

A la recherche des modes B de polarisation du rayonnement fossile: vers de nouveaux instruments

Michel Piat Laboratoire AstroParticule et Cosmologie Université Paris Diderot

Le fond diffus cosmologique ou CMB (Cosmic Microwave Background)

La polarisation du CMB

- Origine: diffusion Thomson au moment du découplage rayonnement-matière
- Requiert un rayonnement incident à l'électron qui soit anisotrope
 - Electron tombant dans une surdensité (fluctuations scalaires)
 - Déformation de l'espace par les ondes gravitationnelles (fluctuations tensorielles)
- Polarisation linéaire d'environ 10%

Caractérisation de la polarisation

- Paramètres de Stokes
 - 👆 Paramètres locaux
 - 🌭 l: intensité totale
 - 🌭 Q, U: polarisation linéaire
 - **V: polarisation circulaire**
- Modes E et B
 - 🌭 Paramètres non locaux

$$\begin{cases} I = \left\langle E_x^2 \right\rangle + \left\langle E_y^2 \right\rangle \\ Q = \left\langle E_x^2 \right\rangle - \left\langle E_y^2 \right\rangle \\ U = 2 \left\langle E_x E_y \cos \delta \right\rangle \\ V = 2 \left\langle E_x E_y \sin \delta \right\rangle \end{cases}$$

Origine physique des modes E et B

- *Modes scalaires*: fluctuations de densité
 TT, EE, TE
- Modes tensoriels: ondes gravitationnelles issues de l'inflation
 - 🗞 TT, EE, TE <u>et BB</u>
 - BB = signature des OG primordiales (hors lensing)
 - Amplitude reliée à l'échelle d'énergie de l'inflation
 - Rapport tenseur sur scalaire r = T/S

$$V = 1.06 \times 10^{16} \text{GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

Polarisation <u>du CMB</u>

Polarisation du CMB: connaissances actuelles

- Mode E détecté
 DASI, WMAP, Boomerang...
- Mode B jamais détecté jusqu'à présent
 - r < 0.21 à 95% (SPT+WMAP7, Keisler et al. 2011 arXiv: 1105.3182v1)
 - L'un des défis de la cosmologie observationnelle

Le satellite Planck et les modes B

- Planck (14 mai 2009)
 - Conçu pour être limité par la confusion des avant-plans <u>non polarisés</u>
 - "expérience ultime" pour les anisotropies en T
- Sensibilité à la polarisation
 - Limitée par le bruit instrumental
 - 🌭 ~60 μK.arcmin en 1 an
 - Modes B: détection
 envisageable si r > 0.05
 (Efstathiou et Gratton, 2009)
- Première contrainte des modes B depuis l'espace

/ [μK/K]² 0.01

 10^{-3}

 10^{-4}

2π]

 $[l(l+1)C_l / l$

1

esa

Vers de nouveaux instruments...

 Un concept spatial: CORE
 R&D BSD *B-mode Superconducting Detectors* L'interférométrie bolométrique: QUBIC

1. CORE

- Une mission dédiée à la mesure précise des anisotropies polarisées du CMB
 - Environ 30 fois plus
 sensible que Planck
 - Avec la même résolution angulaire que Planck
 - Et un contrôle draconien des effets systématiques

COrE white paper: arXiv :1102.2181

CORE Cosmic ORigins Explorer

through a high sensitivy survey of the microwave polarisation of the entire sky

A proposal in response to the European Space Agency CEA - 10 dec 2012 Cosmic Vision 2015-2025 Call

m

Objectifs scientifiques de CORE

- Modes B

 - Soustraction des avant-plans
- Masses des neutrinos
 - Effet sur le lentillage du CMB
 - bétermination de la hiérarchie des neutrinos
 - Mesure compétitive par rapport aux manips sol
- Non gaussianités
 - 🤟 Polarisation: sonde plus puissante que l'intensité
 - Contraintes sur les modèles d'univers primordial
- Polarisation des poussières
 - Cartographie du champ magnétique galactique particulièrement dans les milieux à faible densité

L'héritage de SAMPAN

- 2005-06: Etude CNES de phase 0
 - 🌭 Etablissement de la faisabilité
 - Participation:
 - CNES PASO (Coord: J. Michaud)
 - Air Liquide, Alcatel
 - Laboratoires (APC, CRTBT, IAP, IAS, LAOG)
- Concepts BPol (2007) puis COrE (2010) très fortement inspirés de SAMPAN
 - Objectifs scientifiques
 - Technologies

Architecture COrE

- Orbite: L2
 A la Planck...
- ler élément optique:
 lame demi-onde
 rotative en réflection
 - Modulation de la polarisation
- Télescope hors-axe
 Ouverture ~1.2m

Stratégie de balayage COrE

Modulation de la polarisation →
 simplification de la stratégie de balayage

Simulations:

CEA - 10 dec 2012

Axe Soleil/L2

α

Ш

Precession

Nutation

bin

Plan focal de COrE

Cornets, OMT,
 bolomètres
 supraconducteur

Performances COrE

Table 2: COTE performances - assuming a 50% value for detection chain enciency.					
Central Freq.	$\Delta \nu$	$N_{detectors}$	FWHM	Unpol. sensitivity	Q & U sensitivity
(GHz)	(GHz)		(arcmin)	$(\mu K.arcmin)$	$(\mu K.arcmin)$
45	15	64	23.3	5.2	9.0
75	15	300	14	2.7	4.7
105	15	400	10	2.7	4.6
135	15	550	7.8	2.6	4.5
165	15	750	6.4	2.6	4.6
195	15	1150	5.4	2.6	4.5
225	15	1800	4.7	2.6	4.5
255	15	575	4.1	6.0	10.4
285	15	375	3.7	10.0	17
315	15	100	3.3	26.6	46
375	15	64	2.8	67.8	117
435	15	64	2.4	147.6	255
555	195	64	1.9	218	589
675	195	64	1.6	1268	3420
795	195	64	1.3	7744	20881

Table 2: COrE performances - assuming a 50% value for detection chain efficiency.

COrE: simulation des performances

19

De Planck à COrE

Paramètre	Planck-HFI	COrE	
λ	300µm-3mm	1mm-10mm	
$\lambda/\Delta\lambda$	3	3	
Résolution angulaire	5'-10'	1'-23'	
Détecteurs	Bolo. semicond. 100mK	Bolo. supracond. 100mK	
Nombre de détecteurs	4-12 par canal 52 total	64-2000 par canal 6384 total	
NEP	1-10.10 ⁻¹⁷ W.Hz ^{-0.5}	2-3.10 ⁻¹⁸ W.Hz ^{-0.5}	45 GHz 75 GHz
Constante de temps	5-8ms	0.5-10ms	 105 GHz 135 GHz
Efficacité quantique	>37%	>50%	
Architecture de détection	Polarisation Sensitive Bolometers	Lame ¹ / ₂ onde + duplexer de polarisation	

Planck-HFI

Plan focal

COrE

395mm

2. BSD: B-mode Superconducting Detectors

- Initié en septembre 2007
 - Basé sur les acquis de DCMB "Développement Concerté de Matrices de Bolomètres" (→2010)
 - Premiers financements (GIS P2I, ANR JC, CNRS P&U)
- Principal objectif:

Réalisation d'une chaine de détection supraconductrice pour la mesure de la polarisation du CMB

- 🗄 Technologie Nb
- 🏷 70GHz-350GHz
- Composants: Détecteurs, antennes, lignes de transmission, filtres, déphaseurs, switch, coupleur/diviseur de puissance
- 2010: financement CNES
 - Extension au pôle grenoblois (IN) et toulousain (IRAP)

Contraintes pour la réalisation de matrices de bolomètres

- Procédé de fabrication collectif
 - Micro et nanotechnologies
- Homogénéité des différents détecteurs
 - 🗞 Réalisation la plus uniforme possible
 - Sontre réaction électro-thermique

Multiplexage

- Nécessaire au delà d'une centaine de pixels
- Bolomètres semi-conducteur:
 - FET: T>100K => difficile
 - CMOS: solution CEA-LETI
 - HEMT @ 100mK (IN)

Bolomètres supraconducteur:

SQUIDs @ 100mK

➔ Matrice de bolomètres supraconducteurs

Matrice de 23 bolomètres supraconducteurs

 Réalisation CSNSM - IEF (S. Marnieros, B. Belier)

Membranes ouverte NEP~10⁻¹⁷W.Hz^{-0.5} @ 100mK

Electronique de lecture des TES: ASIC SiGe V2 à 4K

TES NbSi: performances

Matrice QUBIC

(Stefanos Marnieros)

CEA - 10 dec 2012

ASIC V3: SQMUX128

- Lecture de 128 pixels multiplexés temporellement
- En cours de tests

2. Vers de nouvelles architectures de détection

- Méthode de mesure actuelle: soustraction du signal de 2 détecteurs mesurant des polarisations perpendiculaires
 - 🄄 Paramètres de Stokes :

$$I = \left\langle E_x^2 \right\rangle + \left\langle E_y^2 \right\rangle$$
$$Q = \left\langle E_x^2 \right\rangle - \left\langle E_y^2 \right\rangle$$
$$U = 2\left\langle E_x E_y \cos \delta \right\rangle$$
$$V = 2\left\langle E_x E_y \sin \delta \right\rangle$$

Méthode Planck, Bicep...

- Polarisation Sensitive Bolometer (Caltech-JPL)
- Modulation du signal : stratégie d'observation

Effets parasites instrumentaux

- Imperfections instrumentales
 - **Susceptible de masquer le** signal cosmologique
- Améliorations requises:
 - 🕓 Couplage optique, pureté de polarisation: antennes
 - Filtrage optique: filtre sur ligne de transmission (1+1)C/2+ (pK)
 - Mesure directe des paramètres de Stokes: architecture évoluée
 - Intégration: technologie planaire

Radiomètre complet (Polar Bear UCB)

Lignes de transmission supraconductrices

Lignes supraconductrices

Architectures évoluées

- Mesure directe des paramètres de Stokes
 - **Architecture intégrée planaire**
 - Pas de systèmes rotatifs
- Pseudo-correlator scheme (ClOVER)
 - Equivalent à un polariseur tournant
- Interférométrie bolométrique
 - Coefficients de Fourier des paramètres de Stokes à une échelle spatiale donnée (ligne de base

Ortho-Mode Transducer (OMT) (A. Ghribi, G. Bordier, BSD collaboration)

 Séparation planaire des polarisations perdendiculaires

BSD: Module d'étalonnage

Système nécessaire à la mesure de l'OMT

Mesure transmission structure d'étalonnage

Superconducting switch design

 Use of temperature or current to switch a superconducting bridge to normal

 Performances depends on normal resistivity

Nb	$20\mu\Omega.cm$
NbN(1)	$200\mu\Omega.cm$
NbN(2)	$1000\mu\Omega.cm$
NbSiN	$1000\mu\Omega.cm$
NbAlN	$20000\mu\Omega.cm$

(Thèse A. Ghribi,

3. L'interférométrie bolométrique: motivations

- Interférométrie hétérodyne
 - 4 1ère détection des modes E (DASI)
 - Sensibilité limitée de la méthode hétérodyne
- Intérêt de l'interférométrie:

- birectement sensible aux corrélations spatiales du signal (TF)
- 🤟 Pas de différences entre détecteurs, pas de télescope
- Bolomètres:
 - bétection de la puissance du rayonnement incident
 - Sensibilité limitée par le bruit de photon (BLIP)
 - Possibilité de faire de grandes matrices
- Interférométrie bolométrique additive:
 - Solution Set Normalizette Set Norma
 - Combinaison des avantages de l'interférométrie avec la sensibilité des bolomètres

A merging of MBI (USA/UK) with BRAIN (France/Italy/UK)

APC Paris, France IAS Orsay, France CSNSM Orsay, France CESR Toulouse, France IUCAA, Pune, India Maynooth University, Ireland Universita di Milano-Bicocca, Italy Universita La Sapienza, Roma, Italy University of Manchester, UK Richmond University, USA Brown University, USA University of Wisconsin, USA

arXiv:1010.0645 Astropart. Phys. 34, 705 (2011) CEA - 10 dec 2012

Imageur synthétique

• QUBIC =

- Imageur dans lequel la pupille d'entrée est composée d'une matrice d'ouvertures gaussiennes
- Imageur avec un beam synthétique

CEA - 10 dec 2012

Comparaison imageur/ interféromètre 400 horns - 14 deg. FHWM - 150 GHz

Léger avantage pour Imager ideal coverage : n_m Imager realistic coverage : η_{Im} = 1.4 BI Gaussian coverage (no scanning) : η_{BI} = 2 BI Uniform coverage (perfect scanning) : η_{BI} = 1 BI Realistic coverage (realistic scanning) : η_{BI} = 1.6 l'imageur NB: noise only error bars 1.5 • Et en terme d'immunité aux effets و¦ / ∆ د¦ Bolometric Interferometer more sensitive 1.0 Imager more sensitive systématiques? 0.5 Imager FWHM = I deg. 0.0 100 150 200 50 Multipole See ICH et al., A&A 491, 923-927 (2008) and R. Charlassier et al. A&A 514, A37, (2010)

Autocalibration

Autocalibration allows for systematics control

- ★ Use array redundancy [e.g. Wieiringa, 1991 Tegmark & Zaldarriaga, 2010]
 - Redundant baselines: same visibility if no sytematics
 - Model systematics using Jones matrices (gains and coupling / channel / pixel)
 - Open 2 horns at a time (close the rest: implies switches between back-to-back horns)
 - Construct a system of equations : overconstrained if Nhorns > 20
- recover systematics/channel/pixel with an unknown polarized source !

Back of the envelope : NET=300 μ K.Hz^{-1/2} and 100 K source : ~ 3x10⁻⁶ on each syst. coeff. with 1 sec/baseline

B.I. allows for internal systematic effects measurement

CEA - 10 dec 2012

Autocalibration: simulations

0.000
0.0007
0.0005
0.0019
0.0114
0.0057

par

B

 \overline{x}_{i}

[Bigot-Sazy et al. 2012]

Motivations for a space BI instrument

- Sensitivity
 - About the same as an imager
- Systematic effects
 - At least they are different than a classical imager
 - **Auto-calibration is a <u>unique feature</u>**
- Architecture simplification
 - Solution Work going on...

Design QUBIC en cours, 1^{ère} lumière 2014

Platelet horns (APC, Manchester)

RF switch (APC, Manchester, Milan)

Bolometer readout (APC, IRAP)

CEA - 10 dec 2012

Focal plane

QUBIC version spatiale

ITT ESA Polarimetric (Sub)Millimeter Wave Antenna Architectures (APC, ASTRIUM, LERMA)

CEA - 10 dec 2012

Conclusions

Besoin instrumentaux pour la mesure des modes B: Matrices de bolomètres de grande dimension Architectures de détection évolués

Technologie supraconductrice: R&D BSD

Originalité de l'approche BSD: NbSi, ASIC SiGe @ 4K, déphaseur QUBIC

Perspectives satellite ~2025?

Objectif: avoir la technologie démontrée pour le prochain appel d'offre ESA (2014?)