Sgr B2(N).

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Science with PdBI: VII AGB mass loss Arancha Castro-Carrizo et al., 2007, ASPC, 378, 199

- 45 sources observed, in CO J=2-1 and J=1-0, in track sharing.
- Short-spacings from 30m essential.
- Clear asymmetries at different scales ⇒ Temporal variations of mass loss < 1000 yrs.
- Axial winds are also detected in AGB circumstellar envelopes.

Science with PdBI: VIII Characterizing the formation of multiple system Maury et al., 2010, A&A

No multiplicity detected in 3 Taurus class 0 objects.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Science with PdBI: IX Proto-planetary disks Pety et al., 2006, A&A and Guilloteau et al., 2008, A&A

- HH30 1mm continuum before and after:
 - The doubling of the track extension.
 - The change of receiver generation (increase in sensitivity: ~ 2).
 - ⇒ Beam: From $1.29'' \times 0.91''$, PA 33 deg to $0.66'' \times 0.33''$, PA 22 deg
- HH30 is a binary system.

Science with PdBI: X Burst of the Holmes comet Boissier et al., A&A 2010

 (γ)

- Visible intensity gain of 14 magnitude on [≚]/₄
 Oct. 24th, 2008.
- Snapshot at IRAM-30m to check gas detectability.
- HCN(1-0), HNC(1-0) + continuum observed during 8 hrs on Oct. 27th and 28th at PdBI, 2008. Typical resolution 6".
- Discovered 200 years ago due to a similar outburst at approximately the same position of the orbit.

ALMA Summary: I. Politics

Web pages: http://www.almaobservatory.org/ http://www.eso.org/sci/facilities/alma/index.html http://www.alma.nrao.edu http://www.nro.nao.ac.jp/alma/E/

- Participants: Europe (ESO), North America, Asia (Japan, Taiwan), Chili.
- Budget:
 - Construction: \sim \$800M (+\$250M for Japan);
 - Operation: \$65M per year ramping from 2007 to 2012.
- Schedule: Final delivery: 2013.
- Responsabilities:
 - Director: T. De Graauw.
 - Project Scientist: R.Hills (ALMA), L.Testi (ESO), A.Wooten (NRAO), R.Kawabe (Japan).
 - F.Gueth (IRAM) in ASAC, R.Moreno (LESIA) in ESAC.
- France is "entitled" to \sim 5% of the time.
- Time allocation:
 - One worldwide committee;
 - No provision for legacy programs.
- User support: ALMA Regional Centers.

ALMA Summary: II. Technics

http://www.almaobservatory.org/ http://www.eso.org/sci/facilities/alma/index.html http://www.alma.nrao.edu http://www.nro.nao.ac.jp/alma/E/

- Location: Atacama, Northern Chili, Altitude 5000 m.
- Instrument kind: High-fidelity, high-angular resolution, submm interferometer.
 - 50 (to 64) 12m-antennas;
 - 4 12m-antennas for zero-spacing;
 - 12 7m-antennas for short-spacings.
- Configuration size: 150 m to 16 km.
- Antenna characteristics:
 - Surface accuracy: 25 μ m rms;
 - Pointing accuracy: 0.6'' rms in 9 m/s wind, 2'' absolute in all sky.
- Spectral coverage:
 - Goal: all atmospheric windows between 80 GHz (4 mm) and 900 GHz (300 μ m).
 - Budgeted: receivers for 6-7 out of the 10 possible bands.
- Instantaneous bandwidth: 8 GHz per polarization.
- Correlator: 4096 channels, full Stokes parameters.
- Water vapor radiometers: 183 GHz.
- Calibration accuracy goal: 3 to 5%.
- Data rate: 6 MB/s average; 64 MB/s peak.
- Archive: Raw + Pipeline images. (Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

The NOEMA project: I. Which future for IRAM in the ALMA era?

Digression: Brightness noise and integration time

$$\delta T = \frac{\lambda^2}{2k} \frac{\sigma}{\Omega}$$
 with $\sigma = \frac{2k}{\eta} \frac{T_{\text{sys}}}{\sqrt{\Delta t \Delta \nu} \sqrt{N_{\text{ant}}(N_{\text{ant}} - 1)} A}$

Channel width: $0.8 \,\mathrm{km}\,\mathrm{s}^{-1}$. Wavelength: 1 mm. Decorrelation = 0.8.

Instrument	Resolution	δT	On-source time	Comment
PdBI now	1″	0.3 K	2 hrs	
ALMA 2013	1″	0.3 K	3.5 min	Same line, many objects
ALMA 2013	1″	0.05 K	2 hrs	Fainter lines, same object
ALMA 2013	0.1''	0.3 K	575 hrs	6.5% of a civil year!
ALMA 2013	0.1''	5 K	2 hrs	Intermediate sensitivity
ALMA 2013	0.4″	0.3 K	2 hrs	Intermediate resolution

A factor \sim 6 sensitivity increase \Rightarrow A factor \sim 2.4 resolution increase (same integration time, same noise level).

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

The NOEMA project: I. Which future for IRAM in the ALMA era?

The NOEMA project: II. From 6 to 12 antennas

- Doubling the collecting area.
- Better *uv* instantaneous coverage (4.4 more baselines).
- Less configuration changes.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

The NOEMA project: III. From 8 GHz to 32 GHz bandwidth: 3. Future 2SB receivers

Instrument	Bandwidth	σ	On time	Comments
PdBI 2005	1 GHz	1.0 mJy/Beam	96 min	
PdBI 2008	2 GHz	1.0 mJy/Beam	12 min	New receivers
PdBI today	8 GHz	1.0 mJy/Beam	3 min	New correlator
ALMA 2013	16 GHz	1.0 mJy/Beam	3 sec	
NOEMA 2016	32 GHz	1.0 mJy/Beam	11 sec	

The NOEMA project: IV. Cost and schedule

Support

- French astronomy prospective ranked NOEMA 1st in the medium size projects.
- 10 Meuros funded through EQUIPEX.
- 10 Meuros from MPG.
- 1 Meuros from IGN.
- 5 Meuros from IRAM investment budget.
- **Cost** 44 Meuros, well determined as all components (except the correlator) were already built by IRAM.

Baseline

- 4 additional antennae.
- New receivers for all antennae.
- 12 antennae correlator.

Schedule

- Design almost finished.
- Antenna construction will start in 18 months with a rate of 1 antenna added every 12 months.
- Project completion: in 5 years.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

The NOEMA project: V. A project evolving over the decade 2011-2020

- Frequency extension to include 70-80 GHz range.
- Array phasing for VLBI.
- Dichroics for dual band observations (32 GHz per band).
- Multibeam receivers.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Receivers: I. Heterodyne frequency down-conversion (Navarrini & the IRAM frontend group)

Receivers: II. cm versus mm receivers (Navarrini & the IRAM frontend group)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Receivers: III. Superconductor-Isolator-Superconductor mixers (Navarrini & the IRAM frontend group)

SIS junction Nb/A O_x /Nb.

AIO_x **barrier** Thickness ~ 1 nm, area $\sim 1 \mu$ m.

Principle Photon-assisted tunneling.

- Two kinds of particles in a superconductor: Cooper pairs & quasiparticles.
- Cooper pairs produced the "parasite" Josephson current ⇒ Suppression using a permanent magnetic field.
- The photons assist the tunneling of quasiparticles through the junction.

Receivers: IV. Low temperature cryostat (Navarrini & the IRAM frontend group)

- SIS mixers work at 4K.
- Low noise HEMT amplifiers work at 15K.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Receivers: V. 2SB receivers (Navarrini & the IRAM frontend group)

Double Side Band Lower and Upper SB are down converted and superimposed at the Intermediate Frequency (IF).

- Single Side Band Either the LSB or the USB is rejected before downconversion \Rightarrow No line confusion, less noise but twice as less bandwidth (line and continuum) as DSB.
- 2 Side Bands LSB and USB downconverted and separated to two different IF outputs \Rightarrow Best of both worlds.

Receivers: VI. Example (1) (Navarrini & the IRAM frontend group)

EMIR: Multi-band mm-wave SIS receiver for IRAM 30 m telescope						
	Band#	RF coverage (GHz)	Mixing scheme	IF config. Pol× Sb× BW(GHz)	1/4	
	B1	83 - 117	2SB	2×2×8		
	B2	129 - 174	SSB	$2 \times 1 \times 4$		
	B3	200 - 267	SSB	$2 \times 1 \times 4^{a}$		
	B4	260 - 360	2SB	$2 \times 2 \times 4^{b}$		
Warm IF amplifiers		Cryo	cooler			

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Receivers: VI. Example (2) (Navarrini & the IRAM frontend group)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA
Receivers: VI. Example (3) (Navarrini & the IRAM frontend group)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Receivers: VI. Example (4) (Navarrini & the IRAM frontend group)

Digital spectrometers NOEMA raw data rate: 2 TB/s

Recent, current and foreseen revolutions in radio-astronomy: I. Wide-field imaging at 30m: 1) Spectroscopy

POLARIS 12CO(2-1)

Top: Falgarone et al. 1998 Bottom: Hily-Blant et al. 2009

Past:

- Revolution 1 (1995-2000): On-The-Fly.
- Revolution 2 (2002-2007): Multi-Beams (HERA1 and HERA2).

Present:

- HERA: 18 heterodyne pixels surveying the focal plane at 1mm.
- $1^{\circ 2}$ in 50 hours

 - ⇒ Typical sensitivity 0.5 K (T_A^* , in 0.25 km s⁻¹) ⇒ 10⁶ raw spectra and 2.10⁵ reduced spectra (~ 1000 channels each).

Future:

- New generation mixers:
 - 2SB receivers with much better sensitivity than HERA mixers.
 - Wide IF bandwidth.
 - Miniaturization \Rightarrow Larger number of pixels.
- ???: 50 pixels at 3mm.
 - $1^{\circ 2}$ in 5 hours \Rightarrow Typical sensitivity 0.2 K (T_A^*) in 0.25 km s⁻¹.
- SHERA: 98 pixels at 1mm \Rightarrow 5 times more pixels than today. $1^{\circ 2}$ in 10 hours \Rightarrow Typical sensitivity 0.2 K (T_A^*) in 0.25 km s⁻¹.

Future 5x5 dual-pol SIS heterodyne receiver arrays for the 3mm band

Recent, current and foreseen revolutions in radio-astronomy: II. Wide-field imaging at 30m: 1) Bolometer

Past:

- Revolution 1 (1995-2001): MAMBO1 (37 pixels).
- Revolution 2 (2001-2011): MAMBO2 (117 pixels).
- $1^{\circ 2}$ in 50 hours \Rightarrow Typical sensitivity: 3 mJy/Beam.

Present:

• Experimental field arrays (GISMO = TES and NIKA = KIDS).

Future:

- New instrument.
 - 2 colors.
 - Field arrays.
 - Larger number of pixels to fully sample a field of view of radius 20'.

Recent, current and foreseen revolutions in radio-astronomy: II. Line surveys at 30m

Past:

- Revolution 1 (2002-Today): VESPA correlator.
- Revolution 2 (2004-Today): WILMA correlator.
- Revolution 3 (2008-Today): EMIR receivers.

Present:

- The IF cables can transport 8 times 4 GHz bandwidth.
- WILMA can process 4 times 4 GHz with a channel spacing of 2 MHz. \Rightarrow 8 000 channels.
- Fourier Transform Spectrometers:
 - 212 kHz channel spacing \Rightarrow \sim 20000 channels per 4 GHz.
 - 150000 channels in total.

- Cernicharo et al. 2000.
- 40 000 channels.
- 380 detected lines.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Recent, current and foreseen revolutions in radio-astronomy: II. Line surveys at 30m

Two 3mm line surveys in Horsehead (Pety, Guzman, Gratier et al., in prep)

Recent, current and foreseen revolutions in radio-astronomy: III. Wide-field imaging at PdBI

Past:

- Revolution 1 (1997-2007): Mosaicking.
- Revolution 2 (2009-Today): Large programs.

Present:

- Mosaic of 60 fields at 3 mm \Rightarrow Field of view: $3.5' \times 2.8'$.
- 8 hr in D, 15 hr in C, 43 hr in B and 60 hr in A Future: \Rightarrow 454000 visibilities \times 1024 channels and a final resolution of \sim 1".
- Imaging and deconvolution require images of 2 Mpixels (in fine: only 36 000 fully independent pixels).

 \Rightarrow 400 CPU-hours to deconvolve 120 channels (320 000 components per channel).

Present:

- Mosaicking \sim Raster mapping for a single-dish.
 - \Rightarrow 8-9 seconds lost when moving from one field to the next one.
- Interferometric On-The-Fly.
 - New observing mode + new imaging algorithm.
 - Pety & Rodriguez-Fernandez 2010, A&A.
- NOEMA \Rightarrow 4.4 times more baselines.

Recent, current and foreseen revolutions in radio-astronomy: IV. Continuum and line surveys at PdBI

Past:

- Revolution 1 (2001): Narrow band correlator.
- Revolution 2 (2007): New generation of receivers.
- Revolution 3 (2010): WIDEX.

Present:

- Narrow band correlator: up to 8 times 20 MHz with 39 kHz channel spacing.
- WIDEX: 2 times 4 GHz with a channel spacing of 2 MHz (up to 8 antennas). $\Rightarrow \sim$ twice the narrow band correlator continuum sensitivity.
- \Rightarrow 4096 + 4096 channels.

Future:

- NOEMA:
 - New receivers \Rightarrow 32 GHz of instantaneous bandwidth. \Rightarrow At least 16 000 channels with a 2 MHz channel spacing.

Water detected at 299 GHz in one of the H-ATLAS high z source (Omont et al. in prep).

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Consequences:

I. "Large" data quantities: 1) Examples

Memory size:

- $N_{\rm spectra} = 32768$
 - $N_{\text{channel}} = 1024 \Rightarrow 150 \text{ MB};$
 - $N_{\text{channel}} = 16384 \Rightarrow 2 \text{ GB};$
 - $N_{\text{channel}} = 262\,144 \Rightarrow 32$ GB.
- $N_{\rm spectra} = 524\,288$
 - $N_{\text{channel}} = 1024 \Rightarrow 2.3 \text{ GB};$
 - $N_{\text{channel}} = 16384 \Rightarrow 32 \text{ GB};$
 - $N_{\text{channel}} = 262\,144 \Rightarrow 0.5 \text{ TB}.$
- Bure or 30m:
 - Today: \sim 20-100 GB;
 - Tomorrow: \sim 0.5-1 TB (up to 20 TB);
 - Raw data. Processing \Rightarrow Tenfold size of scratch space...

Read/Write data rates:

- Constant independant of N_{spectra};
- Varies linearly with N_{channel} :

spectra/sec	N _{channel}
10 000	128
1 200	16 384
100	262 144

• System limitation.

Consequences:

I. Large data quantities: 2) Implications for softwares

- Best use of available hardware:
 - Make use of all available RAM: Get prepared to divide your problems in tiny chunks fitting inside it.
 - Multi-core processors \Rightarrow (tricky) multi-threading.
- Chase out N^2 algorithms... \Rightarrow Code profiling.
- Flexible data access:
 - Most of the parameter space probably empty, but serendipitous discoveries must be easy. \Rightarrow What is the granularity of the data format?
 - Interface to a priori information; *i.e.*, line catalogs (weeds) or regions where the signal is expected. \Rightarrow Processing may depend on data analysis.

Consequences: II. New kind of data sets

Past decade From spectra to spectra cubes or image sets. Next decade From line surveys to cube surveys.

Pety et al., 2004-today

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

Consequences:

III. From an individual to a collective practice

- Very few and expansive observatories \Rightarrow Worldwide competition.
- Sensitive receivers and high data rate backends \Rightarrow Large data sets with subtle artifacts.
- Complex observations (large samples or very high angular resolution) needed to reach many single scientific goals ⇒ Needs matching micro-physics parameters (gas phase and solid phase) and modelling (radiative transfer, chemistry, dynamics).

- \Rightarrow Consortium already needed at proposal time.
 - ⇒ How individuals (*e.g.* students, post-docs) and groups (experimentalists, developers of data reduction softwares, modellers) will be rewarded?

ALMA Status: I. Site: Chajnantor, Atacama, Chili

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: I. Site: Chajnantor, Atacama, Chili

ALMA Status: I. Site: Chajnantor, Atacama, Chili

ALMA Status: II. Private access road (width: 14 to 19m)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: III. AOS, ALMA Operation Site (in Feb 2008)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: III. AOS, ALMA Operation Site (mid 2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: III. AOS, ALMA Operation Site (mid 2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: III. AOS, ALMA Operation Site (mid-2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: III. AOS, ALMA Operation Site (mid-2011)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status:

IV. Correlator: Room and First Quadrant (beginning of 2008)

Pety, 2012

ALMA Status:

IV. Correlator: Room and First Quadrant (beginning of 2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: IV. Correlator: ACA and ALMA (mid 2010)

ALMA Status: V. OSF, Operation Support Facility (in Feb 2008)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: V. OSF, Operation Support Facility (mid-2011)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: V. OSF, Operation Support Facility (in Jun 2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: V. OSF, Operation Support Facility (mid-2010)

ALMA Status: VI. Power

Power need 7 MW.

Generation Fuel generators at OSF (2900 m) and transporter through buried cables to AOS (5000 m).

Smoothing system Fly wheel system at AOS.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. Antennae (beginning of 2008)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. Antennae (mid-2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. Antennae (mid-2011)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. European antennae (mid-2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. European antennae (mid-2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. European antennae (mid-2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA
VII. Japanese and American antennae (Sep. 2010)

• 2 Japanese and 6 American antennae provisionnally accepted.

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VII. Japanese 7m-antennae (mid-2011)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: VIII. Transporter (mid-2008)

The ALMA Antenna Transporter

ESO Press Photo 45b/07 (5 October 2007)

This image is copylight © ESO, it is released in connection with an ESO press release and may be used by the press on the condition that the source is clearly indicated in the caption.

ALMA Status: VIII. Transporter (mid-2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: IX. Receivers (project)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: IX. Receivers (mid-2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

IX. Receiver assembly and tests (mid-2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: IX. Receiver installation

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

X. Santiago central office on the ESO campus (mid-2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

XI. First interferometric spectrum in Socorro, USA (mid 2008)

XI. First single-dish images on Moon at OSF, Chili (beginning 2009)

ALMA Status: XI. First fringes on Mars at OSF, Chili (mid 2009)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

XI. First science verification data at OSF, Chili (Automn 2010)

XI. First science verification data at OSF, Chili (Automn 2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

XI. First science verification data at OSF, Chili (Automn 2010)

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

XII. Weather at OSF, Chili ("Unusually severe altiplanic winter")

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: XII. Weather at OSF, Chili

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA

ALMA Status: XIII. Schedule

- mid-2008: Start of commissioning and science verification.
- end-2009: 3 antennae interferometer.
- mid-2010: First interferometric data cube.
- 30-jun-2010: Early science (cycle 0) proposal deadline.
- end-2011: Early science start (At least 16 antennas with 4 bands of receivers).
- 2013: Full science operation.

 \Rightarrow Tomorrow!

(Sub-)millimeter radio-astronomy: ALMA and IRAM/NOEMA